Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = non-standard thermodynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 3177 KB  
Review
Unveiling Scale-Dependent Statistical Physics: Connecting Finite-Size and Non-Equilibrium Systems for New Insights
by Agustín Pérez-Madrid and Iván Santamaría-Holek
Entropy 2026, 28(1), 99; https://doi.org/10.3390/e28010099 - 14 Jan 2026
Viewed by 293
Abstract
A scale-dependent effective temperature emerges as a unifying principle in the statistical physics of apparently different phenomena, namely quantum confinement in finite-size systems and non-equilibrium effects in thermodynamic systems. This concept effectively maps these inherently complex systems onto equilibrium states, thereby enabling the [...] Read more.
A scale-dependent effective temperature emerges as a unifying principle in the statistical physics of apparently different phenomena, namely quantum confinement in finite-size systems and non-equilibrium effects in thermodynamic systems. This concept effectively maps these inherently complex systems onto equilibrium states, thereby enabling the direct application of standard statistical physics methods. By offering a framework to analyze these systems as effectively at equilibrium, our approach provides powerful new tools that significantly expand the scope of the field. Just as the constant speed of light in Einstein’s theory of special relativity necessitates a relative understanding of space and time, our fixed ratio of energy to temperature suggests a fundamental rescaling of both quantities that allows us to recognize shared patterns across diverse materials and situations. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

17 pages, 305 KB  
Communication
Entropy as a Geometric Consequence of Higher Dimensions
by Allan Kardec Barros
Technologies 2025, 13(12), 563; https://doi.org/10.3390/technologies13120563 - 3 Dec 2025
Viewed by 732
Abstract
Entropy has traditionally been understood as a phenomenological principle, capturing time irreversibility in physical processes. In this work, we propose that entropy can emerge as a geometric property of higher-dimensional spacetime. Within a Kaluza–Klein framework featuring an additional circular dimension proportional to particle [...] Read more.
Entropy has traditionally been understood as a phenomenological principle, capturing time irreversibility in physical processes. In this work, we propose that entropy can emerge as a geometric property of higher-dimensional spacetime. Within a Kaluza–Klein framework featuring an additional circular dimension proportional to particle wavelength, trajectories acquire statistical multiplicity, which naturally produces a monotonic increase in entropy and offers a geometric foundation for the second law of thermodynamics. In the broader context, we note that the association between entropy and geometry is not unprecedented: Bekenstein and Hawking showed that black holes yields entropy proportional to the horizon area. Our contribution, however, is independent of that line of research and focuses on higher-dimensional spacetime. Importantly, the framework yields concrete predictions. In the arrival-time experiment of Das and Dürr, our model uniquely predicts symmetric probability distributions when the initial state is symmetric, in contrast to the non-symmetric outcomes expected from both standard quantum and Bohmian mechanics. This provides a distinctive and testable signature for hidden dimensions. Full article
12 pages, 442 KB  
Article
Black-Hole Evaporation for Cosmological Observers
by Thiago de L. Campos, C. Molina and J. A. S. Lima
Universe 2025, 11(12), 394; https://doi.org/10.3390/universe11120394 - 30 Nov 2025
Viewed by 690
Abstract
This work investigates the evaporation of black holes immersed in a de Sitter environment, using the Vaidya-de Sitter spacetime. The role of cosmological observers is highlighted in the development and Hayward thermodynamics for non-stationary geometries is employed in the description of the compact [...] Read more.
This work investigates the evaporation of black holes immersed in a de Sitter environment, using the Vaidya-de Sitter spacetime. The role of cosmological observers is highlighted in the development and Hayward thermodynamics for non-stationary geometries is employed in the description of the compact objects. The results of the proposed dynamical model are compared with the usual description based on stationary geometries, with specific results for primordial black holes (PBHs). The timescale of evaporation is shown to depend significantly on the choice of cosmological observer and can differ substantially from predictions based on stationary models at late times. Deviations are also shown with respect to the standard assertion that there is a fixed initial mass just below 1015g1018M for the PBHs which are completing their evaporation process at the present epoch. Full article
Show Figures

Figure 1

23 pages, 2522 KB  
Article
Alkali Fusion–Leaching Process for Non-Standard Copper Anode Slime (CAS)
by Jovana Djokić, Nataša Gajić, Dragana Radovanović, Marija Štulović, Stevan Dimitrijević, Nela Vujović and Željko Kamberović
Metals 2025, 15(12), 1308; https://doi.org/10.3390/met15121308 - 27 Nov 2025
Viewed by 497
Abstract
Copper anode slime (CAS), obtained from non-standard anodes by pyro-hydrometallurgical electronic waste (e-waste) processing, contains high concentrations of lead, tin (as metastannic acid), and base (Cu, Fe, Zn), precious (Au, Ag), and technological metals (In, Ga, Ge), which limit the efficiency of conventional [...] Read more.
Copper anode slime (CAS), obtained from non-standard anodes by pyro-hydrometallurgical electronic waste (e-waste) processing, contains high concentrations of lead, tin (as metastannic acid), and base (Cu, Fe, Zn), precious (Au, Ag), and technological metals (In, Ga, Ge), which limit the efficiency of conventional valorization methods. In this study, an integrated alkali fusion–leaching process was applied to non-standard CAS. Thermodynamic modeling defined the key parameters for selective phase transformations and efficient metal separation. These parameters were experimentally investigated, and the optimized fusion conditions (CAS:NaOH = 40:60, 600 °C, 60 min), followed by water leaching (200 g/dm3, 80 °C, 60 min, 250 rpm), resulted in >97% Sn removal efficiency. Simultaneously, Au and Ag losses were negligible, resulting in solid residue enrichment. Oxidant addition (NaNO3) did not improve Sn removal but increased Fe, Pb, and Ag solubility, reducing selectivity. The scaled-up test confirmed process reproducibility, achieving 97.75% Sn dissolution and retention of precious metals in the PbO-based residue (99.99% Au, 99.78% Ag). Application of an integrated thermodynamic modeling, laboratory optimization, and scaled-up validation approach to non-standard CAS provides a relevant framework for a selective, efficient, and scalable method addressing industrial needs driven by increased e-waste co-processing, contributing to sustainable metal recovery. Full article
(This article belongs to the Special Issue Hydrometallurgical Processes for the Recovery of Critical Metals)
Show Figures

Graphical abstract

15 pages, 292 KB  
Article
On the Coupling Between Cosmological Dynamics and Quantum Behavior: A Multiscale Thermodynamic Framework
by Andreas Warkentin
Entropy 2025, 27(9), 976; https://doi.org/10.3390/e27090976 - 18 Sep 2025
Viewed by 776
Abstract
A multiscale thermodynamic model is considered, in which cosmological dynamics enforce persistent non-equilibrium conditions through recursive energy exchange across hierarchically ordered subsystems. The internal energy of each subsystem is recursively determined by energetic interactions with its subcomponents, forming a nested hierarchy extending up [...] Read more.
A multiscale thermodynamic model is considered, in which cosmological dynamics enforce persistent non-equilibrium conditions through recursive energy exchange across hierarchically ordered subsystems. The internal energy of each subsystem is recursively determined by energetic interactions with its subcomponents, forming a nested hierarchy extending up to cosmological scales. The total energy of the universe is assumed to be constant, imposing global consistency conditions on local dynamics. On the quantum scale, subsystems remain thermodynamically constrained in their accessible state space due to the unresolved energetic embedding imposed by higher-order couplings. As a result, quantum behavior is interpreted as an effective projection of unresolved thermodynamic interactions. In this view, the wave function serves as a mathematical representation of a subsystem’s thermodynamic embedding, summarizing the unresolved energetic couplings with its environment, as shaped by recursive interactions across cosmological and microscopic scales. Phenomena such as zero-point energy and vacuum fluctuations are thereby understood as residual effects of structural energy constraints. Classical mechanics arises as a limiting case under full energetic resolution, while the quantum formalism reflects thermodynamic incompleteness. This formulation bridges statistical mechanics and quantum theory without metaphysical assumptions. It remains fully compatible with standard formalism, offering a thermodynamic interpretation based solely on energy conservation and hierarchical organization. All effects arise from scale-dependent resolution, not from violations of established physics. Full article
(This article belongs to the Special Issue Non-Equilibrium Thermodynamics and Quantum Information Theory)
Show Figures

Figure A1

21 pages, 1757 KB  
Article
Description of Gas Transport in Polymers: Integrated Thermodynamic and Transport Modeling of Refrigerant Gases in Polymeric Membranes
by Matteo Minelli, Marco Giacinti Baschetti and Virginia Signorini
Polymers 2025, 17(16), 2169; https://doi.org/10.3390/polym17162169 - 8 Aug 2025
Viewed by 1526
Abstract
Hydrofluorocarbons (HFC) are today widely used as refrigerants, solvents, or aerosols for fire protection. Due to their non-negligible environmental impact, there exists an increasing interest towards their effective separation and recovery, which still remains a major challenge. This work presents a comprehensive thermodynamic [...] Read more.
Hydrofluorocarbons (HFC) are today widely used as refrigerants, solvents, or aerosols for fire protection. Due to their non-negligible environmental impact, there exists an increasing interest towards their effective separation and recovery, which still remains a major challenge. This work presents a comprehensive thermodynamic and transport modeling approach able to describe HFC sorption and transport in different amorphous polymers, including glassy, rubbery, and copolymers, as well as in supported Ionic Liquid membranes (SILMs). In particular, the literature solubility data for refrigerants such as R-32, R-125, R-134a, and R-152a is analyzed by means of the Sanchez–Lacombe Equation of State (SL-EoS), and its non-equilibrium extension (NELF), to predict gas uptake in complex polymeric materials. The Standard Transport Model (STM) is then employed to describe permeability behaviors, incorporating concentration-dependent diffusion using a mobility coefficient and thermodynamic factor. Results demonstrate that fluorinated gases exhibit strong affinity to fluorinated and high free-volume polymers, and that solubility is primarily governed by gas condensability, molecular size, and polymer structure. The combined EoS–STM approach accurately predicts both solubility and permeability across different pressures in all polymers, including SILM. The thorough study of HFC transport in polymer membranes provided both systematic insights and predictive capabilities to guide the design of next-generation materials for refrigerant recovery and low-GWP separation processes. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

22 pages, 2202 KB  
Article
Thermodynamic, Economic, and Environmental Multi-Criteria Optimization of a Multi-Stage Rankine System for LNG Cold Energy Utilization
by Ruiqiang Ma, Yingxue Lu, Xiaohui Yu and Bin Yang
Modelling 2025, 6(2), 45; https://doi.org/10.3390/modelling6020045 - 9 Jun 2025
Cited by 2 | Viewed by 1662
Abstract
Utilizing the considerable cold energy in liquefied natural gas (LNG) through the organic Rankine cycle is a highly important initiative. A multi-stage Rankine-based power generation system using LNG cold energy for waste heat utilization was proposed in this study. Moreover, a comprehensive assessment [...] Read more.
Utilizing the considerable cold energy in liquefied natural gas (LNG) through the organic Rankine cycle is a highly important initiative. A multi-stage Rankine-based power generation system using LNG cold energy for waste heat utilization was proposed in this study. Moreover, a comprehensive assessment method was used to select the working fluid for this proposed system. Not only were thermodynamic and economic indicators considered, but also the environmental impact of candidate working fluids was taken into account in the evaluation process. The optimal operating points of the system were determined using non-dominated sorting genetic algorithm II and TOPSIS methods, while employing Gray Relational Analysis was applied to compute the gray relational coefficients of candidate working fluids at the optimal operating points. In addition, four weighting methods were used to calculate the final gray correlation degree of the candidate working fluids by considering the weighting influence. The stability of the calculated gray correlation degree was observed by performing a standard deviation analysis. The results indicate that R245ca was chosen as the optimal working fluid due to its superior performance based on the entropy weighting method, the independent weighting coefficient method, and the mean weighting method. Simultaneously, R245ca exhibits the best specific net power output and levelized cost of energy values of 0.283 USD/kWh and 106.9 kWh/t, respectively, among all candidate working fluids. The gray correlation degree of R1233zd(E) is 0.948, exceeding that of R245ca under the coefficient of variation method. The gray correlation degree under the mean value method is the most stable, with a standard deviation of only 0.162, while the gray correlation degree under the coefficient of variation method exhibits the greatest fluctuation, with a standard deviation of 0.17, in the stability assessment. Full article
Show Figures

Figure 1

27 pages, 4866 KB  
Article
Preparation and Evaluation of Tadalafil-Loaded Nanoemulgel for Transdermal Delivery in Cold-Induced Vasoconstriction: A Potential Therapy for Raynaud’s Phenomenon
by Shery Jacob, Jamila Ojochenemi Abdullahi, Shahnaz Usman, Sai H. S Boddu, Sohaib Naseem Khan, Mohamed A. Saad and Anroop B Nair
Pharmaceutics 2025, 17(5), 596; https://doi.org/10.3390/pharmaceutics17050596 - 1 May 2025
Cited by 4 | Viewed by 2564
Abstract
Background/Objectives: Raynaud’s phenomenon (RP) is characterized by an exaggerated vasoconstrictive response of small blood vessels in the fingers and toes to cold or stress. Oral therapy with tadalafil (TDL), a phosphodiesterase-5 inhibitor, is limited by systemic side effects and reduced patient compliance. This [...] Read more.
Background/Objectives: Raynaud’s phenomenon (RP) is characterized by an exaggerated vasoconstrictive response of small blood vessels in the fingers and toes to cold or stress. Oral therapy with tadalafil (TDL), a phosphodiesterase-5 inhibitor, is limited by systemic side effects and reduced patient compliance. This study aimed to develop and evaluate a TDL-loaded nanoemulgel for transdermal delivery as a non-invasive treatment alternative for cold-induced vasoconstriction. Methods: TDL-loaded nanoemulsions were prepared using the aqueous titration method with cinnamon oil as the oil phase and Cremophor RH40 and Transcutol as the surfactant–cosurfactant system. The optimized nanoemulsion was incorporated into a carbopol-based gel to form a nanoemulgel. The formulation was characterized for droplet size, morphology, thermodynamic stability, rheological properties, in vitro drug release, skin permeation, and pharmacokinetic behavior. Infrared thermography was employed to assess in vivo efficacy in cold-induced vasoconstriction models. Results: The optimized TDL nanoemulsion exhibited a spherical morphology, a nanoscale droplet size, and an enhanced transdermal flux. The resulting nanoemulgel displayed suitable physicochemical and rheological properties for topical application, a short lag time (0.7 h), and a high permeability coefficient (Kp = 3.59 × 10−2 cm/h). Thermal imaging showed significant vasodilation comparable to standard 0.2% nitroglycerin ointment. Pharmacokinetic studies indicated improved transdermal absorption with a higher Cmax (2.13 µg/mL), a prolonged half-life (t1/2 = 16.12 h), and an increased AUC0–24 compared to an oral nanosuspension (p < 0.001). Conclusions: The developed TDL nanoemulgel demonstrated effective transdermal delivery and significant potential as a patient-friendly therapeutic approach for Raynaud’s phenomenon, offering an alternative to conventional oral therapy. Full article
(This article belongs to the Special Issue Transdermal Delivery: Challenges and Opportunities)
Show Figures

Figure 1

25 pages, 5232 KB  
Article
An Advanced Compression Molding Simulation and Validation of a Thick-Walled Carbon Fiber Sheet Molding Compound Brake Caliper
by Andreas Kapshammer, Severin Huemer-Kals, Kepa Zulueta, Peter Fischer and Zoltan Major
J. Manuf. Mater. Process. 2025, 9(4), 137; https://doi.org/10.3390/jmmp9040137 - 19 Apr 2025
Cited by 1 | Viewed by 1971
Abstract
This study introduces a methodology for characterizing and modeling the viscosity and specific volume–pressure–temperature (pvT) behavior of sheet molding compound (SMC) materials, based on the use of specialized testing equipment. Conventional rheometers are inadequate for such materials due to the presence of long [...] Read more.
This study introduces a methodology for characterizing and modeling the viscosity and specific volume–pressure–temperature (pvT) behavior of sheet molding compound (SMC) materials, based on the use of specialized testing equipment. Conventional rheometers are inadequate for such materials due to the presence of long fibers, necessitating the use of specialized equipment like squeeze flow rheometers and pvT dilatometers. Our findings demonstrate that traditional oscillatoric rheometer measurements underestimate the viscosity of CF-SMCs, highlighting the need for advanced, albeit non-standardized, testing methods. Additionally, we found that standard Tait models failed to capture the temperature-dependent porosity of CF-SMCs at low pressures, whereas models based on thermodynamic state variables (TSVs) provided accurate predictions across a broader range of conditions. The study also addressed the complexities introduced by fiber–flow coupling and the fiber orientation in measuring the viscosity, revealing limitations in conventional modeling approaches. The numerical analysis showed that a power law-based anisotropic viscosity model (PL-IISO) combined with a TSV model offered the best predictive performance in finite volume flow simulations, especially for thick-walled regions. However, the current modeling approaches have limited predictive capabilities for the fiber orientation in thin-walled regions. This research underscores the challenges in accurately modeling CF-SMC materials in terms of the fiber orientation, whereas the compression forces needed from the pressing machine could be predicted accurately within an average error of 6.5% in the squeeze flow experiments. Full article
Show Figures

Figure 1

15 pages, 2329 KB  
Article
Modeling the Interaction Between Silver(I) Ion and Proteins with 12-6 Lennard-Jones Potential: A Bottom-Up Parameterization Approach
by Luca Manciocchi, Alexandre Bianchi, Valérie Mazan, Mark Potapov, Katharina M. Fromm and Martin Spichty
Biophysica 2025, 5(1), 7; https://doi.org/10.3390/biophysica5010007 - 25 Feb 2025
Cited by 1 | Viewed by 3079
Abstract
Silver(I) ions and organometallic complexes thereof are well-established antimicrobial agents. They have been employed in medical applications for centuries. It is also known that some bacteria can resist silver(I) treatments through an efflux mechanism. However, the exact mechanism of action remains unclear. All-atom [...] Read more.
Silver(I) ions and organometallic complexes thereof are well-established antimicrobial agents. They have been employed in medical applications for centuries. It is also known that some bacteria can resist silver(I) treatments through an efflux mechanism. However, the exact mechanism of action remains unclear. All-atom force-field simulations can provide valuable structural and thermodynamic insights into the molecular processes of the underlying mechanism. Lennard-Jones parameters of silver(I) have been available for quite some time; their applicability to properly describing the binding properties (affinity, binding distance) between silver(I) and peptide-based binding motifs is, however, still an open question. Here, we demonstrate that the standard 12-6 Lennard-Jones parameters (previously developed to describe the hydration free energy with the TIP3P water model) significantly underestimate the interaction strength between silver(I) and both methionine and histidine. These are two key amino-acid residues in silver(I)-binding motifs of proteins involved in the efflux process. Using free-energy calculations, we calibrated non-bonded fix (NBFIX) parameters for the CHARMM36m force field to reproduce the experimental binding constant between amino acid sidechain fragments and silver(I) ions. We then successfully validated the new parameters on a set of small silver-binding peptides with experimentally known binding constants. In addition, we monitored how silver(I) ions increased the α-helical content of the LP1 oligopeptide, in agreement with previously reported Circular Dichroism (CD) experiments. Future improvements are outlined. The implementation of these new parameters is straightforward in all simulation packages that can use the CHARMM36m force field. It sets the stage for the modeling community to study more complex silver(I)-binding processes such as the interaction with silver(I)-binding-transporter proteins. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Graphical abstract

17 pages, 5697 KB  
Article
Alkali Halide Aqueous Solutions Under Pressure: A Non-Equilibrium Molecular Dynamics Investigation of Thermal Transport and Thermodiffusion
by Guansen Zhao and Fernando Bresme
Entropy 2025, 27(2), 193; https://doi.org/10.3390/e27020193 - 13 Feb 2025
Cited by 2 | Viewed by 1491
Abstract
Thermal gradients induce thermodiffusion in aqueous solutions, a non-equilibrium effect arising from the coupling of thermal and mass fluxes. While thermal transport processes have garnered significant attention under standard conditions, thermal transport at high pressures and temperatures, typical of the Earth’s crust, has [...] Read more.
Thermal gradients induce thermodiffusion in aqueous solutions, a non-equilibrium effect arising from the coupling of thermal and mass fluxes. While thermal transport processes have garnered significant attention under standard conditions, thermal transport at high pressures and temperatures, typical of the Earth’s crust, has escaped scrutiny. Non-equilibrium thermodynamics theory and non-equilibrium molecular dynamics simulations provide an excellent means to quantify thermal transport under extreme conditions and establish a connection between the behaviour of the solutions and their microscopic structure. Here, we investigate the thermal conductivity and thermal diffusion of NaCl and LiCl solutions in the GPa pressure regime, targeting temperatures between 300 K and 1000 K at 1 molal concentration. We employ non-equilibrium molecular dynamics simulations along with the Madrid-2019 and TIP4P/2005 force fields. The thermal conductivity of the solutions increases significantly with pressure, and following the behaviour observed at standard pressure, the thermal conductivity is lower than that of pure water. The reduction in thermal conductivity is significant in the GPa pressure regime, ∼3% for 1 molal NaCl and LiCl solutions. We demonstrate that under GPa pressure conditions, the solutions feature thermophobic behaviour, with ions migrating towards colder regions. The pronounced impact of pressure is more evident in LiCl solutions, which display a thermophilic to thermophobic “transition” at pressures above 0.25 GPa. We discuss a correlation between the solution’s thermophobicity and the disruption of the water hydrogen bond structure at high pressure, where the water structure resembles that observed in simple liquids. Full article
Show Figures

Figure 1

18 pages, 4037 KB  
Article
Bioenergetic Modeling of the Relationship Between Voltage and Electroactive Microbial Biomass Yield for Bioelectrochemical Carbon Dioxide Reduction to Methane
by Vafa Ahmadi and Nabin Aryal
Fermentation 2025, 11(1), 40; https://doi.org/10.3390/fermentation11010040 - 17 Jan 2025
Cited by 3 | Viewed by 1731
Abstract
Optimal product synthesis in bioelectrochemical systems (BESs) requires a comprehensive understanding of the relationship between external voltage and microbial yield. While most studies assume constant growth yields or rely on empirical estimates, this study presents a novel thermodynamic model, linking anodic oxidation and [...] Read more.
Optimal product synthesis in bioelectrochemical systems (BESs) requires a comprehensive understanding of the relationship between external voltage and microbial yield. While most studies assume constant growth yields or rely on empirical estimates, this study presents a novel thermodynamic model, linking anodic oxidation and cathodic carbon dioxide (CO2) reduction to methane (CH4) by growing microbial biofilm. Through integrating theoretical Gibbs free energy calculations, the model predicts electron and proton transfers for autotrophic methanogen and anode-respiring bacteria (ARB) growth, accounting for varying applied voltages and substrate concentrations. The findings identify an optimal applied cathodic potential of −0.3 V vs. the standard hydrogen electrode (SHE) for maximizing CH4 production under standard conditions (pH 7, 25 °C, 1 atm) regardless of ohmic losses. The model bridges the stoichiometry of anodic and cathodic biofilms, addressing research gaps in simulating anodic and cathodic biofilm growth simultaneously. Additionally, sensitivity analyses reveal that lower substrate concentrations require more negative voltages than standard condition to stimulate microbial growth. The model was validated using experimental data, demonstrating reasonable predictions of biomass growth and CH4 yield under different operating voltages in a multi substrate system. The results show that higher voltage inputs increase biomass yield while reducing CH4 output due to non-optimal voltage. This validated model provides a tool for optimizing BES performance to enhance CH4 recovery and biofilm stability. These insights contribute to finding optimum voltage for the highest CH4 production for energy efficient CO2 reduction for scaling up BES technology. Full article
Show Figures

Figure 1

29 pages, 716 KB  
Article
Using Relational Biology with Loop Analysis to Study the North Atlantic Biological Carbon Pump in a ‘Hybrid’ Non-Algorithmic Manner
by Patricia A. Lane
Mathematics 2024, 12(24), 3972; https://doi.org/10.3390/math12243972 - 18 Dec 2024
Cited by 2 | Viewed by 1700
Abstract
Biologists, philosophers, and mathematicians building upon Robert Rosen’s non-algorithmic theories of life using Relational Biology and Category Theory have continued to develop his theory and modeling approaches. There has been general agreement that the impredicative, self-referential, and complex nature of living systems negates [...] Read more.
Biologists, philosophers, and mathematicians building upon Robert Rosen’s non-algorithmic theories of life using Relational Biology and Category Theory have continued to develop his theory and modeling approaches. There has been general agreement that the impredicative, self-referential, and complex nature of living systems negates an algorithmic approach. Rosen’s main goal was to answer, “What is Life?”. Many believe he provided the best but minimum answer using a cellular, metabolism–repair or (M, R)-system as a category-theoretic model. It has been challenging, however, to incorporate his theory to develop a fully non-algorithmic methodology that retains the essence of his thinking while creating more operational models of living systems that can be used to explore other facets of life and answer different questions. Living systems do more than the minimum in the real world beyond the confines of definition alone. For example, ecologists ask how living systems inherently mitigate existential risk from climate change and biodiversity loss through their complex self-organization. Loop Analysis, a signed graph technique, is discussed as a hybrid algorithmic/non-algorithmic methodology in Relational Biology. This methodology can be used at the ecosystem level with standard non-algorithmic field data as per McAllister’s description of the algorithmic incompressibility of empirical data of this type. An example is described showing how the North Atlantic Carbon Pump, an important planetary life support system, is situated in the plankton community and functions as a mutualistic ecosystem chimera. It captures carbon from the atmosphere as an extended (M, R)-system and processes it until it is sequestered in the marine sediments. This is an important process to alleviate climate change in magnitude equal to or larger than the sequestration of carbon on land with forests. It is suggested that the ecosystem level should replace the cellular and organismic levels as the main system unit in biology and evolution since all life exists and evolves with full functional potential in ecosystem networks and not laboratory test tubes. The plankton ecosystem is the largest after the total biosphere and consists of evolutionary links and relationships that have existed for eons of time. If there was ever a genuine robust, highly self-organized ecosystem, it would be planktonic. Severing the links in these thermodynamically open networks by focusing on lower levels of the biological hierarchy loses the critical organization of how life exists on this planet. There is no theory to regain this crucial ‘omitted’ ecological relational causality at the cell or organismal levels. At the end of the paper, some future directions are outlined. Full article
(This article belongs to the Special Issue Non-algorithmic Mathematical Models of Biological Organization)
Show Figures

Figure 1

41 pages, 1918 KB  
Review
Semi-Symmetric Metric Gravity: A Brief Overview
by Himanshu Chaudhary, Lehel Csillag and Tiberiu Harko
Universe 2024, 10(11), 419; https://doi.org/10.3390/universe10110419 - 7 Nov 2024
Cited by 6 | Viewed by 1765
Abstract
We present a review of the Semi-Symmetric Metric Gravity (SSMG) theory, representing a geometric extension of standard general relativity, based on a connection introduced by Friedmann and Schouten in 1924. The semi-symmetric connection is a connection that generalizes the Levi-Civita one by allowing [...] Read more.
We present a review of the Semi-Symmetric Metric Gravity (SSMG) theory, representing a geometric extension of standard general relativity, based on a connection introduced by Friedmann and Schouten in 1924. The semi-symmetric connection is a connection that generalizes the Levi-Civita one by allowing for the presence of a simple form of the torsion, described in terms of a torsion vector. The Einstein field equations are postulated to have the same form as in standard general relativity, thus relating the Einstein tensor constructed with the help of the semi-symmetric connection, with the energy–momentum tensor. The inclusion of the torsion contributions in the field equations has intriguing cosmological implications, particularly during the late-time evolution of the Universe. Presumably, these effects also dominate under high-energy conditions, and thus SSMG could potentially address unresolved issues in general relativity and cosmology, such as the initial singularity, inflation, or the 7Li problem of the Big-Bang Nucleosynthesis. The explicit presence of torsion in the field equations leads to the non-conservation of the energy–momentum tensor, which can be interpreted within the irreversible thermodynamics of open systems as describing particle creation processes. We also review in detail the cosmological applications of the theory, and investigate the statistical tests for several models, by constraining the model parameters via comparison with several observational datasets. Full article
(This article belongs to the Special Issue Dark Energy and Dark Matter)
Show Figures

Figure 1

27 pages, 8922 KB  
Article
Laboratory-Scale Implementation of Standardized Reconstituted Geothermal Water for Electrochemical Investigations of Carbon Steel Corrosion
by Stephanie Betelu, Chahinez Helali and Ioannis Ignatiadis
Metals 2024, 14(11), 1216; https://doi.org/10.3390/met14111216 - 25 Oct 2024
Cited by 2 | Viewed by 1574
Abstract
Currently, the demand for heat production by geothermal energy is increasingly strong amid the controversy surrounding non-renewable forms of energy. In France, the Dogger aquifer in the Paris Basin (DAPB) produces saline geothermal waters (GWs) that are hot (70–85 °C), anaerobic, and slightly [...] Read more.
Currently, the demand for heat production by geothermal energy is increasingly strong amid the controversy surrounding non-renewable forms of energy. In France, the Dogger aquifer in the Paris Basin (DAPB) produces saline geothermal waters (GWs) that are hot (70–85 °C), anaerobic, and slightly acidic (pH 6.1–6.4), and are characterized mainly by the presence of Cl, SO42−, CO2/HCO3, and H2S/HS. These GWs are corrosive, while the well casings used are carbon steel. GWs have been continuously treated since the 1990s by corrosion inhibitors at the bottom of production wells to reduce water–steel interactions and scaling issues. Electrochemical experiments to optimize inhibitors were carried out on site, protected from the ambient atmosphere, with actual geothermal water, using water tapping at the wellhead. Currently, carbon steel corrosion/scaling, corrosion inhibition phenomenology, and kinetics evaluation remain important challenges. These issues are, of course, linked to the durability of installations. The novelty of our work consists of our validation of a modus operandi that properly reproduces, at the laboratory scale, operating conditions similar to those encountered on the types of geothermal installations. Particular attention was paid to characterizing waters and gases from 13 production wellheads that were modelled with PhreeqC® Version 3 hydrogeochemical software and the Thermoddem thermodynamic database for implementing standardized reconstituted geothermal water (SRGW), a well-balanced water representative of the major elements and dissolved gases of actual DAPB geothermal waters. The developed electrochemical setup enabled us to analyze corrosion mechanisms such as those observed on site and to investigate corrosion inhibition using petrosourced and biosourced inhibitors. The modus operandi constitutes a reference for further investigations, at the laboratory scale, of corrosion inhibition. These investigations may include screening and optimizing the formulas of petrosourced and biosourced inhibitors for use in DAPB waters. Full article
(This article belongs to the Special Issue Recent Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

Back to TopTop