Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = non-ideal relay

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 20304 KB  
Article
Cross-Layer Performance Modeling and MAC-Layer Algorithm Design for Power Line Communication Relay Systems
by Zhixiong Chen, Pengjiao Wang, Tianshu Cao, Jiajing Li and Peiru Chen
Appl. Sci. 2025, 15(22), 12019; https://doi.org/10.3390/app152212019 - 12 Nov 2025
Viewed by 380
Abstract
In intelligent meter reading and other applications, power line communication can use relay technology to solve the problem of cross-station or long-distance reliable communication. This study investigates the combined impact of the physical and Media Access Control (MAC) layers on power line relay [...] Read more.
In intelligent meter reading and other applications, power line communication can use relay technology to solve the problem of cross-station or long-distance reliable communication. This study investigates the combined impact of the physical and Media Access Control (MAC) layers on power line relay communication system performance. To this end, cross-layer modeling, optimization, and simulation analysis integrating both layers are conducted. Based on the CSMA algorithm of IEEE 1901 protocol, a cross-layer performance analysis model of two-hop relay power line communication system is established considering the influence of non-ideal channel transmission at physical layer and competitive access at MAC layer on system performance. In order to reduce the high collision probability caused by two competitions of packets in the above scheme, an improved two-hop transmission algorithm based on CSMA-TDMA is proposed. The cross-layer performance of the system under different single-hop and two-hop schemes is compared, and the mechanism of how parameters such as the MAC layer and the physical layer affect the cross-layer performance of the power line communication system is analyzed. And the optimal power allocation factor is obtained by using the sequential quadratic programming method for the joint system throughput and packet loss rate optimization model with the two-hop power constraint. Simulation results show that the two-hop transmission scheme based on CSMA-TDMA can avoid the second-hop competition and backoff process, and has better performance in terms of throughput, packet loss rate, and delay. Full article
Show Figures

Figure 1

23 pages, 2689 KB  
Article
Performance Analysis of Distributed Reconfigurable-Intelligent-Surface-Assisted Air–Ground Fusion Networks with Non-Ideal Environments
by Yuanyuan Yao, Qi Liu, Kan Yu, Sai Huang and Xinwei Yue
Drones 2024, 8(6), 271; https://doi.org/10.3390/drones8060271 - 18 Jun 2024
Viewed by 1766
Abstract
This paper investigates the impact of non-ideal environmental factors, including hardware impairments, random user distributions, and imperfect channel conditions, on the performance of distributed reconfigurable intelligent surface (RIS)-assisted air–ground fusion networks. Using an unmanned aerial vehicle (UAV) as an aerial base station, performance [...] Read more.
This paper investigates the impact of non-ideal environmental factors, including hardware impairments, random user distributions, and imperfect channel conditions, on the performance of distributed reconfigurable intelligent surface (RIS)-assisted air–ground fusion networks. Using an unmanned aerial vehicle (UAV) as an aerial base station, performance metrics such as the outage probability, ergodic rate, and energy efficiency are analyzed with Nakagami-m fading channels. To highlight the superiority of RIS-assisted air–ground networks, comparisons are made with point-to-point links, amplify-and-forward (AF) relay scenarios, conventional centralized RIS deployment, and fusion networks without hardware impairments. Monte Carlo simulations are employed to validate theoretical analyses, demonstrating that in non-ideal environmental conditions, distributed RIS-assisted air–ground fusion networks outperform benchmark scenarios. This model offers some insights into the improvement of wireless communication networks in emerging smart cities. Full article
(This article belongs to the Special Issue Space–Air–Ground Integrated Networks for 6G)
Show Figures

Figure 1

23 pages, 839 KB  
Article
Joint Hybrid Beamforming Design for Millimeter Wave Amplify-and-Forward Relay Communication Systems
by Jinxian Zhao, Dongfang Jiang, Heng Wei, Bingjie Liu, Yifeng Zhao, Yi Zhang, Haoyuan Yu and Xuewei Liu
Appl. Sci. 2024, 14(9), 3713; https://doi.org/10.3390/app14093713 - 26 Apr 2024
Cited by 1 | Viewed by 1510
Abstract
Hybrid beamforming (HBF) has been regarded as one of the most promising technologies in millimeter Wave (mmWave) communication systems. In order to guarantee the communication quality in non-line-of-sight (NLOS) scenarios, joint HBF design for the mmWave amplify-and-forward (AF) relay communication system is studied [...] Read more.
Hybrid beamforming (HBF) has been regarded as one of the most promising technologies in millimeter Wave (mmWave) communication systems. In order to guarantee the communication quality in non-line-of-sight (NLOS) scenarios, joint HBF design for the mmWave amplify-and-forward (AF) relay communication system is studied in this paper. The ideal case is first considered where the mmWave half-duplex (HD) AF relay system operates with channel state information (CSI) accurately known. In order to tackle the non-convex problem, a manifold optimization (MO)-based alternating optimization algorithm is proposed, where an optimization problem containing only constant modulus constraints in Euclidean space can be converted to an unconstrained optimization problem in a Riemann manifold. Furthermore, considering more practical cases with estimation errors of CSI, we investigate the robust joint HBF design with the system operating in full-duplex (FD) mode to obtain higher spectral efficiency (SE). A null-space projection (NP) based self-interference cancellation (SIC) algorithm is developed to attenuate the self-interference (SI). Different from the traditional SI suppression algorithm, there’s no limit on the number of RF chains. Numerical results reveal that our proposed algorithms has a good convergence and can effectively deal with the influence of different CSI estimation errors. A significant performance improvement can be achieved in contrast with other approaches. Full article
(This article belongs to the Special Issue Novel Advances in Internet of Vehicles)
Show Figures

Figure 1

18 pages, 4049 KB  
Article
Research on Hybrid Relay Protocol Design and Cross-Layer Performance Based on NOMA
by Zhixiong Chen, Tianshu Cao, Pengjiao Wang and Junhao Feng
Appl. Sci. 2024, 14(7), 3044; https://doi.org/10.3390/app14073044 - 4 Apr 2024
Cited by 2 | Viewed by 1658
Abstract
Wireless and power line communication hybrid relay technology can realize complementary advantages and comprehensively improve the communication coverage and performance of power Internet of Things. In order to study the mechanism of the physical layer and Media Access Control (MAC) layer algorithm that [...] Read more.
Wireless and power line communication hybrid relay technology can realize complementary advantages and comprehensively improve the communication coverage and performance of power Internet of Things. In order to study the mechanism of the physical layer and Media Access Control (MAC) layer algorithm that affects the performance of hybrid relay systems, the cross-layer performance modeling, optimization, and simulation analysis are carried out for the non-orthogonal multiple access (NOMA) technology. Firstly, a two-hop NOMA media access control protocol is designed based on the CSMA algorithm. Considering the effects of non-ideal channel transmission at the physical layer and competitive access at the MAC layer on the system performance, a cross-layer performance analysis model of hybrid wireless and power line communication relay system under NOMA is established. Finally, a cross-layer optimization model based on multi-objective programming is established for the hybrid relay system. By analyzing the relationship between transmitting power and performance index, the joint optimization of transmitting power and power distribution factor between users is realized. Simulation results verify the validity and reliability of the proposed cross-layer model. The results show that the hybrid relay algorithm combined with NOMA and CSMA can effectively improve the performance of the system throughput, packet loss probability, and delay. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

14 pages, 2749 KB  
Article
Reconfigurable Holographic Surface-Assisted Wireless Secrecy Communication System
by Yiming Xu, Jinshuo Liu, Xiaoguang Wu, Tianwen Guo and Huadong Peng
Electronics 2024, 13(7), 1359; https://doi.org/10.3390/electronics13071359 - 4 Apr 2024
Cited by 4 | Viewed by 3012
Abstract
This new antenna, called the reconfigurable holographic surface (RHS), is lightweight and compact, and it can precisely steer many beams at once. Because of its reflecting characteristic, it differs from the reconfigurable intelligent surface (RIS), which is frequently employed as a passive relay. [...] Read more.
This new antenna, called the reconfigurable holographic surface (RHS), is lightweight and compact, and it can precisely steer many beams at once. Because of its reflecting characteristic, it differs from the reconfigurable intelligent surface (RIS), which is frequently employed as a passive relay. To leverage the holographic technology and generate the necessary beam, RHS is most likely to be integrated with the transceiver as an ultra-thin and lightweight planer antenna. This has enormous potential to satisfy the growing demands of the future generation network. This paper is the first to study a wireless secrecy communication system with a base station that has and is helped by an RHS. We suggest a strategy for simultaneously optimizing the holographic beamforming at the RHS and the digital beamforming at the base station with the introduction of artificial noise (AN) to attain the highest secrecy rate. However, because of its non-convexity and changeable coupling, this problem is challenging to solve. A proficient algorithm that utilizes alternating optimization and is capable of solving the problem below the ideal level is suggested. According to simulation studies, RHS outperforms RIS in terms of enhancing the performance of wireless secrecy communication systems, indicating that RHS has a wide range of potential applications in the realm of physical layer security. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

14 pages, 4640 KB  
Article
Design and Simulation Analysis of Piezoelectric Ceramic Tube-Based Fiber Optic Nutator Applied to an Intersatellite Laser Communication System
by Bo Peng, Ping Ruan, Junfeng Han, Xiangyu Li, Zhiyuan Chang, Yifan Wang and Xuan Wang
Photonics 2023, 10(7), 769; https://doi.org/10.3390/photonics10070769 - 4 Jul 2023
Cited by 4 | Viewed by 2824
Abstract
The signal-receiving end of acquisition, pointing, and tracking (APT) systems applied to intersatellite laser communication terminals usually uses a fast-steering mirror (FSM) to control the fiber-coupling process, has a complex structural design, and induces large errors in the nonideal coaxial optical path. Herein, [...] Read more.
The signal-receiving end of acquisition, pointing, and tracking (APT) systems applied to intersatellite laser communication terminals usually uses a fast-steering mirror (FSM) to control the fiber-coupling process, has a complex structural design, and induces large errors in the nonideal coaxial optical path. Herein, we propose a fiber-optic nutator using a piezoelectric ceramic tube (PCT) as the driving unit that allows scanning in the focal plane of the light signal to achieve active fiber coupling in the APT system. Specifically, this article describes the structural design principle of a PCT-based fiber optic nutator, establishes a simulation model of the mechanism, and proves the correctness of the simulation model by measuring the deflection angle of a PCT based on a parallel light collimator. The minimum accuracy of the designed nutator was 0.145 μm, the maximum nutation radius R was 20.09 μm, and the maximum nutation bandwidth was 20 kHz, as determined through simulation. Finally, the design parameters of the nutator were evaluated. The PCT-based fiber optic nutator, which met the design parameters, structurally replaced the fiber optic coupling component FSM and fine tracking camera in conventional APT systems successfully. Therefore, the PCT-based fiber optic nutator allows the active coupling control of signal light to a single-mode fiber (SMF) based on energy feedback on a theoretical basis and promotes the lightweight design of relay optical paths in APT systems. In addition, with future work in optimization of the nutation control algorithm, the scanning range and accuracy of the nutator can be improved. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

17 pages, 1644 KB  
Communication
Sum Rate Optimization Scheme of UAV-Assisted NOMA under Hardware Impairments
by Xiaoyu Wan, Xiongqing Yang, Zhengqiang Wang, Zifu Fan and Bin Duo
Appl. Sci. 2023, 13(5), 2971; https://doi.org/10.3390/app13052971 - 25 Feb 2023
Cited by 3 | Viewed by 2483
Abstract
In the unmanned aerial vehicle (UAV) assisted non-orthogonal multiple access (NOMA) networks, the practical hardware impairments (HIs) and resource allocation is still a challenging problem. Most existing research on resource allocation algorithms for UAV communication is considered with the ideal hardware condition. However, [...] Read more.
In the unmanned aerial vehicle (UAV) assisted non-orthogonal multiple access (NOMA) networks, the practical hardware impairments (HIs) and resource allocation is still a challenging problem. Most existing research on resource allocation algorithms for UAV communication is considered with the ideal hardware condition. However, the impact of HIs on system performance cannot be ignored, especially in the case of high bit rates. Considering the HIs, most studies are from the perspective of performance analysis. The resource allocation of UAV relay-assisted NOMA systems is investigated in this paper with HIs. We aim to maximize the sum rate by jointly optimizing the deployment of UAV and transmit power. To address this problem, we first transformed the mixed integer programming problem (MIPP) into a standard convex optimization problem based on successive convex approximation (SCA) technology. Then, we introduced the Lagrangian dual transformation and quadratic transform methods to solve the power allocation problem. Finally, we propose an effective iterative algorithm to achieve an approximate optimal solution. Numerical results demonstrate that the proposed algorithm achieved better performance in terms of the sum rate compared with other benchmark schemes. Full article
(This article belongs to the Special Issue Advances in Wireless Communication Technologies)
Show Figures

Figure 1

16 pages, 1112 KB  
Article
A Model of Optimal Production Planning Based on the Hysteretic Demand Curve
by Mikhail E. Semenov, Sergei V. Borzunov, Peter A. Meleshenko and Alexey V. Lapin
Mathematics 2022, 10(18), 3262; https://doi.org/10.3390/math10183262 - 8 Sep 2022
Cited by 7 | Viewed by 2154
Abstract
The article considers a hysteretic model of consumer behaviour in mono-product markets. Demand generation with regard to an individual consumer is modeled using a non-ideal relay with inverted thresholds. Therefore, the sales rate is defined as an analogue of the Preisach converter. The [...] Read more.
The article considers a hysteretic model of consumer behaviour in mono-product markets. Demand generation with regard to an individual consumer is modeled using a non-ideal relay with inverted thresholds. Therefore, the sales rate is defined as an analogue of the Preisach converter. The article considers the problem of the optimal production, storage, and distribution of goods, taking into account the hysteretic nature of the demand curve. The problem is reduced to a non-classical optimal control problem with hysteretic non-linearities. The latter is solved using Pontryagin’s maximum principle. The adopted economic model is based on the binary relationship of consumers to the product: the product is bought or the product is not bought. Transitions between these states are determined within the framework of our model only by the price of the goods; therefore, only the operator of a non-ideal relay can accurately describe such a dependence. The article presents the results of computational experiments illustrating the theoretical assumptions. Full article
(This article belongs to the Special Issue Nonlinear Dynamics Systems with Hysteresis)
Show Figures

Figure 1

15 pages, 753 KB  
Article
Impacts of Residual Self-Interference, Hardware Impairment and Cascade Rayleigh Fading on the Performance of Full-Duplex Vehicle-to-Vehicle Relay Systems
by Ba Cao Nguyen, Le The Dung, Huu Minh Nguyen, Taejoon Kim and Young-Il Kim
Sensors 2021, 21(16), 5628; https://doi.org/10.3390/s21165628 - 20 Aug 2021
Cited by 2 | Viewed by 3567
Abstract
In practice, self-interference (SI) in full-duplex (FD) wireless communication systems cannot be completely eliminated due to imperfections in different factors, such as the SI channel estimation and hardware circuits. Therefore, residual SI (RSI) always exists in FD systems. In addition, hardware impairments (HIs) [...] Read more.
In practice, self-interference (SI) in full-duplex (FD) wireless communication systems cannot be completely eliminated due to imperfections in different factors, such as the SI channel estimation and hardware circuits. Therefore, residual SI (RSI) always exists in FD systems. In addition, hardware impairments (HIs) cannot be avoided in FD systems due to the non-ideal characteristics of electronic components. These issues motivate us to consider an FD-HI system with a decode-and-forward (DF) relay that is applied for vehicle-to-vehicle (V2V) communication. Unlike previous works, the performance of the proposed FD-HI-V2V system is evaluated over cascaded Rayleigh fading channels (CRFCs). We mathematically obtain the exact closed-form expressions of the outage probability (OP), system throughput (ST), and ergodic capacity (EC) of the proposed FD-HI-V2V system under the joint and crossed effects of the RSI, HIs, and CRFCs. We validate all derived expressions via Monte-Carlo simulations. Based on these expressions, the OP, ST, and EC of the proposed FD-HI-V2V system are investigated and compared with other related systems, such as ideal hardware (ID) and half-duplex (HD) systems, as well as a system over traditional Rayleigh fading channels (RFCs), to clearly show the impacts of negative factors. Full article
(This article belongs to the Special Issue Vehicle-to-Everything (V2X) Communications)
Show Figures

Figure 1

20 pages, 5407 KB  
Article
Identification of RCC Subtype-Specific microRNAs–Meta-Analysis of High-Throughput RCC Tumor microRNA Expression Data
by Arkadiusz Kajdasz, Weronika Majer, Katarzyna Kluzek, Jacek Sobkowiak, Tomasz Milecki, Natalia Derebecka, Zbigniew Kwias, Hans A. R. Bluyssen and Joanna Wesoly
Cancers 2021, 13(3), 548; https://doi.org/10.3390/cancers13030548 - 1 Feb 2021
Cited by 25 | Viewed by 4671
Abstract
Renal cell carcinoma (RCC) is one of the most common cancers worldwide with a nearly non-symptomatic course until the advanced stages of the disease. RCC can be distinguished into three subtypes: papillary (pRCC), chromophobe (chRCC) and clear cell renal cell carcinoma (ccRCC) representing [...] Read more.
Renal cell carcinoma (RCC) is one of the most common cancers worldwide with a nearly non-symptomatic course until the advanced stages of the disease. RCC can be distinguished into three subtypes: papillary (pRCC), chromophobe (chRCC) and clear cell renal cell carcinoma (ccRCC) representing up to 75% of all RCC cases. Detection and RCC monitoring tools are limited to standard imaging techniques, in combination with non-RCC specific morphological and biochemical read-outs. RCC subtype identification relays mainly on results of pathological examination of tumor slides. Molecular, clinically applicable and ideally non-invasive tools aiding RCC management are still non-existent, although molecular characterization of RCC is relatively advanced. Hence, many research efforts concentrate on the identification of molecular markers that will assist with RCC sub-classification and monitoring. Due to stability and tissue-specificity miRNAs are promising candidates for such biomarkers. Here, we performed a meta-analysis study, utilized seven NGS and seven microarray RCC studies in order to identify subtype-specific expression of miRNAs. We concentrated on potentially oncocytoma-specific miRNAs (miRNA-424-5p, miRNA-146b-5p, miRNA-183-5p, miRNA-218-5p), pRCC-specific (miRNA-127-3p, miRNA-139-5p) and ccRCC-specific miRNAs (miRNA-200c-3p, miRNA-362-5p, miRNA-363-3p and miRNA-204-5p, 21-5p, miRNA-224-5p, miRNA-155-5p, miRNA-210-3p) and validated their expression in an independent sample set. Additionally, we found ccRCC-specific miRNAs to be differentially expressed in ccRCC tumor according to Fuhrman grades and identified alterations in their isoform composition in tumor tissue. Our results revealed that changes in the expression of selected miRNA might be potentially utilized as a tool aiding ccRCC subclass discrimination and we propose a miRNA panel aiding RCC subtype distinction. Full article
(This article belongs to the Special Issue MicroRNA and Cancer)
Show Figures

Figure 1

13 pages, 7143 KB  
Article
Performance Analysis for SWIPT Cooperative DF Communication Systems with Hybrid Receiver and Non-Linear Energy Harvesting Model
by Tianwen Yuan, Mingang Liu and Yizhi Feng
Sensors 2020, 20(9), 2472; https://doi.org/10.3390/s20092472 - 27 Apr 2020
Cited by 10 | Viewed by 3652
Abstract
In this paper, we study the outage and throughput performance for the simultaneous wireless information and power transfer (SWIPT) cooperative decode-and-forward (DF) communication systems. The hybrid receiver that uses both time switching (TS) and power splitting (PS) methods for energy harvesting (EH) and [...] Read more.
In this paper, we study the outage and throughput performance for the simultaneous wireless information and power transfer (SWIPT) cooperative decode-and-forward (DF) communication systems. The hybrid receiver that uses both time switching (TS) and power splitting (PS) methods for energy harvesting (EH) and information decoding (ID), and the piece-wise linear EH model that captures the non-linear input-output characteristic of the EH circuit, are considered. We present exact analytical expressions of the outage probability (OP) and throughput, which are expressed as single definite integral on finite interval and can be easily evaluated, for the systems in Rayleigh fading channel. For further simplicity of calculation, we derive novel and closed-form approximate expressions of the OP and throughput. The impact of different system parameters on the system performance is investigated. Numerical results show the high accuracy of the proposed closed-form approximate expressions especially in the region of higher signal-to-noise ratio (SNR). It is also shown that the system performance is greatly overestimated when the ideal linear EH model is used instead of the practical non-linear EH model. A different result to the non-hybrid receiver with both linear EH model and non-linear EH model that there exists an optimal location to minimize the OP for the hybrid receiving relay node with non-linear EH model is also demonstrated. Full article
(This article belongs to the Special Issue Battery-Free IoT Devices and Networks)
Show Figures

Figure 1

20 pages, 791 KB  
Article
Enabling Non-Linear Energy Harvesting in Power Domain Based Multiple Access in Relaying Networks: Outage and Ergodic Capacity Performance Analysis
by Thanh-Luan Nguyen, Minh-Sang Van Nguyen, Dinh-Thuan Do and Miroslav Voznak
Electronics 2019, 8(7), 817; https://doi.org/10.3390/electronics8070817 - 22 Jul 2019
Cited by 7 | Viewed by 5013
Abstract
The Power Domain-based Multiple Access (PDMA) scheme is considered as one kind of Non-Orthogonal Multiple Access (NOMA) in green communications and can support energy-limited devices by employing wireless power transfer. Such a technique is known as a lifetime-expanding solution for operations in future [...] Read more.
The Power Domain-based Multiple Access (PDMA) scheme is considered as one kind of Non-Orthogonal Multiple Access (NOMA) in green communications and can support energy-limited devices by employing wireless power transfer. Such a technique is known as a lifetime-expanding solution for operations in future access policy, especially in the deployment of power-constrained relays for a three-node dual-hop system. In particular, PDMA and energy harvesting are considered as two communication concepts, which are jointly investigated in this paper. However, the dual-hop relaying network system is a popular model assuming an ideal linear energy harvesting circuit, as in recent works, while the practical system situation motivates us to concentrate on another protocol, namely non-linear energy harvesting. As important results, a closed-form formula of outage probability and ergodic capacity is studied under a practical non-linear energy harvesting model. To explore the optimal system performance in terms of outage probability and ergodic capacity, several main parameters including the energy harvesting coefficients, position allocation of each node, power allocation factors, and transmit signal-to-noise ratio (SNR) are jointly considered. To provide insights into the performance, the approximate expressions for the ergodic capacity are given. By matching analytical and Monte Carlo simulations, the correctness of this framework can be examined. With the observation of the simulation results, the figures also show that the performance of energy harvesting-aware PDMA systems under the proposed model can satisfy the requirements in real PDMA applications. Full article
(This article belongs to the Special Issue Recent Technical Developments in Energy-Efficient 5G Mobile Cells)
Show Figures

Figure 1

12 pages, 1955 KB  
Article
The Physical Layer Security Experiments of Cooperative Communication System with Different Relay Behaviors
by Yishan Su, Guangyao Han, Xiaomei Fu, Naishen Xu and Zhigang Jin
Sensors 2017, 17(4), 781; https://doi.org/10.3390/s17040781 - 6 Apr 2017
Cited by 5 | Viewed by 4330
Abstract
Physical layer security is an attractive security mechanism, which exploits the randomness characteristics of wireless transmission channel to achieve security. However, it is hampered by the limitation of the channel condition that the main channel must be better than the eavesdropper channel. To [...] Read more.
Physical layer security is an attractive security mechanism, which exploits the randomness characteristics of wireless transmission channel to achieve security. However, it is hampered by the limitation of the channel condition that the main channel must be better than the eavesdropper channel. To alleviate the limitation, cooperative communication is introduced. Few studies have investigated the physical layer security of the relay transmission model. In this paper, we performed some experiments to evaluate the physical layer security of a cooperative communication system, with a relay operating in decode-and-forward (DF) cooperative mode, selfish and malicious behavior in real non-ideal transmission environment. Security performance is evaluated in terms of the probability of non-zero secrecy capacity. Experiments showed some different results compared to theoretical simulation: (1) to achieve the maximum secrecy capacity, the optimal relay power according to the experiments result is larger than that of ideal theoretical results under both cooperative and selfish behavior relay; (2) the relay in malicious behavior who forwards noise to deteriorate the main channel may deteriorate the eavesdropper channel more seriously than the main channel; (3) the optimal relay positions under cooperative and selfish behavior relay cases are both located near the destination because of non-ideal transmission. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop