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Abstract: Synaptic devices with bipolar analog resistive switching behavior are the building blocks
for memristor-based neuromorphic computing. In this work, a fully complementary metal-oxide
semiconductor (CMOS)-compatible, forming-free, and non-filamentary memristive device
(Pd/Al2O3/TaOx/Ta) with bipolar analog switching behavior is reported as an artificial synapse
for neuromorphic computing. Synaptic functions, including long-term potentiation/depression,
paired-pulse facilitation (PPF), and spike-timing-dependent plasticity (STDP), are implemented based
on this device; the switching energy is around 50 pJ per spike. Furthermore, for applications in
artificial neural networks (ANN), determined target conductance states with little deviation (<1%)
can be obtained with random initial states. However, the device shows non-linear conductance
change characteristics, and a nearly linear conductance change behavior is obtained by optimizing
the training scheme. Based on these results, the device is a promising emulator for biology synapses,
which could be of great benefit to memristor-based neuromorphic computing.
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1. Introduction

Over the last decades, rapid advances in digital computing system based on complementary
metal-oxide semiconductor (CMOS) integrated circuit technology have substantially changed society.
However, due to the limitations of classical von-Neumann computers (the von-Neumann bottleneck)
in speed, power efficiency, and parallel processing, there are urgent demands for novel computing
structures and systems [1]. The human brain is likely to be the most efficient computing system,
because the operating frequency of our brain is in the range of 1–10 Hz, and it consumes only around
1–10 W of power, which means the energy consumption per synaptic event is only approximately
1–100 fJ [2]. Therefore, the novel computing system—neuromorphic computing, inspired by the
brain—has attracted scientists’ attention in recent years for its advantages, such as being massively
parallel and fault-tolerant. The weight modulation ability of synapses is known as synaptic plasticity,
which is believed to be the primary reason for learning and memory in the brain. In order to implement
neuromorphic computing, such as artificial neural networks (ANN), an electronic synaptic device
is necessary.
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Recently, the implementation of artificial synapses with memristors has been proposed. Memristors
are two compact terminal devices that change their resistances when subjected to electrical stimulation [3–6].
Several memristors, ranging from resistive random access memory (RRAM) [7–11], to phase change
memory (PCM) [12], to ferroelectric RAM [13–15], have been proposed for neuromorphic computing
applications as artificial synapses. Several memristors based on new materials [16,17] have been
proposed for neuromorphic computing. However, when memristors are employed in neuromorphic
computing systems (e.g., artificial neuron networks), binary memristors with only two resistance
states (i.e., high resistance state (HRS) and low resistance state (LRS)) have been proven to be effective
only in some specific applications [18,19]. In some neuromorphic computing systems designed for
complex applications, such as image recognition, the use of only two states as synaptic weights presents
disadvantages in performances [20,21]—for example, low accuracy or area-efficiency. On the other
hand, in biology neuromorphic systems, synaptic weights are continuously tunable in depression
and potentiation; thus, memristors with gradually changing conductance in bipolarity could be more
like the biology synapse, and can therefore emulate brain functions better than binary memristors.
As artificial synapses, memristors with tunable conductance have attracted growing attention for being
promising candidates for weight storage in neuromorphic computing systems, owing to the advantages
in accuracy and area-efficiency. Several methods have been discussed to implement analog-resistive
switching behavior, including using multiple memristors to construct one synapse [22], utilizing a
unipolar analog behavior in some metal oxide-based filamentary memristors [11,23,24], optimizing
programming schemes [25,26], adding heat enhancement layers [27], or using non-filamentary
memristors [28–30]. Compared with the filamentary memristors, non-filamentary memristors can
implement multilevel states more easily, but usually have poorer retention [31–33] However, realizing
bipolar analog conductance change in both SET (transition from HRS to LRS) and RESET (transition
from LRS to HRS) processes with satisfying retention time remains an open challenge.

In this paper, a fully CMOS-compatible, forming-free, and non-filamentary memristor device
based on Ta/TaOx/Al2O3/Pd, with analog SET and RESET processes, is proposed for neuromorphic
computing as an artificial synapse. The direct current (DC) sweeping results demonstrate that
the device has bipolar analog resistance switching behavior, and the multilevel conductance
states can be obtained with satisfying retention time. Synaptic plasticity, including long-term
potentiation/depression (LTP/LTD), paired-pulse facilitation (PPF), and spiking-time-dependent
plasticity (STDP), can be mimicked by our devices. For the applications in ANN, determined target
conductance states and the linearity of conductance change are carefully examined.

2. Materials and Methods

The metal–insulator (double functional layer)–metal structure and the cross-sectional transmission
electron microscopy (TEM) image of the Ta/TaOx/Al2O3/Pd device are shown in Figure 1a,b,
respectively. The fabrication process of the device is shown in Figure 1c. First, the Si substrate
was cleaned with acetone, ethanol, and de-ionized water. 30 nm-thick Pd and 15 nm-thick Ta as the
bottom electrode were deposited on the Si substrate by magnetron sputtering. A TaOx layer was
formed by rapid thermal annealing (RTA) carried out for 300 s in plasma O2 by plasma-enhanced
chemical vapor deposition (PECVD) at 275 ◦C. Direct oxygen plasma with a power of 100 W was
applied on the Ta film. After RTA, 7 nm-thick Al2O3 was deposited by atom layer deposition (ALD).
Finally, 40 nm Pd as the top electrode was deposited by magnetron sputtering after the lithography
process. For our device, the highest temperature of the process is only 275 ◦C (below 400 ◦C), and all
the materials (Pd, Ta, Al) were CMOS compatible. As a result, our device was fully CMOS compatible.
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Figure 1. (a) The schematic, (b) a cross sectional transmission electron microscopy (TEM) image of the 
Ta/TaOx/Al2O3/Pd device, (c) the fabrication processes of the Ta/TaOx/Al2O3/Pd device, and (d) typical 
I–V curves of the Ta/TaOx/Al2O3/Pd showing bipolar analog switching (SET voltage = 6 V, RESET 
voltage = −6 V). 

The DC electrical characteristics of the device were measured by an Agilent B1500A 
semiconductor parameter analyzer (Santa Rosa, CA, US). During the electrical measurement, the 
voltage was applied to the top Pd electrode, while the Ta/Pd bottom electrode was tied to ground.  
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of current in both SET and RESET switching processes is observed, indicating a bipolar analog 
resistive switching feature. Within 6 V and −6 V stop voltages on SET and RESET processes, a ~103 
ratio between HRS and LRS can be obtained (read voltage is 1 V), which is larger than our recent 
work of similar TaOx/Al2O3 stack device (~102 ratio, Ti/AlOx/TaOx/Pt) [34]. 

To further demonstrate the analog characteristics, the DC sweep with different working voltages 
and without compliance currents (SET voltage: 2.5 V, 3 V to 5.5 V; and RESET voltage: −2 V, −2.5 to 
−6 V) and the DC sweep with different compliance currents during SET process are shown in Figure 
2. The initial resistance of the device is ~1011 Ω (read at 1 V). When the positive sweeping voltage is 
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resistance gradually decreases. During the consecutive SET process, as shown in an inset of Figure 
2b, the responding currents (read at 1 V) can gradually increase with the increment of the stop 
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resistance state after each step. Moreover, the multilevel resistance states can be preserved within 
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Figure 1. (a) The schematic, (b) a cross sectional transmission electron microscopy (TEM) image of
the Ta/TaOx/Al2O3/Pd device, (c) the fabrication processes of the Ta/TaOx/Al2O3/Pd device, and
(d) typical I–V curves of the Ta/TaOx/Al2O3/Pd showing bipolar analog switching (SET voltage = 6 V,
RESET voltage = −6 V).

The DC electrical characteristics of the device were measured by an Agilent B1500A semiconductor
parameter analyzer (Santa Rosa, CA, US). During the electrical measurement, the voltage was applied
to the top Pd electrode, while the Ta/Pd bottom electrode was tied to ground.

3. Results and Discussions

The resistive switching characteristics of the device were evaluated under DC programming
conditions. The typical current–voltage (I–V) characteristic of the Ta/TaOx/Al2O3/Pd device under
DC sweep mode from −6 V to 6 V is shown in Figure 1d. The device is forming-free, and no abrupt
change of current in both SET and RESET switching processes is observed, indicating a bipolar analog
resistive switching feature. Within 6 V and −6 V stop voltages on SET and RESET processes, a ~103

ratio between HRS and LRS can be obtained (read voltage is 1 V), which is larger than our recent work
of similar TaOx/Al2O3 stack device (~102 ratio, Ti/AlOx/TaOx/Pt) [34].

To further demonstrate the analog characteristics, the DC sweep with different working voltages
and without compliance currents (SET voltage: 2.5 V, 3 V to 5.5 V; and RESET voltage: −2 V, −2.5
to −6 V) and the DC sweep with different compliance currents during SET process are shown in
Figure 2. The initial resistance of the device is ~1011 Ω (read at 1 V). When the positive sweeping
voltage is applied to the device, the resistance of the device is retained until the voltage reaches
2.5 V, then the resistance gradually decreases. During the consecutive SET process, as shown in an
inset of Figure 2b, the responding currents (read at 1 V) can gradually increase with the increment
of the stop voltages, indicating that different conductance states can be obtained in the SET process.
Various conductance states can also be obtained by setting different compliance currents during the
SET process. With compliance currents from 500 nA to 2.2 mA, the corresponding I–V curves and the
60 different resulting conductance states are shown in Figure 2c and the inset, respectively. The RESET
process can be implemented by applying a negative DC sweeping voltage to the device. As shown
in Figure 2a, eight consecutive negative DC sweeps with various stop voltages are applied to the
device. As the voltages decrease from −2 to −6 V with a −0.5 V step, the device is switched to a
higher resistance state after each step. Moreover, the multilevel resistance states can be preserved
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within satisfying retention time, as shown in Figure 2d. The multilevel resistance states are obtained by
consecutive positive voltage sweepings (2 to 6 V with a 0.25 V step). After each sweeping, the device
resistance states are monitored by a series of 1 V reading pulses at 0.5 s intervals. As it is shown in
Figure 2d, though with slightly decay, nine different states can be clearly distinguished after 1000 s.
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Figure 2. Bipolar analog-resistive switching characteristics of the Ta/TaOx/Al2O3/Pd device under
the DC sweeping mode: (a) consecutive DC sweeping with different stop voltages from −2 to
−6 V in the RESET process; (b) consecutive DC sweeping with different stop voltages from 2.5
to 5.5 V in the SET process; (c) consecutive DC sweeping with different compliance currents from
500 nA to 2.2 mA in the SET process (inset: 60 different conductance states obtained by modulating
different compliance currents); and (d) retention characteristics of nine different resistance states of the
Ta/TaOx/Al2O3/Pd device.

The characteristics of the bipolar analog-resistive switching in pulse mode are investigated via
positive (0 to 4.5 V) and negative (0 to −5 V) triangle pulses, as shown in Figure 3a,b, respectively.
The curves of current and voltage versus time for the SET and RESET processes are shown in the insets
of Figure 3a,b, respectively. These results further confirm the analog resistive switching characteristics
under both positive and negative pulses. The results reveal that in both the SET and RESET processes,
gradual tuning of the multilevel conductance states can be obtained. Bipolar analog resistive switching
characteristics are fully analogous to the biology synapse; thus, the devices have the potential to mimic
synaptic functions in neuromorphic computing system.
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width and different amplitudes (potentiation: from 4.5 to 5.5 V; depression: from −4.5 to −5.5 V). With 
a higher amplitude or larger width, the change of the conductance is increased in both potentiation 
and depression. For our device, when the pulse amplitude (write voltage) is ~±4.5 V and the pulse 
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Figure 3. (a) Gradual SET under positive triangle pulses (from 0 to 4.5 V) (inset: the I-t and V-t curves
of (a), representing the gradual increasing of current with time); (b) gradual RESET under negative
triangle pulses (from 0 to −5 V) (inset: the I-t and V-t curves of (b), representing the gradual decreasing
of current with time).

Long-term potentiation/depression (LTP/LTD) is when the synaptic weight can be changed
gradually under spiking signals and the changed weight can be maintained from several minutes
to years [35]. To evaluate the long-term potentiation/depression of a device, 50 consecutive pulses
with different pulse amplitudes and widths are applied to the device, as shown in Figure 4. All the
conductance of the device is monitored by 1 V reading voltage. The change of conductance can be
modulated by different amplitudes and widths. As shown in Figure 4a,b, the amplitude here was
fixed at 5.5 V during potentiation and −5.5 V during depression, with different widths (1 µs, 10 µs,
and 100 µs). In addition, Figure 4c,d show the potentiation and depression with a fixed 100 µs width
and different amplitudes (potentiation: from 4.5 to 5.5 V; depression: from −4.5 to −5.5 V). With a
higher amplitude or larger width, the change of the conductance is increased in both potentiation and
depression. For our device, when the pulse amplitude (write voltage) is ~±4.5 V and the pulse width
is 1 µs, the write current is around ~10−5 A; thus, the switching energy is 50 pJ per spike. To conclude,
the device conductance is continuously increased by positive pulses, which can mimic long-term
potentiation. In addition, the device conductance is continuously decreased by negative pulses, which
can mimic long-term depression.
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Figure 4. The measured long-term potentiation and long-term depression synaptic function with
identical pulses. A total of 50 pulses with 5.5 V pulse amplitude and different pulse widths for
(a) potentiation (1 µs, 10 µs, and 100 µs); (b) depression (1 µs, 10 µs, and 100 µs); 50 pulses with 100 µs
pulse width and a different pulse amplitude (c) for potentiation (4.5 V, 5 V, and 5.5 V) and (d) for
depression (−4.5 V, −5 V, and −5.5 V).

Moreover, the device can emulate other synaptic features, such as paired-pulse facilitation (PPF)
and spiking-time-dependent plasticity (STDP), as shown in Figure 5. Most research on artificial
synapses focuses on the long-term plasticity, because long-term changes provide a physiological
substrate for learning and memory. However, short-term plasticity is also significant, since it supports
a variety of computations, such as synaptic filtering, adaptation, and enhancement of transients,
decorrelation, burst detection, and sound localization [36]. PPF is an important kind of short-term
plasticity. In biological synapses, PPF functions can be described as follows: the second post-synaptic
response current becomes larger than the first under two successive spike stimuli, with the interval
time of spikes less than recovery time [8]. The experimental demonstration of PPF functions in our
device is shown in Figure 5a. When a pair of pulses is applied to the device, the conductance gradually
increases during the positive pulses, and the maximum responding current of the second pulse is
clearly larger than the first, and a decay phenomenon can be observed during the pulse interval, which
is similar to the PPF in the biological system.
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Figure 5. (a) The short-term plasticity: paired-pulse facilitation (PPF) synaptic function of the
Ta/TaOx/Al2O3/Pd device; (b) illustration of spike signals and spiking-time-dependent plasticity
(STDP) function of the device. The individual pre-synaptic or post-synaptic spike signal is designed
as a pair of pulses (−2.5 V, 10 µs pulse and 2.5 V triangle pulse) applied to the top and bottom
electrode, respectively.

In biological systems, synaptic weight can be modulated by the temporal relationship of the
activity between the pre- and post-synaptic neurons, which is called spiking-time-dependent plasticity
(STDP). According to STDP, the change of synaptic weight (∆W) is a function of the time difference
between pre- and post-synaptic activity (∆t). To emulate the STDP function in the device, a pair of
pulses acting as the spiking signals with different time intervals is applied to the device. Individual
pre-synaptic or post-synaptic spiking signals are designed as a pair of pulses (−2.5 V, 10 µs pulse and
a 2.5 V triangle pulse) applied to the top and bottom electrode, respectively, as shown in Figure 5b.
It should be noted that an individual positive signal or an individual negative signal is not strong
enough to modulate the resistance of the device. As shown in Figure 5b, the effective signal to the
device is the pre-synaptic signal minus the post-synaptic signal. When the pre-spike appears before the
post-spike (∆t > 0), the conductance (synaptic weight) of the device is enhanced (potentiation), and the
change in weight decreases with the increase of ∆t. On the contrary, when the pre-spike appears after
the post-spike, the conductance of the device depresses and the change of the weight decreases with
the increase of ∆t. The measurement result shows that the Ta/TaOx/Al2O3/Pd device can emulate the
STDP learning rules successfully, which has potential to be used in the spiking neuron network (SNN).
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To fully explore bipolar conductance tuning characteristics and demonstrate the potential
application of the device in some specific neuromorphic computing systems like ANN, determined
target conductance states with different initial states have been tested. As shown in Figure 6a, the initial
state is 2.41 nS, after two tuning processes: 5.7 V positive pulses with 10 µs width for rough-tuning, and
−5 V negative pulses with 10 µs width for fine-tuning. The target conductance state of 5.5 nS can be
obtained with little deviation (<1%). The same target conductance state can also be obtained when the
initial conductance state is 13.5 nS, by −5.7 V negative pulses with 10 µs width for rough-tuning and
5 V positive pulses with 10 µs width for fine-tuning, as shown in Figure 6b. As shown in Figure 6c,d,
another target conductance state (10 nS), can be obtained with little deviation. It is worth noting that
the target conductance states are determined randomly. Based on this result, it can be proven that
precision is achieved across a wide dynamic range. Writing error is a standard plot when characterizing
resistive switching write noise. The write error of the device has been tested, as shown in Figure 7.
A DC sweeping with 100 µA compliance current is used to get nearly the same initial states. Only one
programming pulse (4.5 V/10 µs for potentiation and −4.5 V/10 µs for depression) is applied after
each DC sweeping. The conductance states (total 10 cycles) are obtained by 1 V reading voltage.
As shown in Figure 7b,d the standard deviation is 0.079 nS after one potentiation pulse, and 0.11 nS
after one depression pulse, respectively. The dynamic range is around 20 nS under 4.5 V/10 µs training
pulses. As a result, the write error is only around 0.6% of the total dynamic range.
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Figure 6. The bipolar conductance tuning to randomly determined target states (5.5 nS ± 1% and 10 nS
± 1%) under pulses with different initial states: (a) the initial state is 2.41 nS, and the target conductance
state is obtained by 5.7 V positive pulses for rough-tuning and −5 V negative pulses for fine-tuning;
(b) the initial state is 13.5 nS, and the target conductance state is obtained by −5.7 V negative pulses for
rough-tuning and 5 V positive pulses for fine-tuning; (c) the initial state is 2.2 nS, and the target state
is obtained only by rough-tuning; and (d) the initial state is 23 nS, and the target state is obtained by
rough-tuning and fine-tuning methods.
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(b) Conductance distribution from (a), where the standard deviation is 0.079 nS. (c) The conductance
states after one −5 V/10 µs P pulse from nearly the same initial states. (d) Conductance distribution
from (c), where the standard deviation is 0.11 nS.

The recognition accuracy of the ANN highly depended on the linearity of the synaptic weight
change—i.e., the recognition accuracy is low under high non-linearity [37,38]. However, as shown in
Figure 4, the device is highly non-linear. To improve the linearity of the conductance change of the
device, a non-identical pulse scheme is adopted, as shown in Figure 8. The training pulses are fixed at
width but with increasing amplitudes. The amplitude range of the potentiation process is from 2 to
6 V with 0.1 V steps, and the range of the depression process is from −2 to −6 V with −0.1 V steps.
The weight updates are recorded in four training cycles, as shown in Figure 8. The non-linearity factor
(NL) has been calculated by NL = average ( G−Glinear

Glinear
) [39], so the non-linearity factors of the normal

training method are 1.09, 1.427, and 1.332 respectively, based on the data in Figure 4a. In addition, the
non-linearity factors of the incremental training method are −0.62 for long-term potentiation and 0.13
for long-term depression, based on the data in Figure 8a.
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The investigation of the switching mechanism of the device is shown in Figure 9. The conductance
of the filamentary memristors mostly depends on the size and morphology of the conductive filament
with several nanometers diameter in the device. Thus, the conductance of filamentary memristor
does not significantly change with the change of the electrode areas. The I–V curves of the 1st SET
process and conductance distribution of 25 different devices at LRS with various electrode areas (from
10 to 100 µm2) are shown in Figure 9a,b, respectively. In Figure 9a, the current level after SET shows a
positively proportional relationship with the electrode area. In statistical analysis of 25 devices at LRS
in Figure 9b, such a trend can be more clearly seen in the plotting of the conductance with the electrode
area. As shown in inset of Figure 9b, the linear fit result confirms that the device conductance scales
linearly with the device area. As a result, the switching occurs across the entire electrode area, but not
just within a local filament, suggesting a non-filamentary switching mechanism of Ta/TaOx/Al2O3/Pd
device. The temperature dependencies of the device conductance at LRS and HRS are studied in
Figure 9c,d, respectively. With the increase of temperature, the conductance at both LRS and HRS
increases as well, indicating the semiconductor conduction behavior of the device. To explain the
switching mechanism of the device, we proposed a simple model [40], shown in Figure 9e. The device
can be divided into three parts: a barrier layer (Al2O3), a switching area (interface of Al2O3 and
TaOx), and a conductive oxidation layer (TaOx). The switching area is located at the interface of Al2O3

and TaOx. During SET operation, a positive voltage is applied on the top electrode, the oxygen ions
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in the barrier layer are pulled away from the interface layer, and the materials in the interface are
reduced. During RESET operation, a negative voltage is applied on the top electrode, the oxygen ions
in the barrier layer are pushed into the interface layer, and the materials in the interface are oxidized.
The push-and-pull of the oxygen ions in the surface can change the resistance of the device.

To implement neuromorphic computing, the device should be integrated into an array. To operate
an array, a half-bias scheme is a common method. However, our device has a low ON/OFF ratio (<100)
between the selected voltage and the half-selected voltage, which may cause a sneak path issue during
write operation. As a result, it is hard for our device to implement a dense crossbar array without
the help of a transistor or selector device. A one transistor one resistor (1T1R) or one selector one
resistor (1S1R) structure should be adopted to overcome the sneak path issue during writing operation.
The device structure can still be optimized to improve the linearity of the conductance changes and
decrease the working voltage. In addition, the detailed non-filamentary switching mechanism in this
device needs to be further explored.
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Figure 9. (a) The I–V curves of the first SET process with different electrode area sizes (from 10 µm
× 10 µm to 100 µm × 100 µm). (b) Conductance distribution at LRS with different sized areas (the
conductance states are obtained by 1 V reading voltage in 25 different devices) (inset: the linear fit
result confirms that the device conductance scales linearly with device areas). (c) Conductance of LRS
with different temperatures from 20 to 100 ◦C; (d) Conductance of HRS with different temperatures
from 20 to 100 ◦C. (e) The schematic of the switching mechanism of the device; the switching area is
the interface of TaOx-Al2O3, and the push-and-pull of the oxygen ions in the surface can change the
resistance of the interface layer.
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4. Conclusions

In this paper, a Ta/TaOx/Al2O3/Pd memristor is fabricated, to be used as artificial synapse.
The device shows bipolar analog-resistive switching behavior. Moreover, multilevel conductance
states with a satisfying retention time (>1000 s) can be obtained by modulating voltages or compliance
currents under DC sweeping mode. Based on the bipolar analog switching, synaptic functions,
including long-term potentiation/depression, paired-pulse facilitation, and spiking time dependent
plasticity are successfully mimicked. For ANN applications, the determined target conductance, the
linearity, and the writing errors are carefully examined. The results suggest that as an artificial synapse,
the Ta/TaOx/Al2O3/Pd memristor is a promising candidate for neuromorphic computing.
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