Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = non filamentary resistive switching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3325 KiB  
Article
Interfacial Resistive Switching of Niobium–Titanium Anodic Memristors with Self-Rectifying Capabilities
by Dominik Knapic, Alexey Minenkov, Elena Atanasova, Ivana Zrinski, Achim Walter Hassel and Andrei Ionut Mardare
Nanomaterials 2024, 14(4), 381; https://doi.org/10.3390/nano14040381 - 19 Feb 2024
Cited by 1 | Viewed by 2428
Abstract
A broad compositional range of Nb-Ti anodic memristors with volatile and self-rectifying behaviour was studied using a combinatorial screening approach. A Nb-Ti thin-film combinatorial library was co-deposited by sputtering, serving as the bottom electrode for the memristive devices. The library, with a compositional [...] Read more.
A broad compositional range of Nb-Ti anodic memristors with volatile and self-rectifying behaviour was studied using a combinatorial screening approach. A Nb-Ti thin-film combinatorial library was co-deposited by sputtering, serving as the bottom electrode for the memristive devices. The library, with a compositional spread ranging between 22 and 64 at.% Ti was anodically oxidised, the mixed oxide being the active layer in MIM-type structures completed by Pt discreet top electrode patterning. By studying I–U sweeps, memristors with self-rectifying and volatile behaviour were identified. Moreover, all the analysed memristors demonstrated multilevel properties. The best-performing memristors showed HRS/LRS (high resistive state/low resistive state) ratios between 4 and 6 × 105 and very good retention up to 106 successive readings. The anodic memristors grown along the compositional spread showed very good endurance up to 106 switching cycles, excluding those grown from alloys containing between 31 and 39 at.% Ti, which withstood only 10 switching cycles. Taking into consideration all the parameters studied, the Nb-46 at.% Ti composition was screened as the parent metal alloy composition, leading to the best-performing anodic memristor in this alloy system. The results obtained suggest that memristive behaviour is based on an interfacial non-filamentary type of resistive switching, which is consistent with the performed cross-sectional TEM structural and chemical characterisation. Full article
Show Figures

Figure 1

17 pages, 3006 KiB  
Article
Resistive Memory-Switching Behavior in Solution-Processed Trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) Benzene–PVA-Composite-Based Aryl Acrylate on ITO-Coated PET
by Rachana Kamath, Parantap Sarkar, Sindhoora Kaniyala Melanthota, Rajib Biswas, Nirmal Mazumder and Shounak De
Polymers 2024, 16(2), 218; https://doi.org/10.3390/polym16020218 - 12 Jan 2024
Cited by 1 | Viewed by 1677
Abstract
Resistive switching memories are among the emerging next-generation technologies that are possible candidates for in-memory and neuromorphic computing. In this report, resistive memory-switching behavior in solution-processed trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) benzene–PVA-composite-based aryl acrylate on an ITO-coated PET device was studied. A sandwich configuration was selected, [...] Read more.
Resistive switching memories are among the emerging next-generation technologies that are possible candidates for in-memory and neuromorphic computing. In this report, resistive memory-switching behavior in solution-processed trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) benzene–PVA-composite-based aryl acrylate on an ITO-coated PET device was studied. A sandwich configuration was selected, with silver (Ag) serving as a top contact and trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) benzene–PVA-composite-based aryl acrylate and ITO-PET serving as a bottom contact. The current–voltage (I–V) characteristics showed hysteresis behavior and non-zero crossing owing to voltages sweeping from positive to negative and vice versa. The results showed non-zero crossing in the devices’ current–voltage (I–V) characteristics due to the nanobattery effect or resistance, capacitive, and inductive effects. The device also displayed a negative differential resistance (NDR) effect. Non-volatile storage was feasible with non-zero crossing due to the exhibition of resistive switching behavior. The sweeping range was −10 V to +10 V. These devices had two distinct states: ‘ON’ and ‘OFF’. The ON/OFF ratios of the devices were 14 and 100 under stable operating conditions. The open-circuit voltages (Voc) and short-circuit currents (Isc) corresponding to memristor operation were explained. The DC endurance was stable. Ohmic conduction and direct tunneling mechanisms with traps explained the charge transport model governing the resistive switching behavior. This work gives insight into data storage in terms of a new conception of electronic devices based on facile and low-temperature processed material composites for emerging computational devices. Full article
(This article belongs to the Special Issue Polymer Composite Materials for Energy Storage)
Show Figures

Figure 1

9 pages, 2744 KiB  
Article
Non-Volatile Memory and Synaptic Characteristics of TiN/CeOx/Pt RRAM Devices
by Hoesung Ha, Juyeong Pyo, Yunseok Lee and Sungjun Kim
Materials 2022, 15(24), 9087; https://doi.org/10.3390/ma15249087 - 19 Dec 2022
Cited by 15 | Viewed by 2794
Abstract
In this study, we investigate the synaptic characteristics and the non-volatile memory characteristics of TiN/CeOx/Pt RRAM devices for a neuromorphic system. The thickness and chemical properties of the CeOx are confirmed through TEM, EDS, and XPS analysis. A lot of [...] Read more.
In this study, we investigate the synaptic characteristics and the non-volatile memory characteristics of TiN/CeOx/Pt RRAM devices for a neuromorphic system. The thickness and chemical properties of the CeOx are confirmed through TEM, EDS, and XPS analysis. A lot of oxygen vacancies (ions) in CeOx film enhance resistive switching. The stable bipolar resistive switching characteristics, endurance cycling (>100 cycles), and non-volatile properties in the retention test (>10,000 s) are assessed through DC sweep. The filamentary switching model and Schottky emission-based conduction model are presented for TiN/CeOx/Pt RRAM devices in the LRS and HRS. The compliance current (1~5 mA) and reset stop voltage (−1.3~−2.2 V) are used in the set and reset processes, respectively, to implement multi-level cell (MLC) in DC sweep mode. Based on neural activity, a neuromorphic system is performed by electrical stimulation. Accordingly, the pulse responses achieve longer endurance cycling (>10,000 cycles), MLC (potentiation and depression), spike-timing dependent plasticity (STDP), and excitatory postsynaptic current (EPSC) to mimic synapse using TiN/CeOx/Pt RRAM devices. Full article
(This article belongs to the Special Issue Memristive Materials and Devices)
Show Figures

Figure 1

11 pages, 2356 KiB  
Article
Control of the Boundary between the Gradual and Abrupt Modulation of Resistance in the Schottky Barrier Tunneling-Modulated Amorphous Indium-Gallium-Zinc-Oxide Memristors for Neuromorphic Computing
by Jun Tae Jang, Geumho Ahn, Sung-Jin Choi, Dong Myong Kim and Dae Hwan Kim
Electronics 2019, 8(10), 1087; https://doi.org/10.3390/electronics8101087 - 25 Sep 2019
Cited by 21 | Viewed by 4978
Abstract
The transport and synaptic characteristics of the two-terminal Au/Ti/ amorphous Indium-Gallium-Zinc-Oxide (a-IGZO)/thin SiO2/p+-Si memristors based on the modulation of the Schottky barrier (SB) between the resistive switching (RS) oxide layer and the metal electrodes are investigated by modulating the [...] Read more.
The transport and synaptic characteristics of the two-terminal Au/Ti/ amorphous Indium-Gallium-Zinc-Oxide (a-IGZO)/thin SiO2/p+-Si memristors based on the modulation of the Schottky barrier (SB) between the resistive switching (RS) oxide layer and the metal electrodes are investigated by modulating the oxygen content in the a-IGZO film with the emphasis on the mechanism that determines the boundary of the abrupt/gradual RS. It is found that a bimodal distribution of the effective SB height (ΦB) results from further reducing the top electrode voltage (VTE)-dependent Fermi-level (EF) followed by the generation of ionized oxygen vacancies (VO2+s). Based on the proposed model, the influences of the readout voltage, the oxygen content, the number of consecutive VTE sweeps on ΦB, and the memristor current are explained. In particular, the process of VO2+ generation followed by the ΦB lowering is gradual because increasing the VTE-dependent EF lowering followed by the VO2+ generation is self-limited by increasing the electron concentration-dependent EF heightening. Furthermore, we propose three operation regimes: the readout, the potentiation in gradual RS, and the abrupt RS. Our results prove that the Au/Ti/a-IGZO/SiO2/p+-Si memristors are promising for the monolithic integration of neuromorphic computing systems because the boundary between the gradual and abrupt RS can be controlled by modulating the SiO2 thickness and IGZO work function. Full article
(This article belongs to the Special Issue Semiconductor Memory Devices for Hardware-Driven Neuromorphic Systems)
Show Figures

Figure 1

14 pages, 4088 KiB  
Article
Bipolar Analog Memristors as Artificial Synapses for Neuromorphic Computing
by Rui Wang, Tuo Shi, Xumeng Zhang, Wei Wang, Jinsong Wei, Jian Lu, Xiaolong Zhao, Zuheng Wu, Rongrong Cao, Shibing Long, Qi Liu and Ming Liu
Materials 2018, 11(11), 2102; https://doi.org/10.3390/ma11112102 - 26 Oct 2018
Cited by 66 | Viewed by 8193
Abstract
Synaptic devices with bipolar analog resistive switching behavior are the building blocks for memristor-based neuromorphic computing. In this work, a fully complementary metal-oxide semiconductor (CMOS)-compatible, forming-free, and non-filamentary memristive device (Pd/Al2O3/TaOx/Ta) with bipolar analog switching behavior is [...] Read more.
Synaptic devices with bipolar analog resistive switching behavior are the building blocks for memristor-based neuromorphic computing. In this work, a fully complementary metal-oxide semiconductor (CMOS)-compatible, forming-free, and non-filamentary memristive device (Pd/Al2O3/TaOx/Ta) with bipolar analog switching behavior is reported as an artificial synapse for neuromorphic computing. Synaptic functions, including long-term potentiation/depression, paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP), are implemented based on this device; the switching energy is around 50 pJ per spike. Furthermore, for applications in artificial neural networks (ANN), determined target conductance states with little deviation (<1%) can be obtained with random initial states. However, the device shows non-linear conductance change characteristics, and a nearly linear conductance change behavior is obtained by optimizing the training scheme. Based on these results, the device is a promising emulator for biology synapses, which could be of great benefit to memristor-based neuromorphic computing. Full article
Show Figures

Figure 1

Back to TopTop