Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = non-ferrous metallurgy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2914 KiB  
Article
Investigation of the Possibilities for the Recycling of Mixed Heterogeneous Lead Refinery Waste
by Jasmina Dedić, Jelena Đokić, Gordana Milentijević, Irma Dervišević and Maja Petrović
Processes 2025, 13(5), 1380; https://doi.org/10.3390/pr13051380 - 30 Apr 2025
Viewed by 361
Abstract
The historical industrial waste deposit Gater was used to dispose of different metallurgy wastes from lead and zinc production. The metallurgical waste deposit was situated in the open space, between the tailing waste deposit Žitkovac and river Ibar flow. Large amounts of lead-containing [...] Read more.
The historical industrial waste deposit Gater was used to dispose of different metallurgy wastes from lead and zinc production. The metallurgical waste deposit was situated in the open space, between the tailing waste deposit Žitkovac and river Ibar flow. Large amounts of lead-containing wastes are produced in the non-ferrous metallurgical industry, such as lead ash and lead slag generated in Pb smelting, lead anode slime, and lead sludge produced in the raw lead refining process. In addition to the lead concentration, numerous valuable components are found in the lead refinery waste from the group of Critical Raw Materials, such as antimony, arsenic, bismuth, copper, nickel, magnesium, scandium, as well as Rare-Earth Elements. Samples with eight characteristic points were taken to obtain relevant data indicating a possible recycling method. The chemical composition analysis was conducted using ICP; the scanning was completed using SEM-EDS. The mineralogical composition was determined by using XRD. The chemical analysis showed a wide range of valuable metal concentrations, from Ag (in the range from 14.2 to 214.6, with an average 86.25 mg/kg) to heavy metals such as Cu (in the range from 282.7 to 28,298, with an average 10,683.7 mg/kg or 1.0683% that corresponds to some active mines), Ni and Zn (in the range from 1.259 to 69,853.4, with an average 14,304.81 mg/kg), Sc (in the range from 2.4 to 75.3, with an average 33.61 mg/kg), Pb (in the range from 862.6 to 154,027.5, with an average 45,046 mg/kg), Sb (in the range from 51.7 to 18,514.7, with an average 2267.8 mg/kg), Ca (in the range from 167.5 to 63,963, with an average 19,880 mg/kg), Mg (in the range from 668.3 to 76,824.5, with an average 31,670 mg/kg), and As (in the range from 62.9 to 24,328.1, with an average 5829.53 mg/kg). The mineralogy analysis shows that all metals are in the form of oxides, but in the case of As and Fe, SEM-EDS shows some portion of elemental lead, pyrite, and silica-magnesium-calcium oxides as slag and tailing waste residues. The proposed recovery process should start with leaching, and further investigation should decide on the type of leaching procedure and agents, considering the waste’s heterogeneous nature and acidity and toxicity. Full article
(This article belongs to the Special Issue Municipal Solid Waste for Energy Production and Resource Recovery)
Show Figures

Figure 1

20 pages, 5672 KiB  
Article
New Process for Efficient Separation and Comprehensive Recovery of Valuable Metals from Jarosite Residues
by Qi Zhou, Jian Pan, Deqing Zhu, Congcong Yang, Zhengqi Guo, Siwei Li and Xianqing Xu
Metals 2025, 15(2), 171; https://doi.org/10.3390/met15020171 - 8 Feb 2025
Viewed by 582
Abstract
Jarosite residue (JR), a hazardous solid waste generated in non-ferrous metallurgy, poses significant environmental challenges due to its large volume and poor storage stability. However, its high content of valuable metals (such as iron, zinc, gallium, indium, silver, …) makes its efficient recovery [...] Read more.
Jarosite residue (JR), a hazardous solid waste generated in non-ferrous metallurgy, poses significant environmental challenges due to its large volume and poor storage stability. However, its high content of valuable metals (such as iron, zinc, gallium, indium, silver, …) makes its efficient recovery and comprehensive utilization highly significant. This study investigates the “oxidative roasting–reductive smelting” process for JR treatment. The reduction thermodynamics of JR-R (roasted JR) were analyzed, and the effects of smelting temperature, time, and slag basicity on the reduction and smelting process were examined. The results indicate that increasing slag basicity and temperature generally decreases slag viscosity. Thermodynamic calculations demonstrate that reductive smelting effectively enriches valuable metals (>1039 °C). The optimal conditions for reductive smelting of JR were determined to be as follows: smelting temperature of 1550 °C, smelting time of 60 min, and slag basicity of 0.9. Under these conditions, the process achieved an Fe grade of 92.87% in pig iron with a recovery rate of 90.66%, a Ga grade of 377 g/t with a recovery rate of 94.91%, and Zn and In volatilization rates of 99.91% and 83.36%, respectively. This study provides a feasible approach for the comprehensive recovery of valuable metals such as Ga, Fe, Zn, and In from JR, offering promising economic and social benefits. Full article
Show Figures

Graphical abstract

15 pages, 9367 KiB  
Article
Effect of Elemental Iron Containing Bauxite Residue Obtained After Electroreduction on High-Pressure Alkaline Leaching of Boehmitic Bauxite and Subsequent Thickening Rate
by Andrei Shoppert, Irina Loginova, Malal Mamodou Diallo and Dmitrii Valeev
Materials 2025, 18(2), 224; https://doi.org/10.3390/ma18020224 - 7 Jan 2025
Cited by 1 | Viewed by 860
Abstract
The use of reduction leaching in the production of alumina from bauxite by the Bayer process in order to decrease the amount of waste (bauxite residue) by adding elemental iron or aluminum, as well as Fe2+ salts and organic compounds in the [...] Read more.
The use of reduction leaching in the production of alumina from bauxite by the Bayer process in order to decrease the amount of waste (bauxite residue) by adding elemental iron or aluminum, as well as Fe2+ salts and organic compounds in the stage of high-pressure leaching, requires the purchase of relatively expensive reagents in large quantities. The aim of this study was to investigate the possibility of the use of electrolytically reduced bauxite residue (BR) as a substitute for these reagents. Reduced BR was obtained from Al-goethite containing BR using a bulk cathode in alkaline suspension. The degree of deoxidation of Fe3+ compounds was 55% after 2 h of electrolysis with a current yield of more than 73%. The addition of reduced BR according to the shrinking core model leads to a change in the limiting stage of the high-pressure boehmitic bauxite leaching from a surface chemical reaction to internal diffusion. The activation energy decreased from 32.9 to 17.2 kJ/mol by adding reduced red mud. It was also shown that the addition of reduced BR increased the rate of thickening of the slurry after leaching by a factor of 1.5 and decreased the Na2O losses by 15% without the addition of lime. The solid residue was examined by means of X-ray diffraction analysis and scanning electron microscopy to confirm the presence of magnetite and elemental iron. A preliminary techno-economic analysis was carried out to assess the applicability of the proposed process. Full article
(This article belongs to the Special Issue Metallurgical Process Simulation and Optimization2nd Volume)
Show Figures

Figure 1

27 pages, 7019 KiB  
Article
Thermodynamic Analysis and Optimization of Power Cycles for Waste Heat Recovery
by Igor Maksimov, Vladimir Kindra, Andrey Vegera, Andrey Rogalev and Nikolay Rogalev
Energies 2024, 17(24), 6375; https://doi.org/10.3390/en17246375 - 18 Dec 2024
Cited by 4 | Viewed by 1339
Abstract
Improvement of energy efficiency in technological processes at industrial enterprises is one of the key areas of energy saving. Reduction of energy costs required for the production of energy-intensive products can be achieved through the utilization of waste heat produced by high-temperature thermal [...] Read more.
Improvement of energy efficiency in technological processes at industrial enterprises is one of the key areas of energy saving. Reduction of energy costs required for the production of energy-intensive products can be achieved through the utilization of waste heat produced by high-temperature thermal furnace units. Generation of electric power based on the waste heat using power cycles with working fluids that are not conventional for large power engineering, may become a promising energy saving trend. In this paper, thermodynamic analysis and optimization of power cycles for the purposes of waste heat recovery are performed. The efficiency of combining several power cycles was also evaluated. It has been established that the combination of the Brayton recompression cycle on supercritical carbon dioxide with the organic Rankine cycle using R124 allows for greater electrical power than steam-power cycles with three pressure circuits under conditions where the gas temperature is in the range of 300–550 °C and the cooling temperature of is up to 80 °C. Additionally, when cooling gases with a high sulfur and moisture content to 150 °C, the combined cycle has greater electrical power at gas temperatures of 330 °C and above. At enterprises where the coolant has a high content of sulfur compounds or moisture and deep cooling of gases will lead to condensation, for example, at petrochemical and non-ferrous metallurgy enterprises, the use of combined cycles can ensure a utilization efficiency of up to 45%. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

15 pages, 15880 KiB  
Article
Leaching Kinetics of Iron Collector Containing PGMs
by Evgeniy Kuzas, Ivan Sandalov, Aleksei Kritskii and Kirill Karimov
Metals 2024, 14(12), 1416; https://doi.org/10.3390/met14121416 - 11 Dec 2024
Viewed by 705
Abstract
The leaching kinetics of an industrial iron collector containing PGMs (Pd, Pt, Rh) in HCl and HF solutions were investigated. The effects of the HCl concentration (2.74–6.86 mol/L), the HF concentration (1.46–7.50 mol/L), temperature (323–363 K), and leaching time (0–210 min) on the [...] Read more.
The leaching kinetics of an industrial iron collector containing PGMs (Pd, Pt, Rh) in HCl and HF solutions were investigated. The effects of the HCl concentration (2.74–6.86 mol/L), the HF concentration (1.46–7.50 mol/L), temperature (323–363 K), and leaching time (0–210 min) on the extraction of Fe into the solution and Si into the gas phase from the iron collector were studied. The HCl concentration had a negative effect on the extraction of Si, which decreased from 78.2% to 58.1% and from 97.4% to 87.2% in the time ranges of 0–30 min and 30–120 min, respectively. This occurred due to the accumulation of Fe2+ in the solution and its interaction with HF, which led to a reduction in both the HF concentration and the extraction of Si. In addition, there were diffusion difficulties of the Fe and Si extraction because Fe precipitated on the surface of the cakes in the form of thin-film conglomerates of FeF2. This was confirmed by the XRF and EDS results, indicating that F was present on the surface of the cakes. The processes of the Fe and Si extraction were diffusion-chemically controlled and diffusion controlled—the apparent activation energies decreased from 26.9 kJ/mol to 7.8 kJ/mol and from 2.2 kJ/mol to 2.0 kJ/mol in the time range of 0–120 min, respectively. Using the shrinking core model and the full factorial experiment model, the kinetic equations, the optimal parameters of iron collector leaching, and the extraction rates of Fe and Si were determined. These optimal parameters ensure the extraction of Fe and Si at the level of 95% with high leaching rates: the HCl concentration of 4.36 mol/L, the HF concentration of 6.93 mol/L, temperature of 363 K, and leaching time of 80 min. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

26 pages, 4705 KiB  
Review
Methodological Review of Methods and Technology for Utilization of Spent Carbon Cathode in Aluminum Electrolysis
by Liuzhou Zhou, Zhen Yao, Ke Sun, Zhongliang Tian, Jie Li and Qifan Zhong
Energies 2024, 17(19), 4866; https://doi.org/10.3390/en17194866 - 27 Sep 2024
Cited by 4 | Viewed by 1463
Abstract
Spent carbon cathode (SCC) is one of the major hazardous solid wastes generated during the overhaul of electrolysis cells in the aluminum production process. SCC is not only rich in carbon resources but also contains soluble fluoride and cyanide, which gives it both [...] Read more.
Spent carbon cathode (SCC) is one of the major hazardous solid wastes generated during the overhaul of electrolysis cells in the aluminum production process. SCC is not only rich in carbon resources but also contains soluble fluoride and cyanide, which gives it both recycling value and significant leaching toxicity. In this study, we explore the properties, emissions, and disposal strategies for SCC. Pyrometallurgy involves processes such as vacuum distillation, molten salt roasting, and high-temperature roasting. Hydrometallurgy describes various methods used to separate valuable components from leachate and prepare products. Collaborative disposal plays a positive role in treating SCC alongside other solid wastes. High-value utilization provides an approach to make full use of high-purity carbon-based materials. Finally, we analyze and summarize future prospects for the disposal of SCC. This study aims to contribute to the large-scale treatment and resource utilization of SCC while promoting circular economy principles and green development initiatives. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 15413 KiB  
Article
Kinetics of Iron Collector Leaching in HCl and HF Media
by Evgeniy Kuzas, Ivan Sandalov, Kirill Karimov, Aleksei Kritskii, Ilia Fomenko, Ivan Zhidkov and Aleksandr Abramov
Metals 2024, 14(9), 1077; https://doi.org/10.3390/met14091077 - 19 Sep 2024
Cited by 1 | Viewed by 1452
Abstract
Automotive catalysts containing Platinum Group Metals (PGMs) are valuable secondary raw materials for refineries. Hydrometallurgical processing of catalysts is ineffective due to the low PGMs content—0.15–0.3%. Therefore, such raw materials are melted into an iron collector containing 1.5–5% PGMs. However, when leaching a [...] Read more.
Automotive catalysts containing Platinum Group Metals (PGMs) are valuable secondary raw materials for refineries. Hydrometallurgical processing of catalysts is ineffective due to the low PGMs content—0.15–0.3%. Therefore, such raw materials are melted into an iron collector containing 1.5–5% PGMs. However, when leaching a collector containing 10–20% Si in both HCl and H2SO4, the recovery of PGMs does not exceed 40%. The latter indicates incomplete destroying of the PGM-encapsulating ferrosilicon matrix. To completely destroy the ferrosilicon matrix, it is proposed to carry out the leaching process in a mixture of HCl and HF. In this case, the extraction of Fe into solution and Si into the gas phase (in the form of SiF4) exceeds 90%. This should be sufficient to completely destroy the ferrosilicon matrix and release PGMs. The current work presents the results of studies of the leaching kinetics of the iron collector containing ferrosilicon in a mixture of HCl and HF using the Shrinking Core Model (SCM). It was found that the greatest positive effect on Fe extraction into solution is exerted by HCl concentration and temperature, while Si release into the gas phase is only influenced by HF concentration. In addition, during the destroying of ferrosilicon, FeF2 is formed and deposited on the surface of the material in the form of thin-film conglomerates. This leads to diffusion difficulties and a gradual decrease in the intensity of the iron collector leaching 30 min after the start of process. After 120 min, there may be a decrease in Fe recovery into solution. Full article
(This article belongs to the Special Issue Separation and Purification of Critical Metals)
Show Figures

Figure 1

14 pages, 4440 KiB  
Article
Know-How of the Effective Use of Carbon Electrodes with a through Axial Hole in the Smelting of Silicon Metal
by Alexandr A. Ilin, Almas S. Yerzhanov, Nikolay N. Zobnin, Nina V. Nemchinova and Victor I. Romanov
Appl. Sci. 2024, 14(18), 8346; https://doi.org/10.3390/app14188346 - 17 Sep 2024
Viewed by 1355
Abstract
This article describes elements of the know-how of using carbon electrodes produced using the technology of molding around a rod when smelting silicon metal. Application of our know-how will dramatically increase the competitiveness of silicon metal production. Experts’ concerns regarding the use of [...] Read more.
This article describes elements of the know-how of using carbon electrodes produced using the technology of molding around a rod when smelting silicon metal. Application of our know-how will dramatically increase the competitiveness of silicon metal production. Experts’ concerns regarding the use of such electrodes were that such electrodes have a through axial hole. This significantly reduces the mechanical strength of such electrodes, which can presumably lead to problems associated with the breakage of the working side of the electrode, which is immersed in the smelting space of the furnace under the charge layer. Industrial testing of such electrodes was carried out in a 30 MVA furnace of “Tau-Ken Temir” LLP. During testing, we used an approach previously developed by our team for working with a furnace in the process of smelting silicon metal. In particular, we used an interval between top treatments of about 30 min and adhered to the principles of balanced smelting, i.e., provided a balance between the intensity of the uniform supply of the charge into the furnace and the current active electrical power. Industrial testing carried out over four weeks confirmed the stability of the operation of cheaper carbon electrodes with a through axial hole. The recovery of silicon into finished products was also improved to 88–89% and the specific energy consumption was reduced to 11.2–12.1 MWh/t of silicon metal from the initial value 14,752 MWh/t. Thus, we received additional evidence for the effectiveness of our approach in furnace operating compared to an approach based on the ultimate provision of gas and permeability of the furnace top due to excessively intense processing of the top and an uncontrolled, uneven supply of charge to the furnace. Full article
Show Figures

Figure 1

26 pages, 6715 KiB  
Article
Exploring the Efficiency of Magnetic Separation and Gravity Concentration for Valorizing Pb-Zn Smelter Slag in a Circular Economy Framework
by Anja Terzić, Jovica Stojanović, Vladimir Jovanović, Dejan Todorović, Miroslav Sokić, Dragan Bojović and Dragan Radulović
Materials 2024, 17(16), 3945; https://doi.org/10.3390/ma17163945 - 8 Aug 2024
Cited by 2 | Viewed by 4377
Abstract
The presented work offers an innovative process scheme for valorizing Pb-Zn slag, which involves crushing, grinding, and separation techniques to concentrate valuable components (non-ferrous metals). This methodology could have a significant impact on the global beneficiation of metallurgical slags since it is significantly [...] Read more.
The presented work offers an innovative process scheme for valorizing Pb-Zn slag, which involves crushing, grinding, and separation techniques to concentrate valuable components (non-ferrous metals). This methodology could have a significant impact on the global beneficiation of metallurgical slags since it is significantly more simple, environmentally friendly, and cost-effective than standard pyro- and hydrometallurgical procedures. According to previous physicochemical and mineralogical studies, Pb-Zn slag is a valuable secondary raw material. This inhomogeneous technogenic resource contains substantial amounts of non-ferrous metals (Pb, Zn, Cu, and Ag). However, laboratory tests have indicated that the Pb-Zn slag contains highly uneven amounts of valuable metals, ranging from several g/ton to tens of g/ton. The main issue is that traditional metallurgical procedures for releasing beneficial elements are not commercially viable since the elements are “trapped” within the amorphous aluminosilicates or intergrowths of alloy grains and glassy phases. Gravity concentration (Wilfley 13 shaking table) and magnetic separation (Davis separator and disk separator) were used to obtain the final concentrate following comminution and grindability testing. The gravity concentration proved more effective. Namely, magnetic separators could not process nor adequately separate beneficial non-ferrous elements because they were merged together with iron-bearing minerals and aluminosilicates in amorphous Pb-Zn slag grains. With the gravity concentration approach, 12.99% of the processed slag belonged to ∆T fraction (concentration of non-ferrous metal alloys), while remaining 87% corresponded to the tailings fraction (∆L). The total amounts of recovered Pb, Zn, Cu, and Ag from ∆T and ∆L fractions were 5.28%, 6.69%, 0.58%, and 76.12 ppm and 1.22%, 6.05%, 0.43%, and 15.26 ppm, respectively. This streamlined approach to valorizing Pb-Zn slag can reduce the need for hazardous chemicals used in hydrometallurgical refinement operations, as well as the extremely high temperatures required for pyrometallurgical processing. This is the first study to investigate the viability of this novel methodology, which involves the direct examinations of the Pb-Zn slag feed with various alternative technologies for separation and concentration. After extracting the valuable metals, the amorphous aluminosilicate part of the Pb-Zn slag can be reapplied as an alternative raw material in the building sector, adding to the circularity of the suggested approach. Full article
Show Figures

Figure 1

13 pages, 6004 KiB  
Article
Determining the Reactivity of Selected Biomass Types Considering Their Application in Pyrometallurgical Processes of Metal Production
by Robert Findorak, Lubomir Pikna, Tomasz Matuła, Leszek Blacha, Jerzy Łabaj, Albert Smalcerz and Dorota Babilas
Materials 2024, 17(11), 2691; https://doi.org/10.3390/ma17112691 - 2 Jun 2024
Cited by 2 | Viewed by 1243
Abstract
In this paper, results of research on the reactivities of selected biomass types considering their application in pyrometallurgical processes of metal production are presented. Walnut shells, sunflower husk pellets and spent coffee grounds were selected as biomass materials. Their use as potential reducers [...] Read more.
In this paper, results of research on the reactivities of selected biomass types considering their application in pyrometallurgical processes of metal production are presented. Walnut shells, sunflower husk pellets and spent coffee grounds were selected as biomass materials. Their use as potential reducers in the process of metallurgical slag decopperisation is an innovative approach to this subject. The thermogravimetric findings show that all three tested biomass types are classified as highly reactive. The time to reach maximum reactivity ranges from 1.5 to 3 min and, the lowest value is recorded for the sample of spent coffee grounds. The sample hold time of two hours enables copper content reduction to approx. 1 wt% for practically all the reducers tested. A longer duration of liquid slag contact with the reducer results in a decreased copper content in the slag to a value below 1 wt%. Copper concentrations of 0.5 wt% and lower are observed with a hold time of 4 h. The preliminary results indicate that there is great potential for the use of this type of material in non-ferrous metallurgy, which may translate into replacing fossil raw materials and thus introducing the principles of a sustainable process in this case of metal production. Full article
(This article belongs to the Special Issue Efficient Utilization of Metal Waste and Other Solid Waste)
Show Figures

Figure 1

13 pages, 1898 KiB  
Article
Batch Sintering of FeO·OH and Fe2O3 Blends: Chemical and Metallurgical Characterization
by Igor J. U. V. Pereira, Henrique C. S. Coelho, Cláudio G. Santos, Eduardo A. Brocchi, Rodrigo F. M. Souza and Victor A. A. Oliveira
Metals 2024, 14(5), 598; https://doi.org/10.3390/met14050598 - 20 May 2024
Viewed by 1440
Abstract
A sample of goethite iron ore sinter feed (G_SF) was employed as a raw material in a sintering bed. This sample partially replaced hematite sinter feed (H_SF), which is currently used as raw material in a sintering plant in the state of Minas [...] Read more.
A sample of goethite iron ore sinter feed (G_SF) was employed as a raw material in a sintering bed. This sample partially replaced hematite sinter feed (H_SF), which is currently used as raw material in a sintering plant in the state of Minas Gerais, Brazil. This substitution did not adversely affect the chemical and metallurgical proprieties of the sinter mix product, provided that the utilization of G_SF was kept below 30% in weight. Despite the higher proportion of fines in G_SF, the presence of argillaceous minerals in the sample led to an improvement in the granulation index (GI) of the sinter mix product. The GI value increased from 68.4 to 82.7% for the experiments conducted without the presence of goethite ore and with 40% of goethite ore in the sintering mix, respectively. Consequently, the qualities of both the process and the produced sinter product were not compromised. The raw materials and the various sinters produced were characterized through X-ray fluorescence (XRF) and X-ray diffraction (XRD), as well as thermal gravimetric analysis (TGA). The XRD results were used to perform a quantitative assessment of the mineral phase using the Rietveld method (RM). This technique allowed for the determination of goethite content in the studied sample, which was 35.5%. Finally, the incorporation of G_SF in the sintering bed led to a 20% reduction in the cost of raw materials. Full article
Show Figures

Figure 1

6 pages, 387 KiB  
Editorial
Advances in Understanding of Unit Operations in Non-Ferrous Extractive Metallurgy in 2023
by Srecko Stopic and Bernd Friedrich
Metals 2024, 14(3), 304; https://doi.org/10.3390/met14030304 - 4 Mar 2024
Viewed by 3963
Abstract
Metallic materials play a vital role in the economic life of modern societies; hence, research contributions are sought on fresh developments that enhance our understanding of the fundamental aspects of the relationships between processing, properties, and microstructures. Disciplines in the metallurgical field ranging [...] Read more.
Metallic materials play a vital role in the economic life of modern societies; hence, research contributions are sought on fresh developments that enhance our understanding of the fundamental aspects of the relationships between processing, properties, and microstructures. Disciplines in the metallurgical field ranging from processing, mechanical behavior, phase transitions, microstructural evolution, and nanostructures, as well as unique metallic properties, inspire general and scholarly interest among the scientific community. Three of the most important elements are included in unit operations in non-ferrous extractive metallurgy: (1) hydrometallurgy (leaching under atmospheric and high-pressure conditions, mixing of a solution with a gas and mechanical parts, neutralization of a solution, precipitation and cementation of metals from a solution aiming at purification, and compound productions during crystallization), (2) pyrometallurgy (roasting, smelting, and refining), and (3) electrometallurgy (aqueous electrolysis and molten salt electrolysis). Advances in our understanding of unit operations in non-ferrous extractive metallurgy are required to develop new research strategies for the treatment of primary and secondary materials and their application in industry. Full article
Show Figures

Figure 1

27 pages, 3433 KiB  
Review
Transformation and Detoxification of Typical Metallurgical Hazardous Waste into a Resource: A Review of the Development of Harmless Treatment and Utilization in China
by Yuanhang Wang, Haiquan Zhao, Xinyu Wang, Junkai Chong, Xiangtao Huo, Min Guo and Mei Zhang
Materials 2024, 17(4), 931; https://doi.org/10.3390/ma17040931 - 17 Feb 2024
Cited by 5 | Viewed by 2350
Abstract
The production process of the metallurgical industry generates a significant quantity of hazardous waste. At present, the common disposal method for metallurgical hazardous waste is landfilling, which synchronously leads to the leaching of toxic elements and the loss of valuable metals. This paper [...] Read more.
The production process of the metallurgical industry generates a significant quantity of hazardous waste. At present, the common disposal method for metallurgical hazardous waste is landfilling, which synchronously leads to the leaching of toxic elements and the loss of valuable metals. This paper presents a comprehensive review of the research progress in the harmless treatment and resource utilization of stainless steel dust/sludge (including stainless steel dust and stainless steel pickling sludge) and aluminum ash (including primary aluminum ash and secondary aluminum dross), which serve as representative hazardous wastes in ferrous metallurgy and nonferrous metallurgy, respectively. Additionally, the general steps involved in the comprehensive utilization of metallurgical hazardous waste are summarized. Finally, this paper provides a prospective analysis on the future development and research trends of comprehensive utilization for metallurgical hazardous waste, aiming to offer a basis for the future harmless, high-value, resource-based treatment of metallurgical hazardous waste and the realization of industrial applications in China. Full article
(This article belongs to the Special Issue Environmentally Friendly Materials)
Show Figures

Figure 1

16 pages, 4056 KiB  
Article
Selective Recovery of Scandium (Sc) from Sulfate Solution of Bauxite Residue Leaching Using Puromet MTS9580 Ion-Exchange Sorption
by Julia Napol’skikh, Andrei Shoppert, Irina Loginova, Sergey Kirillov and Dmitry Valeev
Metals 2024, 14(2), 234; https://doi.org/10.3390/met14020234 - 15 Feb 2024
Cited by 1 | Viewed by 2184
Abstract
Rare earth elements (REEs) and Sc are concentrated in aluminum production byproducts. The novel REEs recovery approach, which involves leaching with acid at a pH > 3 in the presence of MgSO4, results in the formation of a pregnant leach solution [...] Read more.
Rare earth elements (REEs) and Sc are concentrated in aluminum production byproducts. The novel REEs recovery approach, which involves leaching with acid at a pH > 3 in the presence of MgSO4, results in the formation of a pregnant leach solution (PLS) with a low concentration of iron (Fe) and titanium (Ti) and a large number of valuable elements. This work studies the application of chelating resin Puromet MTS9580 in the sorption recovery of Sc from sulfate solutions. To analyze the static Sc sorption data, Langmuir, Freundlich, and Temkin isotherm models were used. The Langmuir isotherm model was the best fitted to the experimental data, with a coefficient of determination (R2) of 0.983. The dynamic adsorption experiment was conducted using a PLS and a simulated solution without contaminants. Adsorption of Sc from the simulated solution was better fitted to the Thomas model with a Sc capacity greater than 6.4 mg mL−1. Because Ti had a gradual decrease in C/C0, which the Thomas model was unable to simulate, the modified dose-response (MDR) model fitted better with PLS with a Sc capacity greater than 3.8 mg mL−1. The NaHCO3 solution (200 g L−1) effectively desorbed Sc (>98%) from simulated and PLS solutions after 1.5 h of stirring in a batch mode. After 1.5 h of desorption, the concentration of Sc in the desorption solution was 461.5 mg L−1, while the concentration of Mg and Ti was lower than 200 mg L−1 and 50 mg L−1, respectively. Full article
(This article belongs to the Special Issue Selective Separation and Comprehensive Recovery of Valuable Metals)
Show Figures

Figure 1

8 pages, 2487 KiB  
Proceeding Paper
Utilization of Waste Graphite for the Sustainable Production of Silicon Carbide
by Charikleia Vourgidi, Ioanna Giannopoulou, Apostolos Kourtis, Maria Magganiari and Anthimos Xenidis
Mater. Proc. 2023, 15(1), 82; https://doi.org/10.3390/materproc2023015082 - 6 Feb 2024
Cited by 1 | Viewed by 1269
Abstract
Silicon carbide (SiC) is a great material for high-tech applications due to its unique mechanical, thermal and electrical properties. The Acheson method that is currently used for its production necessitates temperatures between 2000 and 2500 °C, resulting, thus, in a significant environmental footprint. [...] Read more.
Silicon carbide (SiC) is a great material for high-tech applications due to its unique mechanical, thermal and electrical properties. The Acheson method that is currently used for its production necessitates temperatures between 2000 and 2500 °C, resulting, thus, in a significant environmental footprint. In this work, an innovative approach for the production of SiC at temperatures below 1000 °C is investigated using metallic magnesium to reduce silica and utilizing waste graphite from the industrial production of graphite molds for non-ferrous metallurgy. According to the results, the molar ratios of silica to graphite and magnesium mainly affected the formation of SiC. Full article
Show Figures

Figure 1

Back to TopTop