Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (389)

Search Parameters:
Keywords = nitrogen-cycling genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2320 KiB  
Article
Differentiated Microbial Strategies in Carbon Metabolic Processes Responding to Salt Stress in Cold–Arid Wetlands
by Yongman Wang, Mingqi Wang, Tiezheng Wu, Jialin Zhao, Junyi Li, Hongliang Xie, Lixin Wang and Linhui Wu
Land 2025, 14(8), 1607; https://doi.org/10.3390/land14081607 - 7 Aug 2025
Abstract
With the rising concerns about climate change and continuous increase in the salinity of soil, it is essential to understand the C-cycling functioning of saline soil to better predict the ecological functions and health of soil. Microbes play critical roles in C-cycling. However, [...] Read more.
With the rising concerns about climate change and continuous increase in the salinity of soil, it is essential to understand the C-cycling functioning of saline soil to better predict the ecological functions and health of soil. Microbes play critical roles in C-cycling. However, limited research has been conducted to understand the impact of soil salinity on the microbial functional genes involved in C-cycling. In this study, effects of varying soil salinity levels in wetlands on the C-cycling functions and diversity of soil microbes were investigated by metagenomic sequencing. The results showed a higher relative abundance of genes related to decomposition of easily degradable organic C at low salinity. On the other hand, higher abundance of genes participating in the decomposition of recalcitrant organic C were observed at high salinity. These findings indicate distinct metabolic bias of soil microbes based on the salinity levels. Proteobacteria and Actinobacteria were dominant in soils with low to medium salinity levels, while Bacteroidetes phyla was prominent in highly saline soils. Furthermore, partial least squares path modeling (PLS-PM) identified electrical conductivity, total nitrogen, and total phosphorus as key regulators of C-cycling gene expression. Overall, the present study highlights the intricate connections between salinity, microbial attributes, and carbon metabolism in soil, suggesting that the soil microbes adapt to saline stress through divergent eco-adaptations. The findings of this study highlight the significance of exploring these microbial interactions for effective management and conservation of saline wetlands. Full article
Show Figures

Figure 1

21 pages, 4939 KiB  
Article
Nitrogen-Fixing Bacterium GXGL-4A Promotes the Growth of Cucumber Plant Under Nitrogen Stress by Altering the Rhizosphere Microbial Structure
by Ying-Ying Han, Yu-Qing Bao, Er-Xing Wang, Ya-Ting Zhang, Bao-Lin Liu and Yun-Peng Chen
Microorganisms 2025, 13(8), 1824; https://doi.org/10.3390/microorganisms13081824 - 5 Aug 2025
Viewed by 97
Abstract
The rhizosphere microbiome plays an important role in carbon- and nitrogen-cycling in soil and in the stress response of plants. It also affects the function of the ammonium transporter (AmtB) that senses nitrogen levels inside and outside the cells of the associative nitrogen-fixing [...] Read more.
The rhizosphere microbiome plays an important role in carbon- and nitrogen-cycling in soil and in the stress response of plants. It also affects the function of the ammonium transporter (AmtB) that senses nitrogen levels inside and outside the cells of the associative nitrogen-fixing bacterium GXGL-4A. However, the potential mechanism of the interaction between the AmtB deletion mutant of GXGL-4A (∆amtB) and microorganisms in the rhizosphere of plants under low-nitrogen stress is still unclear. As revealed by transcriptome analyses, mutation of the amtB gene in GXGL-4A resulted in a significant up-regulation of many functional genes associated with nitrogen fixation and transportation at transcription level. The application of ∆amtB changed the nitrogen level in the rhizosphere of cucumber seedlings and reshaped the microbial community structure in the rhizosphere, enriching the relative abundance of Actinobacteriota and Gemmatimonadota. Based on bacterial functional prediction analyses, the metabolic capacities of rhizobacteria were improved after inoculation of cucumber seedlings with the original strain GXGL-4A or the ∆amtB mutant, resulting in the enhancement of amino acids, lipids, and carbohydrates in the cucumber rhizosphere, which promoted the growth of cucumber plants under a low-nitrogen stress condition. The results contribute to understanding the biological function of gene amtB, revealing the regulatory role of the strain GXGL-4A on cucumber rhizosphere nitrogen metabolism and laying a theoretical foundation for the development of efficient nitrogen-fixing bacterial agents for sustainable agricultural production. Full article
Show Figures

Figure 1

27 pages, 4228 KiB  
Article
Whole-Genome Analysis of Halomonas sp. H5 Revealed Multiple Functional Genes Relevant to Tomato Growth Promotion, Plant Salt Tolerance, and Rhizosphere Soil Microecology Regulation
by Yan Li, Meiying Gu, Wanli Xu, Jing Zhu, Min Chu, Qiyong Tang, Yuanyang Yi, Lijuan Zhang, Pan Li, Yunshu Zhang, Osman Ghenijan, Zhidong Zhang and Ning Li
Microorganisms 2025, 13(8), 1781; https://doi.org/10.3390/microorganisms13081781 - 30 Jul 2025
Viewed by 265
Abstract
Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology [...] Read more.
Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology of crops. The strain H5 isolated from saline-alkali soil in Bachu of Xinjiang was studied through whole-genome analysis, functional annotation, and plant growth-promoting, salt-tolerant trait gene analysis. Phylogenetic tree analysis and 16S rDNA sequencing confirmed its classification within the genus Halomonas. Functional annotation revealed that the H5 genome harbored multiple functional gene clusters associated with plant growth promotion and salt tolerance, which were critically involved in key biological processes such as bacterial survival, nutrient acquisition, environmental adaptation, and plant growth promotion. The pot experiment under moderate salt stress demonstrated that seed inoculation with Halomonas sp. H5 not only significantly improved the agronomic traits of tomato seedlings, but also increased plant antioxidant enzyme activities under salt stress. Additionally, soil analysis revealed H5 treatment significantly decreased the total salt (9.33%) and electrical conductivity (8.09%), while significantly improving organic matter content (11.19%) and total nitrogen content (10.81%), respectively (p < 0.05). Inoculation of strain H5 induced taxonomic and functional shifts in the rhizosphere microbial community, increasing the relative abundance of microorganisms associated with plant growth-promoting and carbon and nitrogen cycles, and reduced the relative abundance of the genera Alternaria (15.14%) and Fusarium (9.76%), which are closely related to tomato diseases (p < 0.05). Overall, this strain exhibits significant potential in alleviating abiotic stress, enhancing growth, improving disease resistance, and optimizing soil microecological conditions in tomato plants. These results provide a valuable microbial resource for saline soil remediation and utilization. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

20 pages, 2342 KiB  
Article
Metabolomic Profiling of Desiccation Response in Recalcitrant Quercus acutissima Seeds
by Haiyan Chen, Fenghou Shi, Boqiang Tong, Yizeng Lu and Yongbao Shen
Agronomy 2025, 15(7), 1738; https://doi.org/10.3390/agronomy15071738 - 18 Jul 2025
Viewed by 351
Abstract
Quercus acutissima seeds exhibit high desiccation sensitivity, posing significant challenges for long-term preservation. This study investigates the physiological and metabolic responses of soluble osmoprotectants—particularly soluble proteins and proline—during the desiccation process. Seeds were sampled at three critical moisture content levels: 38.8%, 26.8%, and [...] Read more.
Quercus acutissima seeds exhibit high desiccation sensitivity, posing significant challenges for long-term preservation. This study investigates the physiological and metabolic responses of soluble osmoprotectants—particularly soluble proteins and proline—during the desiccation process. Seeds were sampled at three critical moisture content levels: 38.8%, 26.8%, and 14.8%, corresponding to approximately 99%, 52%, and 0% germination, respectively. We measured germination ability, soluble protein content, and proline accumulation, and we performed untargeted metabolomic profiling using LC-MS. Soluble protein levels increased early but declined later during desiccation, while proline levels continuously increased for sustained osmotic adjustment. Metabolomics analysis identified a total of 2802 metabolites, with phenylpropanoids and polyketides (31.12%) and lipids and lipid-like molecules (29.05%) being the most abundant. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that differentially expressed metabolites were mainly enriched in key pathways such as amino acid metabolism, energy metabolism, and nitrogen metabolism. Notably, most amino acids decreased in content, except for proline, which showed an increasing trend. Tricarboxylic acid cycle intermediates, especially citric acid and isocitric acid, showed significantly decreased levels, indicating energy metabolism imbalance due to uncoordinated consumption without effective replenishment. The reductions in key amino acids such as glutamic acid and aspartic acid further reflected metabolic network disruption. In summary, Q. acutissima seeds fail to establish an effective desiccation tolerance mechanism. The loss of soluble protein-based protection, limited capacity for proline-mediated osmotic regulation, and widespread metabolic disruption collectively lead to irreversible cellular damage. These findings highlight the inherent metabolic vulnerabilities of recalcitrant seeds and suggest potential preservation strategies, such as supplementing critical metabolites (e.g., TCA intermediates) during storage to delay metabolic collapse and mitigate desiccation-induced damage. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

16 pages, 2268 KiB  
Article
Epichloë Endophyte Alters Bacterial Nitrogen-Cycling Gene Abundance in the Rhizosphere Soil of Perennial Ryegrass
by Munire Maimaitiyiming, Yanxiang Huang, Letian Jia, Mofan Wu and Zhenjiang Chen
Biology 2025, 14(7), 879; https://doi.org/10.3390/biology14070879 - 18 Jul 2025
Viewed by 262
Abstract
Perennial ryegrass (Lolium perenne), an important forage and turfgrass species, can establish a mutualistic symbiosis with the fungal endophyte Epichloë festucae var. lolii. Although the physiological and ecological impacts of endophyte infection on ryegrass have been extensively investigated, the response of [...] Read more.
Perennial ryegrass (Lolium perenne), an important forage and turfgrass species, can establish a mutualistic symbiosis with the fungal endophyte Epichloë festucae var. lolii. Although the physiological and ecological impacts of endophyte infection on ryegrass have been extensively investigated, the response of the soil microbial community and nitrogen-cycling gene to this relationship has received much less attention. The present study emphasized abundance and diversity variation in the AOB-amoA, nirK and nosZ functional genes in the rhizosphere soil of the endophyte–ryegrass symbiosis following litter addition. We sampled four times: at T0 (prior to first litter addition), T1 (post 120 d of 1st litter addition), T2 (post 120 d of 2nd litter addition) and T3 (post 120 d of 3rd litter addition) times. Real-time fluorescence quantitative PCR (qPCR) and PCR amplification and sequencing were used to characterize the abundance and diversity of the AOB-amoA, nirK and nosZ genes in rhizosphere soils of endophyte-infected (E+) plants and endophyte-free (E−) plants. A significant enhancement of total Phosphorus (P), Soil Organic Carbon (SOC), Ammonium ion (NH4+) and Nitrate ion (NO3) contents in the rhizosphere soil was recorded in endophyte-infected plants at different sampling times compared to endophyte-free plants (p ≤ 0.05). The absolute abundance of the AOB-amoA gene at T0 and T1 times was higher, as was the absolute abundance of the nosZ gene at T0, T1 and T3 times in the E+ plant rhizophere soils relative to E− plant rhizosphere soils. A significant change in relative abundance of the AOB-amoA and nosZ genes in the host rhizophere soils of endophyte-infected plants at T1 and T3 times was observed. The experiment failed to show any significant alteration in abundance and diversity of the nirK gene, and diversity of the AOB-amoA and nosZ genes. Analysis of the abundance and diversity of the nirK gene indicated that changes in soil properties accounted for approximately 70.38% of the variation along the first axis and 16.69% along the second axis, and soil NH4+ (p = 0.002, 50.4%) and soil C/P ratio (p = 0.012, 15.8%) had a strong effect. The changes in community abundance and diversity of the AOB-amoA and nosZ genes were mainly related to soil pH, N/P ratio and NH4+ content. The results demonstrate that the existence of tripartite interactions among the foliar endophyte E. festucae var. Lolii, L. perenne and soil nitrogen-cycling gene has important implications for reducing soil losses on N. Full article
(This article belongs to the Collection Plant Growth-Promoting Bacteria: Mechanisms and Applications)
Show Figures

Figure 1

16 pages, 4873 KiB  
Article
Organic Materials Promote Soil Phosphorus Cycling: Metagenomic Analysis
by Wei Yang, Yue Jiang, Jiaqi Zhang, Wei Wang, Xuesheng Liu, Yu Jin, Sha Li, Juanjuan Qu and Yuanchen Zhu
Agronomy 2025, 15(7), 1693; https://doi.org/10.3390/agronomy15071693 - 13 Jul 2025
Viewed by 438
Abstract
The combined application of chemical fertilizers with organic materials contributes to higher contents of bioavailable phosphorus. However, the underlying mechanism remains poorly understood. A field experiment including four treatments, chemical fertilizer (CF), chemical fertilizer with biochar (CB), chemical fertilizer with organic fertilizer (CO), [...] Read more.
The combined application of chemical fertilizers with organic materials contributes to higher contents of bioavailable phosphorus. However, the underlying mechanism remains poorly understood. A field experiment including four treatments, chemical fertilizer (CF), chemical fertilizer with biochar (CB), chemical fertilizer with organic fertilizer (CO), and chemical fertilizer with biochar and organic fertilizer (CBO), was conducted to explore how the combination of fertilizer applications enhanced soil phosphorus bioavailability using metagenomic sequencing technology. The results showed that chemical fertilizers combined with organic materials (CB, CO, and CBO) significantly increased citrate-extractable phosphorus by 34.61–138.92% and hydrochloric acid-extractable phosphorus contents by 72.85–131.07% compared to CF. In addition, the combined applications altered the microbial community structure and increased the abundance of phoR, spoT, and ppnK genes, but decreased those of gcd, phoD, and ppk1 genes. A partial least squares path model indicated that the combined applications regulated the microbial community composition and gene abundance of phosphorus-cycling microorganisms by influencing soil physicochemical properties, thereby enhancing soil phosphorus cycling. Correlation analysis indicated that pH, total phosphorus, and available phosphorus were the key factors influencing microbial communities, while available nitrogen and total nitrogen primarily regulated phosphorus cycling gene abundance. In addition, the CO and CBO treatments significantly increased maize yield by 14.60% and 21.04%, respectively. Overall, CBO most effectively enhanced bioavailable phosphorus content and maize yield. This study provides a foundation for developing rational fertilization strategies and improving soil phosphorus use efficiency. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

14 pages, 1523 KiB  
Article
Foliar Nitrogen Application Enhances Nitrogen Assimilation and Modulates Gene Expression in Spring Wheat Leaves
by Yanlin Yao, Wenyan Ma, Xin Jin, Guangrui Liu, Yun Li, Baolong Liu and Dong Cao
Agronomy 2025, 15(7), 1688; https://doi.org/10.3390/agronomy15071688 - 12 Jul 2025
Viewed by 255
Abstract
Nitrogen (N) critically regulates wheat growth and grain quality, yet the molecular mechanisms underlying foliar nitrogen application remain unclear. This study evaluated the effects of foliar nitrogen application (12.25 kg ha−1) on the growth, grain yield, and quality of spring wheat, [...] Read more.
Nitrogen (N) critically regulates wheat growth and grain quality, yet the molecular mechanisms underlying foliar nitrogen application remain unclear. This study evaluated the effects of foliar nitrogen application (12.25 kg ha−1) on the growth, grain yield, and quality of spring wheat, as well as its molecular mechanisms. The results indicated that N was absorbed within 3 h post-application, with leaf nitrogen concentration peaking at 12 h. The N treatment increased whole-plant dry matter accumulation and grain protein content by 11.34% and 6.8%, respectively. Amino acid content peaked 24 h post-application, increasing by 25.3% compared to the control. RNA-sequencing analysis identified 4559 and 3455 differentially expressed genes at 3 h and 24 h after urea treatment, respectively, these DEGs being primarily involved in nitrogen metabolism, photosynthetic carbon fixation, amino acid biosynthesis, antioxidant systems, and nucleotide biosynthesis. Notably, the plastidic glutamine synthetase gene (GS2) is crucial in the initial phase of urea application (3 h post-treatment). The pronounced downregulation of GS2 initiates a reconfiguration of nitrogen assimilation pathways. This downregulation impedes glutamine synthesis, resulting in a transient accumulation of free ammonia. In response to ammonia toxicity, the leaves promptly activate the GDH (glutamate dehydrogenase) pathway to facilitate the temporary translocation of ammonium. This compensatory mechanism suggests that GS2 downregulation may be a key switch that redirects nitrogen metabolism from the GS/GOGAT cycle to the GDH bypass. Additionally, the upregulation of the purine and pyrimidine metabolic routes channels nitrogen resources towards nucleic acid synthesis, and thereby supporting growth. Amino acids are then transported to the seeds, culminating in enhanced seed protein content. This research elucidates the molecular mechanisms underlying the foliar response to urea application, offering significant insights for further investigation. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

21 pages, 1025 KiB  
Review
Amino Acid Metabolism in Liver Mitochondria: From Homeostasis to Disease
by Ranya Erdal, Kıvanç Birsoy and Gokhan Unlu
Metabolites 2025, 15(7), 446; https://doi.org/10.3390/metabo15070446 - 2 Jul 2025
Viewed by 782
Abstract
Hepatic mitochondria play critical roles in sustaining systemic nutrient balance, nitrogen detoxification, and cellular bioenergetics. These functions depend on tightly regulated mitochondrial processes, including amino acid catabolism, ammonia clearance via the urea cycle, and transport through specialized solute carriers. Genetic disruptions in these [...] Read more.
Hepatic mitochondria play critical roles in sustaining systemic nutrient balance, nitrogen detoxification, and cellular bioenergetics. These functions depend on tightly regulated mitochondrial processes, including amino acid catabolism, ammonia clearance via the urea cycle, and transport through specialized solute carriers. Genetic disruptions in these pathways underlie a range of inborn errors of metabolism, often resulting in systemic toxicity and neurological dysfunction. Here, we review the physiological functions of hepatic mitochondrial amino acid metabolism, with a focus on subcellular compartmentalization, disease mechanisms, and therapeutic strategies. We discuss how emerging genetic and metabolic interventions—including dietary modulation, cofactor replacement, and gene therapy—are reshaping treatment of liver-based metabolic disorders. Understanding these pathways offers mechanistic insights into metabolic homeostasis and reveals actionable vulnerabilities in metabolic disease and cancer. Full article
Show Figures

Figure 1

17 pages, 4030 KiB  
Article
Effects of Cultivation Modes on Soil Protistan Communities and Its Associations with Production Quality in Lemon Farmlands
by Haoqiang Liu, Hongjun Li, Zhuchun Peng, Sichen Li and Chun Ran
Plants 2025, 14(13), 2024; https://doi.org/10.3390/plants14132024 - 2 Jul 2025
Viewed by 359
Abstract
Citrus is one of the most widely consumed fruits in the world, and its cultivation industry continues to develop rapidly. However, the roles of soil protistan communities during citrus growth are not yet fully understood, despite the potential significance of these communities to [...] Read more.
Citrus is one of the most widely consumed fruits in the world, and its cultivation industry continues to develop rapidly. However, the roles of soil protistan communities during citrus growth are not yet fully understood, despite the potential significance of these communities to the health and quality of citrus. In this study, we examined the soil properties and protistan communities in Eureka lemon farmlands located in Chongqing, China, during the flowering and fruiting stages of cultivation, both in greenhouse and open-field settings. In general, the majority of the measured soil properties (including nutrients and enzyme activities) exhibited higher values in open-field farmlands in comparison to those observed in greenhouse counterparts. According to the results of high-throughput sequencing based on the V9 region of eukaryotic 18S rRNA gene, the diversity of soil protistan communities was also higher in open-field farmlands, and both lemon growth stage and cultivation modes showed significant effects on soil protistan compositions. The transition from traditional agricultural practices to greenhouse farming resulted in a significant transformation of the soil protistan community. This transformation manifested as a shift towards a state characterized by diminished nutrient cycling capabilities. This decline was evidenced by an increase in phototrophs (Archaeplastida) and a concomitant decrease in consumers (Stramenopiles and Alveolata). Community assembly analysis revealed deterministic processes that controlled the succession of soil protistan communities in lemon farmlands. It has been established that environmental associations have the capacity to recognize nitrogen in soils, thereby providing a deterministic selection process for protistan community assembly. Furthermore, a production index was calculated based on 12 quality parameters of lemons, and the results indicated that lemons from greenhouse farms exhibited a lower quality compared to those from open fields. The structure equation model revealed a direct correlation between the quality of lemons and the cultivation methods employed, as well as the composition of soil protists. The present study offers insights into the mechanisms underlying the correlations between the soil protistan community and lemon quality in response to changes in the cultivation modes. Full article
(This article belongs to the Special Issue Innovative Techniques for Citrus Cultivation)
Show Figures

Figure 1

21 pages, 2738 KiB  
Article
Effects of Fire on Soil Bacterial Communities and Nitrogen Cycling Functions in Greater Khingan Mountains Larch Forests
by Yang Shu, Wenjie Jia, Pengwu Zhao, Mei Zhou and Heng Zhang
Forests 2025, 16(7), 1094; https://doi.org/10.3390/f16071094 - 2 Jul 2025
Viewed by 357
Abstract
Investigating the effects of fire disturbance on soil microbial diversity and nitrogen cycling is crucial for understanding the mechanisms underlying soil nitrogen cycling. This study examined the fire burn site of the Larix gmelinii forest in the Greater Khingan Mountains, Inner Mongolia, to [...] Read more.
Investigating the effects of fire disturbance on soil microbial diversity and nitrogen cycling is crucial for understanding the mechanisms underlying soil nitrogen cycling. This study examined the fire burn site of the Larix gmelinii forest in the Greater Khingan Mountains, Inner Mongolia, to analyze the impact of varying fire intensities on soil nitrogen, microbial communities, and the abundance of nitrogen cycle-related functional genes after three years. The results indicated the following findings: (1) Soil bulk density increased significantly following severe fires (7.06%~10.84%, p < 0.05), whereas soil water content decreased with increasing fire intensity (6.62%~19.42%, p < 0.05). The soil total nitrogen and ammonium nitrogen levels declined after heavy fires but increased after mild fires; (2) Mild fire burning significantly increased soil bacterial diversity, while heavy fire had a lesser effect. Dominant bacterial groups included Xanthobacteraceae, norank_o_norank_c_AD3, and norank_o_Elsterales. Norank_o_norank_c_AD3 abundance decreased with burn intensity (7.90% unburned, 3.02% mild fire, 2.70% heavy fire). Conversely, norank_o_Elsterales increased with burning (1.23% unburned, 5.66% mild fire, 5.48% heavy fire); (3) The abundance of nitrogen-fixing nifH functional genes decreased with increasing fire intensity, whereas nitrification functional genes amoA-AOA and amoA-AOB exhibited the opposite trend. Light-intensity fires increased the abundance of denitrification functional genes nirK, nirS, and nosZ, while heavy fires reduced their abundance; (4) The correlation analysis demonstrated a strong association between soil bacteria and denitrification functional genes nifH and amoA-AOA, with soil total nitrogen being a key factor influencing the nitrogen cycle-related functional genes. The primary bacterial groups involved in soil nitrogen cycling were Proteobacteria, Actinobacteria, and Chloroflexi. These findings play a critical role in promoting vegetation regeneration and rapid ecosystem restoration in fire-affected areas. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

19 pages, 5133 KiB  
Article
Comparative Metagenomics Reveals Microbial Diversity and Biogeochemical Drivers in Deep-Sea Sediments of the Marcus-Wake and Magellan Seamounts
by Chengcheng Li, Bailin Cong, Wenquan Zhang, Tong Lu, Ning Guo, Linlin Zhao, Zhaohui Zhang and Shenghao Liu
Microorganisms 2025, 13(7), 1467; https://doi.org/10.3390/microorganisms13071467 - 24 Jun 2025
Viewed by 587
Abstract
Seamounts are distributed globally across the oceans and are generally considered oases of biomass abundance as well as hotspots of species richness. Diverse microbial communities are essential for biogeochemical cycling, yet their functional partitioning among seamounts with geographic features remains poorly investigated. Through [...] Read more.
Seamounts are distributed globally across the oceans and are generally considered oases of biomass abundance as well as hotspots of species richness. Diverse microbial communities are essential for biogeochemical cycling, yet their functional partitioning among seamounts with geographic features remains poorly investigated. Through metagenomic sequencing and genome-resolved analysis, we revealed that Proteobacteria (33.18–40.35%) dominated the bacterial communities, while Thaumarchaeota (5.98–10.86%) were the predominant archaea. Metagenome-assembled genomes uncovered 117 medium-quality genomes, 81.91% of which lacked species-level annotation, highlighting uncultured diversity. In the Nazuna seamount, which is located in the Marcus-Wake seamount region, microbiomes exhibited heightened autotrophic potential via the 3-hydroxypropionate cycle and dissimilatory nitrate reduction, whereas in the Magellan seamounts regions, nitrification and organic nitrogen metabolism were prioritized. Sulfur oxidation genes dominated Nazuna seamount microbes, with 33 MAGs coupling denitrification to sulfur redox pathways. Metal resistance genes for tellurium, mercury, and copper were prevalent, alongside habitat-specific iron transport systems. Cross-feeding interactions mediated by manganese, reduced ferredoxin, and sulfur–metal integration suggested adaptive detoxification strategies. This study elucidates how deep-sea microbes partition metabolic roles and evolve metal resilience mechanisms across geographical niches. It also supports the view that microbial community structure and metabolic function across seamount regions are likely influenced by the geomorphological features of the seamounts. Full article
Show Figures

Figure 1

26 pages, 2941 KiB  
Article
A Fungi-Driven Sustainable Circular Model Restores Saline Coastal Soils and Boosts Farm Returns
by Fei Bian, Yonghui Wang, Haixia Ren, Luzhang Wan, Huidong Guo, Yuxue Jia, Xia Liu, Fanhua Ning, Guojun Shi and Pengfei Ren
Horticulturae 2025, 11(7), 730; https://doi.org/10.3390/horticulturae11070730 - 23 Jun 2025
Viewed by 439
Abstract
Agricultural production in the saline–alkaline soils of the Yellow River Delta faces persistent challenges in waste recycling and soil improvement. We developed a three-stage circular agriculture model integrating “crop straw–edible mushrooms–vegetables,” enabling simultaneous waste utilization and soil remediation within one year (two mushroom [...] Read more.
Agricultural production in the saline–alkaline soils of the Yellow River Delta faces persistent challenges in waste recycling and soil improvement. We developed a three-stage circular agriculture model integrating “crop straw–edible mushrooms–vegetables,” enabling simultaneous waste utilization and soil remediation within one year (two mushroom and two vegetable cycles annually). Crop straw was first used to cultivate Pleurotus eryngii, achieving 80% biological efficiency and reducing substrate costs by ~36.3%. The spent mushroom substrate (SMS) was then reused for Ganoderma lucidum and vegetable cultivation, maximizing the resource efficiency. SMS application significantly improved soil properties: organic matter increased 11-fold (from 14.8 to 162.78 g/kg) and pH decreased from 8.34 to ~6.75. The available phosphorus and potassium contents increased several-fold compared to untreated soil. Metagenomic analysis showed the enrichment of beneficial decomposer bacteria (Hyphomicrobiales, Burkholderiales, and Streptomyces) and functional genes involved in glyoxylate metabolism, nitrogen cycling, and lignocellulose degradation. These changes shifted the microbial community from a stress-tolerant to a nutrient-cycling profile. The vegetable yield and quality improved markedly: cabbage and cauliflower yields increased by 34–38%, and the tomato lycopene content rose by 179%. Economically, the system generated 1,695,000–1,962,881.4 CNY per hectare annually and reduced fertilizer costs by ~450,000 CNY per hectare. This mushroom–vegetable rotation addresses ecological bottlenecks in saline–alkaline lands through lignin-driven carbon release, organic acid-mediated pH reduction, and actinomycete-dominated decomposition, offering a sustainable agricultural strategy for coastal regions. Full article
(This article belongs to the Special Issue Advances in Propagation and Cultivation of Mushroom)
Show Figures

Figure 1

18 pages, 1914 KiB  
Review
Microbial Community Dynamics and Biogeochemical Cycling in Microplastic-Contaminated Sediment
by Xuanxuan Zhang, Dina Ding, Yinglin Liu, Zhiming Yao, Pingping Duan, Hanyu Yuan, Hanzhong Fan and Yanhui Dai
Nanomaterials 2025, 15(12), 902; https://doi.org/10.3390/nano15120902 - 11 Jun 2025
Viewed by 708
Abstract
Sediments are important repositories for microplastics (MPs) which exhibit higher microbial community richness and greater diversity than corresponding aqueous phases. Recently, the effects of MPs on microorganisms in sediments have received widespread attention. This review summarizes current knowledge on how MPs alter microbial [...] Read more.
Sediments are important repositories for microplastics (MPs) which exhibit higher microbial community richness and greater diversity than corresponding aqueous phases. Recently, the effects of MPs on microorganisms in sediments have received widespread attention. This review summarizes current knowledge on how MPs alter microbial diversity, composition, function, and biogeochemical cycling in sedimentary environments. The impacts of MPs on microorganisms in sediments can be affected by several factors, including MP type, the sedimentary environment, exposure time, and exposure concentration. Generally, biodegradable MPs cause more significant changes to the microbial community structure in sediments due to degradability and high bioavailability. Short-term exposure to MPs may enhance microbial diversity, and long-term exposure may lead to a reduction in diversity. High concentrations cause more serious impacts on microbial diversity than low concentrations. MPs mainly interfere with cycles of carbon, nitrogen, phosphorus, and sulfur in the sedimentary environment by changing microbial community structure, enzyme activity, and gene abundance. In conclusion, key research gaps are pinpointed, and future research directions presented. This review provides valuable insights into the health risks and ecological responses of MPs in sedimentary environments. Full article
(This article belongs to the Special Issue Environmental Fate, Transport and Effects of Nanoplastics)
Show Figures

Graphical abstract

25 pages, 4766 KiB  
Article
Nitrogen Deprivation Drives Red Motile Cell Formation in Haematococcus pluvialis: Physiological and Transcriptomic Insights
by Hailiang Xing, Na Zhou, Kai Liu, Xiaotian Yan, Wanxia Li, Xue Sun, Liuquan Zhang, Fengjie Liu, Nianjun Xu and Chaoyang Hu
Metabolites 2025, 15(6), 388; https://doi.org/10.3390/metabo15060388 - 10 Jun 2025
Viewed by 546
Abstract
Background: Natural astaxanthin, a commercially valuable carotenoid, is primarily sourced from Haematococcus pluvialis, a microalga known for its remarkable resilience to environmental stress. Methods: In this study, the physiological and transcriptomic responses of H. pluvialis to ND were investigated at various time [...] Read more.
Background: Natural astaxanthin, a commercially valuable carotenoid, is primarily sourced from Haematococcus pluvialis, a microalga known for its remarkable resilience to environmental stress. Methods: In this study, the physiological and transcriptomic responses of H. pluvialis to ND were investigated at various time points under high light conditions. Results: Under high light conditions, nitrogen deprivation (ND) enhances astaxanthin content (33.23 mg g−1) while inhibiting the formation of the secondary cell wall (SCW), increasing astaxanthin content by 29% compared to the nitrogen-replete group (25.64 mg g−1); however, the underlying mechanisms remain unclear. ND reduced chlorophyll fluorescence parameters, elevated reactive oxygen species (ROS) levels, and increased starch and total sugar accumulation while decreasing protein and lipid content. Fatty acid content increased on the first day but had declined by the fifth day. A transcriptomic analysis revealed substantial alterations in gene expression in response to ND. Genes associated with the TCA cycle, glycolysis, astaxanthin biosynthesis, and cell motility were upregulated, while those involved in photosynthesis, lipid synthesis, ribosome biogenesis, amino acid synthesis, and SCW synthesis were downregulated. Additionally, ND modulated the expression of genes involved in ROS scavenging. Conclusions: These findings provide critical insights into the adaptive mechanisms of H. pluvialis in response to ND under high light, contributing to the development of strategies for enhanced production of astaxanthin-rich motile cells. Full article
(This article belongs to the Special Issue New Insights into Microalgae Metabolism)
Show Figures

Figure 1

15 pages, 1663 KiB  
Article
Impacts of Emergency Treatments on Sediment Microbial Communities Following Sudden Thallium Contamination Events: A Microcosm Study
by Xiaodie Cai, Zeqiang Huang, Sili Chen, Zhengke Zhang, Jingsong Wang, Xinyu Wen and Yuyin Yang
Microorganisms 2025, 13(6), 1336; https://doi.org/10.3390/microorganisms13061336 - 9 Jun 2025
Viewed by 541
Abstract
Following heavy metal pollution caused by thallium in watersheds, people typically employ emergency treatment methods such as water sampling and transfer for dilution or in situ coagulation and precipitation. However, the thallium that is adsorbed by the precipitates in the sediment persists for [...] Read more.
Following heavy metal pollution caused by thallium in watersheds, people typically employ emergency treatment methods such as water sampling and transfer for dilution or in situ coagulation and precipitation. However, the thallium that is adsorbed by the precipitates in the sediment persists for a long time and is gradually released, posing a significant threat to the ecosystem. In this study, the 16S rRNA sequencing method was used to simulate the effects of water dilution or in situ coagulation and precipitation on microbial communities through thallium impact loading and thallium-containing iron floc shaking bottle experiments. The emendation of Fe(III) floc led to an increase in the relative abundance of Actinobacteriota. Meanwhile, Nitrospira and Proteobacteria exhibited distinct tolerances to Tl shock and Tl floc stress, respectively. Thallium pollution inhibited the reduction in nitric oxide and nitrogen fixation while increasing the relative abundance of the napA/B genes and decreasing the relative abundance of narG/H genes involved in nitrate reduction. This study offers new insights into the effects of various emergency treatment measures on river ecosystems following sudden thallium pollution, particularly from the perspective of microbial community composition and biogeochemical cycles. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop