Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = non-bilaterian animals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6737 KiB  
Article
Unexpected Distribution of Chitin and Chitin Synthase across Soft-Bodied Cnidarians
by Lauren E. Vandepas, Michael G. Tassia, Kenneth M. Halanych and Chris T. Amemiya
Biomolecules 2023, 13(5), 777; https://doi.org/10.3390/biom13050777 - 29 Apr 2023
Cited by 5 | Viewed by 3352
Abstract
Cnidarians are commonly recognized as sea jellies, corals, or complex colonies such as the Portuguese man-of-war. While some cnidarians possess rigid internal calcareous skeletons (e.g., corals), many are soft-bodied. Intriguingly, genes coding for the chitin-biosynthetic enzyme, chitin synthase (CHS), were recently identified [...] Read more.
Cnidarians are commonly recognized as sea jellies, corals, or complex colonies such as the Portuguese man-of-war. While some cnidarians possess rigid internal calcareous skeletons (e.g., corals), many are soft-bodied. Intriguingly, genes coding for the chitin-biosynthetic enzyme, chitin synthase (CHS), were recently identified in the model anemone Nematostella vectensis, a species lacking hard structures. Here we report the prevalence and diversity of CHS across Cnidaria and show that cnidarian chitin synthase genes display diverse protein domain organizations. We found that CHS is expressed in cnidarian species and/or developmental stages with no reported chitinous or rigid morphological structures. Chitin affinity histochemistry indicates that chitin is present in soft tissues of some scyphozoan and hydrozoan medusae. To further elucidate the biology of chitin in cnidarian soft tissues, we focused on CHS expression in N. vectensis. Spatial expression data show that three CHS orthologs are differentially expressed in Nematostella embryos and larvae during development, suggesting that chitin has an integral role in the biology of this species. Understanding how a non-bilaterian lineage such as Cnidaria employs chitin may provide new insight into hitherto unknown functions of polysaccharides in animals, as well as their role in the evolution of biological novelty. Full article
(This article belongs to the Collection Feature Papers in Biochemistry)
Show Figures

Figure 1

12 pages, 2670 KiB  
Article
Going Forward and Back: The Complex Evolutionary History of the GPx
by Thomaz Stumpf Trenz, Camila Luiza Delaix, Andreia Carina Turchetto-Zolet, Marcel Zamocky, Fernanda Lazzarotto and Márcia Margis-Pinheiro
Biology 2021, 10(11), 1165; https://doi.org/10.3390/biology10111165 - 12 Nov 2021
Cited by 30 | Viewed by 5054
Abstract
There is large diversity among glutathione peroxidase (GPx) enzymes regarding their function, structure, presence of the highly reactive selenocysteine (SeCys) residue, substrate usage, and reducing agent preference. Moreover, most vertebrate GPxs are very distinct from non-animal GPxs, and it is still unclear if [...] Read more.
There is large diversity among glutathione peroxidase (GPx) enzymes regarding their function, structure, presence of the highly reactive selenocysteine (SeCys) residue, substrate usage, and reducing agent preference. Moreover, most vertebrate GPxs are very distinct from non-animal GPxs, and it is still unclear if they came from a common GPx ancestor. In this study, we aimed to unveil how GPx evolved throughout different phyla. Based on our phylogenetic trees and sequence analyses, we propose that all GPx encoding genes share a monomeric common ancestor and that the SeCys amino acid was incorporated early in the evolution of the metazoan kingdom. In addition, classical GPx and the cysteine-exclusive GPx07 have been present since non-bilaterian animals, but they seem to have been lost throughout evolution in different phyla. Therefore, the birth-and-death of GPx family members (like in other oxidoreductase families) seems to be an ongoing process, occurring independently across different kingdoms and phyla. Full article
Show Figures

Figure 1

23 pages, 967 KiB  
Review
There and Back Again: Hox Clusters Use Both DNA Strands
by Elena L. Novikova and Milana A. Kulakova
J. Dev. Biol. 2021, 9(3), 28; https://doi.org/10.3390/jdb9030028 - 15 Jul 2021
Cited by 5 | Viewed by 4115
Abstract
Bilaterian animals operate the clusters of Hox genes through a rich repertoire of diverse mechanisms. In this review, we will summarize and analyze the accumulated data concerning long non-coding RNAs (lncRNAs) that are transcribed from sense (coding) DNA strands of Hox clusters. It [...] Read more.
Bilaterian animals operate the clusters of Hox genes through a rich repertoire of diverse mechanisms. In this review, we will summarize and analyze the accumulated data concerning long non-coding RNAs (lncRNAs) that are transcribed from sense (coding) DNA strands of Hox clusters. It was shown that antisense regulatory RNAs control the work of Hox genes in cis and trans, participate in the establishment and maintenance of the epigenetic code of Hox loci, and can even serve as a source of regulatory peptides that switch cellular energetic metabolism. Moreover, these molecules can be considered as a force that consolidates the cluster into a single whole. We will discuss the examples of antisense transcription of Hox genes in well-studied systems (cell cultures, morphogenesis of vertebrates) and bear upon some interesting examples of antisense Hox RNAs in non-model Protostomia. Full article
(This article belongs to the Special Issue Hox Genes in Development: New Paradigms)
Show Figures

Figure 1

27 pages, 10484 KiB  
Review
Rho Family of Ras-Like GTPases in Early-Branching Animals
by Silvestar Beljan, Maja Herak Bosnar and Helena Ćetković
Cells 2020, 9(10), 2279; https://doi.org/10.3390/cells9102279 - 13 Oct 2020
Cited by 20 | Viewed by 5043
Abstract
Non-bilaterian animals consist of four phyla; Porifera, Cnidaria, Ctenophora, and Placozoa. These early-diverging animals are crucial for understanding the evolution of the entire animal lineage. The Rho family of proteins make up a major branch of the Ras superfamily of small GTPases, which [...] Read more.
Non-bilaterian animals consist of four phyla; Porifera, Cnidaria, Ctenophora, and Placozoa. These early-diverging animals are crucial for understanding the evolution of the entire animal lineage. The Rho family of proteins make up a major branch of the Ras superfamily of small GTPases, which function as key molecular switches that play important roles in converting and amplifying external signals into cellular responses. This review represents a compilation of the current knowledge on Rho-family GTPases in non-bilaterian animals, the available experimental data about their biochemical characteristics and functions, as well as original bioinformatics analysis, in order to gain a general insight into the evolutionary history of Rho-family GTPases in simple animals. Full article
(This article belongs to the Special Issue Rho family of GTPases in Model Organisms and Systems)
Show Figures

Figure 1

20 pages, 1452 KiB  
Article
Conserved Patterns in Developmental Processes and Phases, Rather than Genes, Unite the Highly Divergent Bilateria
by Luca Ferretti, Andrea Krämer-Eis and Philipp H. Schiffer
Life 2020, 10(9), 182; https://doi.org/10.3390/life10090182 - 6 Sep 2020
Cited by 3 | Viewed by 3304
Abstract
Bilateria are the predominant clade of animals on Earth. Despite having evolved a wide variety of body plans and developmental modes, they are characterized by common morphological traits. By default, researchers have tried to link clade-specific genes to these traits, thus distinguishing bilaterians [...] Read more.
Bilateria are the predominant clade of animals on Earth. Despite having evolved a wide variety of body plans and developmental modes, they are characterized by common morphological traits. By default, researchers have tried to link clade-specific genes to these traits, thus distinguishing bilaterians from non-bilaterians, by their gene content. Here we argue that it is rather biological processes that unite Bilateria and set them apart from their non-bilaterian sisters, with a less complex body morphology. To test this hypothesis, we compared proteomes of bilaterian and non-bilaterian species in an elaborate computational pipeline, aiming to search for a set of bilaterian-specific genes. Despite the limited confidence in their bilaterian specificity, we nevertheless detected Bilateria-specific functional and developmental patterns in the sub-set of genes conserved in distantly related Bilateria. Using a novel multi-species GO-enrichment method, we determined the functional repertoire of genes that are widely conserved among Bilateria. Analyzing expression profiles in three very distantly related model species—D. melanogaster, D. rerio and C. elegans—we find characteristic peaks at comparable stages of development and a delayed onset of expression in embryos. In particular, the expression of the conserved genes appears to peak at the phylotypic stage of different bilaterian phyla. In summary, our study illustrate how development connects distantly related Bilateria after millions of years of divergence, pointing to processes potentially separating them from non-bilaterians. We argue that evolutionary biologists should return from a purely gene-centric view of evolution and place more focus on analyzing and defining conserved developmental processes and periods. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

15 pages, 4690 KiB  
Article
Sponge Long Non-Coding RNAs Are Expressed in Specific Cell Types and Conserved Networks
by Federico Gaiti, William L. Hatleberg, Miloš Tanurdžić and Bernard M. Degnan
Non-Coding RNA 2018, 4(1), 6; https://doi.org/10.3390/ncrna4010006 - 7 Mar 2018
Cited by 8 | Viewed by 5756
Abstract
Although developmental regulation by long non-coding RNAs (lncRNAs) appears to be a widespread feature amongst animals, the origin and level of evolutionary conservation of this mode of regulation remain unclear. We have previously demonstrated that the sponge Amphimedon queenslandica—a morphologically-simple animal—developmentally expresses [...] Read more.
Although developmental regulation by long non-coding RNAs (lncRNAs) appears to be a widespread feature amongst animals, the origin and level of evolutionary conservation of this mode of regulation remain unclear. We have previously demonstrated that the sponge Amphimedon queenslandica—a morphologically-simple animal—developmentally expresses an array of lncRNAs in manner akin to more complex bilaterians (insects + vertebrates). Here, we first show that Amphimedon lncRNAs are expressed in specific cell types in larvae, juveniles and adults. Thus, as in bilaterians, sponge developmental regulation involves the dynamic, cell type- and context-specific regulation of specific lncRNAs. Second, by comparing gene co-expression networks between Amphimedon queenslandica and Sycon ciliatum—a distantly-related calcisponge—we identify several putative co-expression modules that appear to be shared in sponges; these network-embedded sponge lncRNAs have no discernable sequence similarity. Together, these results suggest sponge lncRNAs are developmentally regulated and operate in conserved gene regulatory networks, as appears to be the case in more complex bilaterians. Full article
(This article belongs to the Special Issue Non-Coding RNAs, from an Evolutionary Perspective)
Show Figures

Figure 1

Back to TopTop