Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = non-equilibrium heat transfer problem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5096 KB  
Article
Numerical Simulation and Experimental Study on Picosecond Laser Polishing of 4H-SiC Wafer
by Yixiong Yan, Yuxuan Cheng, Sijia Chen, Yu Tang, Fan Zhang and Piaopiao Gao
Micromachines 2025, 16(10), 1163; https://doi.org/10.3390/mi16101163 - 14 Oct 2025
Cited by 1 | Viewed by 814
Abstract
4H-SiC wafers usually require polishing treatment after slicing to improve the surface quality. However, traditional polishing processes have problems such as low removal efficiency and easy surface damage, which affect the reliability of electronic devices. In this paper, picosecond laser polishing technology is [...] Read more.
4H-SiC wafers usually require polishing treatment after slicing to improve the surface quality. However, traditional polishing processes have problems such as low removal efficiency and easy surface damage, which affect the reliability of electronic devices. In this paper, picosecond laser polishing technology is used to study the 4H-SiC wafers after slicing. Numerical models of single-pulse ablation and moving heat source polishing were established to reveal the interaction mechanism between laser and material, including the dynamic evolution of free electron density and the remarkable spatiotemporal non-equilibrium heat transfer characteristics of the electron–lattice system. The sliced 4H-SiC surface with a roughness of 2265 nm was polished by a 1064 nm picosecond laser, and the influence of laser power and scanning speed on the surface quality was systematically studied. By collaboratively optimizing the polishing power and speed, the surface roughness of the sample can be significantly reduced to 207.33 nm (a decrease of 90.85%). The research results indicate that an ultrafast laser is suitable for the pretreatment process of sliced silicon carbide wafers, laying a foundation for further research in the future. This research has a certain research significance for promoting the development of ultrafast laser polishing technology for single crystal silicon carbide wafers and improving the performance and reliability of semiconductor devices. Full article
Show Figures

Figure 1

15 pages, 1687 KB  
Article
Study on Regulation Mechanism of Heat Transport at Aluminum Nitride/Graphene/Silicon Carbide Heterogeneous Interface
by Dongjing Liu, Pengbo Wang, Zhiliang Hu, Jia Fu, Wei Qin, Jianbin Yu, Yangyang Zhang, Bing Yang and Yunqing Tang
Nanomaterials 2025, 15(12), 928; https://doi.org/10.3390/nano15120928 - 14 Jun 2025
Viewed by 991
Abstract
In order to solve the self-heating problem of power electronic devices, this paper adopts a nonequilibrium molecular dynamics approach to study the thermal transport regulation mechanism of the aluminum nitride/graphene/silicon carbide heterogeneous interface. The effects of temperature, size, and vacancy defects on interfacial [...] Read more.
In order to solve the self-heating problem of power electronic devices, this paper adopts a nonequilibrium molecular dynamics approach to study the thermal transport regulation mechanism of the aluminum nitride/graphene/silicon carbide heterogeneous interface. The effects of temperature, size, and vacancy defects on interfacial thermal conductivity are analyzed by phonon state density versus phonon participation rate to reveal their phonon transfer mechanisms during thermal transport. It is shown that the interfacial thermal conductance (ITC) increases about three times when the temperature increases from 300 K to 1100 K. It is analyzed that the increase in temperature will enhance lattice vibration, enhance phonon coupling degree, and thus increase its ITC. With the increase in the number of AlN-SiC layers from 8 to 28, the ITC increases by about 295.3%, and it is analyzed that the increase in the number of AlN-SiC layers effectively reduces the interfacial scattering and improves the phonon interfacial transmission efficiency. The increase in the number of graphene layers from 1 layer to 4 layers decreases the ITC by 70.3%. The interfacial thermal conductivity reaches a minimum, which is attributed to the increase in graphene layers aggravating the degree of phonon localization. Under the influence of the increase in graphene single and double vacancy defects concentration, the ITC is slightly reduced. When the defect rate reaches about 20%, the interfacial thermal conductance of SV (single vacancy) and DV (double vacancy) defects rises back to 5.606 × 10−2 GW/m2K and 5.224 × 10−2 GW/m2K, respectively. It is analyzed that the phonon overlapping and the participation rate act at the same time, so the heat-transferring phonons increase, increasing the thermal conductance of their interfaces. The findings provide theoretical support for optimizing the thermal management performance of heterostructure interfaces. Full article
Show Figures

Graphical abstract

8 pages, 209 KB  
Article
Local Equilibrium in Transient Heat Conduction
by Kirill Glavatskiy
Entropy 2025, 27(2), 100; https://doi.org/10.3390/e27020100 - 21 Jan 2025
Viewed by 1130
Abstract
Extended irreversible thermodynamics (EIT) has been widely used to overcome the deficiencies of classical irreversible thermodynamics in describing fast transport phenomena. By employing fluxes as additional independent variables and rejecting local equilibrium hypothesis, EIT may provide a thermodynamically consistent framework for high-frequency and [...] Read more.
Extended irreversible thermodynamics (EIT) has been widely used to overcome the deficiencies of classical irreversible thermodynamics in describing fast transport phenomena. By employing fluxes as additional independent variables and rejecting local equilibrium hypothesis, EIT may provide a thermodynamically consistent framework for high-frequency and non-local processes. Here, we propose an alternative approach to EIT that shares the same objective but does not reject local equilibrium hypothesis. Using the rates of change of the energy density as the additional independent variable, we illustrate this approach for two typical problems of transient heat conduction: the Cattaneo-type flux model with thermodynamic inertia and the two-temperature model of energy transfer in a phonon–electron system. Full article
26 pages, 1069 KB  
Article
A Unified Approach to Two-Dimensional Brinkman-Bénard Convection of Newtonian Liquids in Cylindrical and Rectangular Enclosures
by Pradeep G. Siddheshwar, Kanakapura M. Lakshmi and David Laroze
Entropy 2024, 26(1), 2; https://doi.org/10.3390/e26010002 - 19 Dec 2023
Cited by 2 | Viewed by 2068
Abstract
A unified model for the analysis of two-dimensional Brinkman–Bénard/Rayleigh–Bénard/ Darcy–Bénard convection in cylindrical and rectangular enclosures (CE/RE) saturated by a Newtonian liquid is presented by adopting the local thermal non-equilibrium (LTNE) model [...] Read more.
A unified model for the analysis of two-dimensional Brinkman–Bénard/Rayleigh–Bénard/ Darcy–Bénard convection in cylindrical and rectangular enclosures (CE/RE) saturated by a Newtonian liquid is presented by adopting the local thermal non-equilibrium (LTNE) model for the heat transfer between fluid and solid phases. The actual thermophysical properties of water and porous media are used. The range of permissible values for all the parameters is calculated and used in the analysis. The result of the local thermal equilibrium (LTE) model is obtained as a particular case of the LTNE model through the use of asymptotic analyses. The critical value of the Rayleigh number at which the entropy generates in the system is reported in the study. The analytical expression for the number of Bénard cells formed in the system at the onset of convection as a function of the aspect ratio, So, and parameters appearing in the problem is obtained. For a given value of So it was found that in comparison with the case of LTE, more number of cells manifest in the case of LTNE. Likewise, smaller cells form in the DBC problem when compared with the corresponding problem of BBC. In the case of RBC, fewer cells form when compared to that in the case of BBC and DBC. The above findings are true in both CE and RE. In other words, the presence of a porous medium results in the production of less entropy in the system, or a more significant number of cells represents the case of less entropy production in the system. For small and finite So, the appearance of the first cell differs in the CE and RE problems. Full article
(This article belongs to the Special Issue Statistical Mechanics of Porous Media Flow)
Show Figures

Figure 1

23 pages, 1250 KB  
Review
On the Existence and Applicability of Extremal Principles in the Theory of Irreversible Processes: A Critical Review
by Igor Donskoy
Energies 2022, 15(19), 7152; https://doi.org/10.3390/en15197152 - 28 Sep 2022
Cited by 3 | Viewed by 2440
Abstract
A brief review of the development of ideas on extremal principles in the theory of heat and mass transfer processes (including those in reacting media) is given. The extremal principles of non-equilibrium thermodynamics are critically examined. Examples are shown in which the mechanical [...] Read more.
A brief review of the development of ideas on extremal principles in the theory of heat and mass transfer processes (including those in reacting media) is given. The extremal principles of non-equilibrium thermodynamics are critically examined. Examples are shown in which the mechanical use of entropy production-based principles turns out to be inefficient and even contradictory. The main problem of extremal principles in the theory of irreversible processes is the impossibility of their generalization, often even within the framework of a class of problems. Alternative extremal formulations are considered: variational principles for heat and mass transfer equations and other dissipative systems. Several extremal principles are singled out, which make it possible to simplify the numerical solution of the initial equations. Criteria are proposed that allow one to classify extremal principles according to their areas of applicability. Possible directions for further research in the search for extremal principles in the theory of irreversible processes are given. Full article
(This article belongs to the Special Issue Advances in Heat and Mass Transfer and Reaction in Porous Media)
Show Figures

Figure A1

19 pages, 5078 KB  
Article
Assessment of Radiative Heating for Hypersonic Earth Reentry Using Nongray Step Models
by Xinglian Yang, Jingying Wang, Yue Zhou and Ke Sun
Aerospace 2022, 9(4), 219; https://doi.org/10.3390/aerospace9040219 - 15 Apr 2022
Cited by 5 | Viewed by 5382
Abstract
Accurate prediction of the aerothermal environment is of great significance to space exploration and return missions. The canonical Fire II trajectory points are simulated to investigate the radiative transfer in the shock layer for Earth reentry at hypervelocity above 10 km/s using a [...] Read more.
Accurate prediction of the aerothermal environment is of great significance to space exploration and return missions. The canonical Fire II trajectory points are simulated to investigate the radiative transfer in the shock layer for Earth reentry at hypervelocity above 10 km/s using a developed radiation–flowfield uncoupling method. The thermochemical nonequilibrium flow is solved by an in-house PHAROS Navier–Stokes code, while the nongray radiation is integrated by the tangent slab approximation, respectively, combined with the two-, five-, and eight-step models. For the convective heating, the present results agree well with the data of Anderson’s relation. For the radiative heating, the two-step model predicts the closest values with the results of Tauber and Sutton’s relationship, while the five- and eight-step models predict far greater. The three-step models all present the same order of magnitude of radiative heating of 1 MW/m2 and show a consistent tendency with the engineering estimation. The Planck-mean absorption coefficient is calculated to show the radiative transfer significantly occurs in the shock layer. By performing the steady simulation at each flight trajectory point, the present algorithm using a nongray step model with moderate efficiency and reasonable accuracy is promising to solve the real-time problem in engineering for predicting both convective and radiative heating to the atmospheric reentry vehicle in the future. Full article
(This article belongs to the Special Issue Hypersonics: Emerging Research)
Show Figures

Figure 1

18 pages, 2843 KB  
Article
Numerical Study on Generalized Heat and Mass in Casson Fluid with Hybrid Nanostructures
by Muhammad A. Sadiq and Haitham M. S. Bahaidarah
Nanomaterials 2021, 11(10), 2675; https://doi.org/10.3390/nano11102675 - 11 Oct 2021
Cited by 5 | Viewed by 1955
Abstract
The rheological model for yield stress exhibiting fluid and the basic laws for fluid flow and transport of heat and mass are used for the formulation of problems associated with the enhancement of heat and mass due to dispersion of nanoparticles in Casson. [...] Read more.
The rheological model for yield stress exhibiting fluid and the basic laws for fluid flow and transport of heat and mass are used for the formulation of problems associated with the enhancement of heat and mass due to dispersion of nanoparticles in Casson. The heat and mass transfer obey non-Fourier’s laws and the generalized Fick’s law, respectively. Model problems are incorporated by thermal relaxation times for heat and mass. Transfer of heat energy and relaxation time are inversely proportional, and the same is the case for mass transport and concentration relaxation time. A porous medium force is responsible for controlling the momentum thickness. The yield stress parameter and diffusion of momentum in Casson fluid are noticed to be inversely proportional with each other. The concentration gradient enhances the energy transfer, and temperature gradient causes an enhancement diffusion of solute in Casson fluid. FEM provides convergent solutions. The relaxation time phenomenon is responsible for the restoration of thermal and solutal changes. Due to that, the thermal and solutal equilibrium states can be restored. The phenomenon of yield stress is responsible for controlling the momentum boundary layer thickness. A porous medium exerts a retarding force on the flow, and therefore, a deceleration in flow is observed. The thermal efficiency of MoS2SiO2Casson fluid is greater than the thermal efficiency of SiO2Casson fluid. Full article
Show Figures

Figure 1

20 pages, 6892 KB  
Article
Predictions of Conjugate Heat Transfer in Turbulent Channel Flow Using Advanced Wall-Modeled Large Eddy Simulation Techniques
by Yongxiang Li, Florian Ries, Kaushal Nishad and Amsini Sadiki
Entropy 2021, 23(6), 725; https://doi.org/10.3390/e23060725 - 7 Jun 2021
Cited by 6 | Viewed by 3881
Abstract
In this paper, advanced wall-modeled large eddy simulation (LES) techniques are used to predict conjugate heat transfer processes in turbulent channel flow. Thereby, the thermal energy transfer process involves an interaction of conduction within a solid body and convection from the solid surface [...] Read more.
In this paper, advanced wall-modeled large eddy simulation (LES) techniques are used to predict conjugate heat transfer processes in turbulent channel flow. Thereby, the thermal energy transfer process involves an interaction of conduction within a solid body and convection from the solid surface by fluid motion. The approaches comprise a two-layer RANS–LES approach (zonal LES), a hybrid RANS–LES representative, the so-called improved delayed detached eddy simulation method (IDDES) and a non-equilibrium wall function model (WFLES), respectively. The results obtained are evaluated in comparison with direct numerical simulation (DNS) data and wall-resolved LES including thermal cases of large Reynolds numbers where DNS data are not available in the literature. It turns out that zonal LES, IDDES and WFLES are able to predict heat and fluid flow statistics along with wall shear stresses and Nusselt numbers accurately and that are physically consistent. Furthermore, it is found that IDDES, WFLES and zonal LES exhibit significantly lower computational costs than wall-resolved LES. Since IDDES and especially zonal LES require considerable extra work to generate numerical grids, this study indicates in particular that WFLES offers a promising near-wall modeling strategy for LES of conjugated heat transfer problems. Finally, an entropy generation analysis using the various models showed that the viscous entropy production is zero inside the solid region, peaks at the solid–fluid interface and decreases rapidly with increasing wall distance within the fluid region. Except inside the solid region, where steep temperature gradients lead to high (thermal) entropy generation rates, a similar behavior is monitored for the entropy generation by heat transfer process. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics and Conjugate Heat Transfer)
Show Figures

Graphical abstract

23 pages, 3855 KB  
Article
Impacts of Amplitude and Local Thermal Non-Equilibrium Design on Natural Convection within NanoflUid Superposed Wavy Porous Layers
by Ammar I. Alsabery, Tahar Tayebi, Ali S. Abosinnee, Zehba A. S. Raizah, Ali J. Chamkha and Ishak Hashim
Nanomaterials 2021, 11(5), 1277; https://doi.org/10.3390/nano11051277 - 13 May 2021
Cited by 20 | Viewed by 3219
Abstract
A numerical study is presented for the thermo-free convection inside a cavity with vertical corrugated walls consisting of a solid part of fixed thickness, a part of porous media filled with a nanofluid, and a third part filled with a nanofluid. Alumina nanoparticle [...] Read more.
A numerical study is presented for the thermo-free convection inside a cavity with vertical corrugated walls consisting of a solid part of fixed thickness, a part of porous media filled with a nanofluid, and a third part filled with a nanofluid. Alumina nanoparticle water-based nanofluid is used as a working fluid. The cavity’s wavy vertical surfaces are subjected to various temperature values, hot to the left and cold to the right. In order to generate a free-convective flow, the horizontal walls are kept adiabatic. For the porous medium, the Local Thermal Non-Equilibrium (LTNE) model is used. The method of solving the problem’s governing equations is the Galerkin weighted residual finite elements method. The results report the impact of the active parameters on the thermo-free convective flow and heat transfer features. The obtained results show that the high Darcy number and the porous media’s low modified thermal conductivity ratio have important roles for the local thermal non-equilibrium effects. The heat transfer rates through the nanofluid and solid phases are found to be better for high values of the undulation amplitude, the Darcy number, and the volume fraction of the nanofluid, while a limit in the increase of heat transfer rate through the solid phase with the modified thermal ratio is found, particularly for high values of porosity. Furthermore, as the porosity rises, the nanofluid and solid phases’ heat transfer rates decline for low Darcy numbers and increase for high Darcy numbers. Full article
(This article belongs to the Topic Advances and Applications of Carbon Nanotubes)
Show Figures

Figure 1

17 pages, 2249 KB  
Article
Integro-Differential Equation for the Non-Equilibrium Thermal Response of Glass-Forming Materials: Analytical Solutions
by Alexander A. Minakov and Christoph Schick
Symmetry 2021, 13(2), 256; https://doi.org/10.3390/sym13020256 - 3 Feb 2021
Cited by 14 | Viewed by 3762
Abstract
An integro-differential equation describes the non-equilibrium thermal response of glass-forming substances with a dynamic (time-dependent) heat capacity to fast thermal perturbations. We found that this heat transfer problem could be solved analytically for a heat source with an arbitrary time dependence and different [...] Read more.
An integro-differential equation describes the non-equilibrium thermal response of glass-forming substances with a dynamic (time-dependent) heat capacity to fast thermal perturbations. We found that this heat transfer problem could be solved analytically for a heat source with an arbitrary time dependence and different geometries. The method can be used to analyze the response to local thermal perturbations in glass-forming materials, as well as temperature fluctuations during subcritical crystal nucleation and decay. The results obtained can be useful for applications and a better understanding of the thermal properties of glass-forming materials, polymers, and nanocomposites. Full article
(This article belongs to the Special Issue Integral Equations: Theories, Approximations and Applications)
Show Figures

Graphical abstract

16 pages, 2381 KB  
Article
Entropy Generation in a Dissipative Nanofluid Flow under the Influence of Magnetic Dissipation and Transpiration
by Dianchen Lu, Muhammad Idrees Afridi, Usman Allauddin, Umer Farooq and Muhammad Qasim
Energies 2020, 13(20), 5506; https://doi.org/10.3390/en13205506 - 21 Oct 2020
Cited by 15 | Viewed by 2760
Abstract
The present study explores the entropy generation, flow, and heat transfer characteristics of a dissipative nanofluid in the presence of transpiration effects at the boundary. The non-isothermal boundary conditions are taken into consideration to guarantee self-similar solutions. The electrically conducting nanofluid flow is [...] Read more.
The present study explores the entropy generation, flow, and heat transfer characteristics of a dissipative nanofluid in the presence of transpiration effects at the boundary. The non-isothermal boundary conditions are taken into consideration to guarantee self-similar solutions. The electrically conducting nanofluid flow is influenced by a magnetic field of constant strength. The ultrafine particles (nanoparticles of Fe3O4/CuO) are dispersed in the technological fluid water (H2O). Both the base fluid and the nanofluid have the same bulk velocity and are assumed to be in thermal equilibrium. Tiwari and Dass’s idea is used for the mathematical modeling of the problem. Furthermore, the ultrafine particles are supposed to be spherical, and Maxwell Garnett’s model is used for the effective thermal conductivity of the nanofluid. Closed-form solutions are derived for boundary layer momentum and energy equations. These solutions are then utilized to access the entropy generation and the irreversibility parameter. The relative importance of different sources of entropy generation in the boundary layer is discussed through various graphs. The effects of space free physical parameters such as mass suction parameter (S), viscous dissipation parameter (Ec), magnetic heating parameter (M), and solid volume fraction (ϕ) of the ultrafine particles on the velocity, Bejan number, temperature, and entropy generation are elaborated through various graphs. It is found that the parabolic wall temperature facilitates similarity transformations so that self-similar equations can be achieved in the presence of viscous dissipation. It is observed that the entropy generation number is an increasing function of the Eckert number and solid volume fraction. The entropy production rate in the Fe3O4H2O nanofluid is higher than that in the CuOH2O nanofluid under the same circumstances. Full article
(This article belongs to the Special Issue Heat Transfer in Energy Conversion Systems)
Show Figures

Figure 1

19 pages, 2823 KB  
Article
Nanoscale Heat Conduction in CNT-POLYMER Nanocomposites at Fast Thermal Perturbations
by Alexander A. Minakov and Christoph Schick
Molecules 2019, 24(15), 2794; https://doi.org/10.3390/molecules24152794 - 31 Jul 2019
Cited by 13 | Viewed by 3670
Abstract
Nanometer scale heat conduction in a polymer/carbon nanotube (CNT) composite under fast thermal perturbations is described by linear integrodifferential equations with dynamic heat capacity. The heat transfer problem for local fast thermal perturbations around CNT is considered. An analytical solution for the nonequilibrium [...] Read more.
Nanometer scale heat conduction in a polymer/carbon nanotube (CNT) composite under fast thermal perturbations is described by linear integrodifferential equations with dynamic heat capacity. The heat transfer problem for local fast thermal perturbations around CNT is considered. An analytical solution for the nonequilibrium thermal response of the polymer matrix around CNT under local pulse heating is obtained. The dynamics of the temperature distribution around CNT depends significantly on the CNT parameters and the thermal contact conductance of the polymer/CNT interface. The effect of dynamic heat capacity on the local overheating of the polymer matrix around CNT is considered. This local overheating can be enhanced by very fast (about 1 ns) components of the dynamic heat capacity of the polymer matrix. The results can be used to analyze the heat transfer process at the early stages of “shish-kebab” crystal structure formation in CNT/polymer composites. Full article
(This article belongs to the Special Issue Thermodynamics and Thermal Transport Properties in Nanomaterials)
Show Figures

Graphical abstract

Back to TopTop