Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = nikkomycin Z

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2219 KiB  
Article
AfuPmV-1-Infected Aspergillus fumigatus Is More Susceptible to Stress Than Virus-Free Fungus
by Gabriele Sass, Marife Martinez, Ioly Kotta-Loizou and David Stevens
J. Fungi 2023, 9(7), 750; https://doi.org/10.3390/jof9070750 - 15 Jul 2023
Cited by 4 | Viewed by 1888
Abstract
Infection with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1) affects Aspergillus fumigatus Af293’s growth in vitro, iron metabolism, resistance in intermicrobial competition with Pseudomonas aeruginosa, resistance to osmotic stress, and resistance to the chitin synthase inhibitor nikkomycin Z. Here, we show that response to [...] Read more.
Infection with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1) affects Aspergillus fumigatus Af293’s growth in vitro, iron metabolism, resistance in intermicrobial competition with Pseudomonas aeruginosa, resistance to osmotic stress, and resistance to the chitin synthase inhibitor nikkomycin Z. Here, we show that response to high temperature, Congo Red-induced stress, and hydrogen peroxide are also dependent on the viral infection status of A. fumigatus. AfuPmV-1- infected Af293 was more susceptible than virus-free Af293 to growth inhibition by high temperature, hydrogen peroxide, Congo Red exposure, and nutrient restriction. Increased resistance of virus-free fungus was observed when cultures were started from conidia but, in the case of high temperature and hydrogen peroxide, not when cultures were started from hyphae. This indicates that the virus impairs the stress response during the growth phase of germination of conidia and development into hyphae. In conclusion, our work indicates that AfuPmV-1 infection in A. fumigatus impairs host responses to stress, as shown by exposure to high temperature, oxidative stress such as hydrogen peroxide, and some cell wall stresses, as shown by exposure to Congo Red (in agreement with our previous observations using nikkomycin Z) and nutrient restriction. Full article
(This article belongs to the Special Issue Mycoviruses: Emerging Investigations on Virus-Fungal Host Interaction)
Show Figures

Figure 1

16 pages, 1418 KiB  
Article
In Vitro Killing Activities of Anidulafungin and Micafungin with and without Nikkomycin Z against Four Candida auris Clades
by Awid Adnan, Andrew M. Borman, Zoltán Tóth, Lajos Forgács, Renátó Kovács, Dávid Balázsi, Bence Balázs, Gergely Udvarhelyi, Gábor Kardos and László Majoros
Pharmaceutics 2023, 15(5), 1365; https://doi.org/10.3390/pharmaceutics15051365 - 29 Apr 2023
Cited by 3 | Viewed by 2153
Abstract
Candida auris is a multidrug-resistant pathogen against which echinocandins are the drug of choice. However, information on how the chitin synthase inhibitor nikkomycin Z influences the killing activities of echinocandins against C. auris is currently lacking. We determined the killing activities of anidulafungin [...] Read more.
Candida auris is a multidrug-resistant pathogen against which echinocandins are the drug of choice. However, information on how the chitin synthase inhibitor nikkomycin Z influences the killing activities of echinocandins against C. auris is currently lacking. We determined the killing activities of anidulafungin and micafungin (0.25, 1, 8, 16 and 32 mg/L each) with and without nikkomycin Z (8 mg/L) against 15 isolates representing four C. auris clades (South Asian n = 5; East Asian n = 3; South African n = 3; South American n = 4, two of which were of environmental origin). Two and one isolates from the South Asian clade harbored mutations in the hot-spot 1 (S639Y and S639P) and 2 (R1354H) regions of the FKS1 gene, respectively. The anidulafungin, micafungin and nikkomycin Z MIC ranges were 0.015-4, 0.03-4 and 2->16 mg/L, respectively. Anidulafungin and micafungin alone exerted weak fungistatic activity against wild-type isolates and the isolate with a mutation in the hot-spot 2 region of FKS1 but was ineffective against the isolates with a mutation in the hot-spot 1 region. The nikkomycin Z killing curves were always similar to their respective controls. Twenty-two of sixty (36.7%) anidulafungin plus nikkomycin Z and twenty-four of sixty (40%) micafungin plus nikkomycin Z combinations produced at least 100-fold decreases in the CFUs (synergy), with a 41.7% and 20% fungicidal effect, respectively, against wild-type isolates. Antagonism was never observed. Similar results were found with the isolate with a mutation in hot-spot 2 of FKS1, but the combinations were ineffective against the two isolates with prominent mutations in hot-spot 1 of FKS1. The simultaneous inhibition of β-1,3 glucan and chitin synthases in wild-type C. auris isolates produced significantly greater killing rates than either drug alone. Further studies are warranted to verify the clinical efficacy of echinocandin plus nikkomycin Z combinations against echinocandin susceptible C. auris isolates. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

8 pages, 1565 KiB  
Communication
Virus Infection Impairs Fungal Response to Stress: Effect of Salt
by David A. Stevens, Ioly Kotta-Loizou, Marife Martinez, Robert H. A. Coutts and Gabriele Sass
Viruses 2023, 15(3), 718; https://doi.org/10.3390/v15030718 - 10 Mar 2023
Cited by 5 | Viewed by 2371
Abstract
Infection with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1) weakens the resistance of biofilms of common A. fumigatus reference strain Af293 in intermicrobial competition with Pseudomonas aeruginosa, and sensitizes A. fumigatus for antifungal effects of nikkomycin Z. We compared the sensitivity of two virus-infected [...] Read more.
Infection with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1) weakens the resistance of biofilms of common A. fumigatus reference strain Af293 in intermicrobial competition with Pseudomonas aeruginosa, and sensitizes A. fumigatus for antifungal effects of nikkomycin Z. We compared the sensitivity of two virus-infected (VI) and one virus-free (VF) Af293 strains to hypertonic salt. Salt stress impairs the growth of VI and VF at all times; VF control growth always exceeds VI, and VF growth in salt always exceeds VI. Since VF growth exceeds VI in the presence and absence of salt, we also examined growth in salt as a percentage of control growth. Initially, as a percentage of control, VI exceeded VF, but at 120 h VF began to exceed VI consistently even by this measure; thus, at that time the growth of VF in salt surges in relation to control growth, or, alternatively, its growth in salt persists compared to the relative inhibition of VI. In summary, virus infection impairs the response of A. fumigatus to several different stresses, including hypertonic salt. Full article
(This article belongs to the Collection Mycoviruses)
Show Figures

Figure 1

19 pages, 3244 KiB  
Article
Culturable Diversity of Lichen-Associated Yeasts through Enrichment Strategies
by Daniel B. Raudabaugh and M. Catherine Aime
Ecologies 2023, 4(1), 152-170; https://doi.org/10.3390/ecologies4010012 - 2 Mar 2023
Cited by 6 | Viewed by 4802
Abstract
Lichens are symbiotic partnerships between a filamentous fungus and a photosymbiotic “alga”. Studies show that lichens harbor endothallic fungi, but that some taxa have been difficult to isolate from the main filamentous thallus-forming fungus and other faster growing lichenicolous/endothallic fungi. Therefore, we aimed [...] Read more.
Lichens are symbiotic partnerships between a filamentous fungus and a photosymbiotic “alga”. Studies show that lichens harbor endothallic fungi, but that some taxa have been difficult to isolate from the main filamentous thallus-forming fungus and other faster growing lichenicolous/endothallic fungi. Therefore, we aimed to develop and evaluate liquid yeast-enrichment strategies to (1) isolate lichen-associated yeasts in pure culture, and (2) determine the taxonomic placement and breadth of the diversity of culturable yeasts. Eighty-two lichen samples were collected and washed with distilled water, and healthy thalli were ground up and added to seven different yeast-enrichment broths. Yeast colonies were isolated in pure culture and identified using molecular techniques. Initial isolates were identified using BLASTn analysis, and a taxonomic refinement was completed using PhyML analysis. In total, 215 isolates were obtained. The most prevalently isolated ascomycetous yeasts were within the Dothideomycetes (Aureobasidium, Plowrightia, and Dothiora), while the most frequently isolated basidiomycetous yeasts belonged to the genera Curvibasidium, Sporobolomyces, and Tremella. The generic placements could not be determined for 17 isolates, and in total 25 novel species were recovered. The results of this research indicate that (1) lichen-associated yeasts are diverse, (2) employing liquid enrichment strategies is effective for isolating many of these, and (3) lichen thalli represent a valuable untapped reservoir of diverse and novel yeast species. Full article
(This article belongs to the Special Issue Feature Papers of Ecologies 2022)
Show Figures

Figure 1

13 pages, 2773 KiB  
Article
Polymycovirus Infection Sensitizes Aspergillus fumigatus for Antifungal Effects of Nikkomycin Z
by Gabriele Sass, Ioly Kotta-Loizou, Marife Martinez, David J. Larwood and David A. Stevens
Viruses 2023, 15(1), 197; https://doi.org/10.3390/v15010197 - 10 Jan 2023
Cited by 9 | Viewed by 3066
Abstract
Infection with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1) weakens resistance of Aspergillus fumigatus common reference strain Af293 biofilms in intermicrobial competition with Pseudomonas aeruginosa. We compared the sensitivity of two infected and one virus-free Af293 strains to antifungal drugs. All three were comparably [...] Read more.
Infection with Aspergillus fumigatus polymycovirus 1 (AfuPmV-1) weakens resistance of Aspergillus fumigatus common reference strain Af293 biofilms in intermicrobial competition with Pseudomonas aeruginosa. We compared the sensitivity of two infected and one virus-free Af293 strains to antifungal drugs. All three were comparably sensitive to drugs affecting fungal membranes (voriconazole, amphotericin) or cell wall glucan synthesis (micafungin, caspofungin). In contrast, forming biofilms of virus-free Af293 were much more resistant than AfuPmV-1-infected Af293 to nikkomycin Z (NikZ), a drug inhibiting chitin synthase. The IC50 for NikZ on biofilms was between 3.8 and 7.5 µg/mL for virus-free Af293 and 0.94–1.88 µg/mL for infected strains. The IC50 for the virus-free A. fumigatus strain 10AF was ~2 µg/mL in most experiments. NikZ also modestly affected the planktonic growth of infected Af293 more than the virus-free strain (MIC 50%, 2 and 4 µg/mL, respectively). Virus-free Af293 biofilm showed increased metabolism, and fungus growing as biofilm or planktonically showed increased growth compared to infected; these differences do not explain the resistance of the virus-free fungus to NikZ. In summary, AfuPmV-1 infection sensitized A. fumigatus to NikZ, but did not affect response to drugs commonly used against A. fumigatus infection. Virus infection had a greater effect on NikZ inhibition of biofilm than planktonic growth. Full article
(This article belongs to the Collection Mycoviruses)
Show Figures

Figure 1

7 pages, 283 KiB  
Article
Initial Results of the International Efforts in Screening New Agents against Candida auris
by Vanice Rodrigues Poester, Lívia Silveira Munhoz, Jéssica Louise Benelli, Aryse Martins Melo, Abdullah M. S. Al-Hatmi, David J. Larwood, Marife Martinez, David A. Stevens and Melissa Orzechowski Xavier
J. Fungi 2022, 8(8), 771; https://doi.org/10.3390/jof8080771 - 25 Jul 2022
Cited by 5 | Viewed by 2415
Abstract
Background: Candida auris is an emergent fungal pathogen and a global concern, mostly due to its resistance to many currently available antifungal drugs. Objective: Thus, in response to this challenge, we evaluated the in vitro activity of potential new drugs, diphenyl diselenide (PhSe) [...] Read more.
Background: Candida auris is an emergent fungal pathogen and a global concern, mostly due to its resistance to many currently available antifungal drugs. Objective: Thus, in response to this challenge, we evaluated the in vitro activity of potential new drugs, diphenyl diselenide (PhSe)2 and nikkomycin Z (nikZ), alone and in association with currently available antifungals (azoles, echinocandins, and polyenes) against Candida auris. Methods: Clinical isolates of C. auris were tested in vitro. (PhSe)2 and nikZ activities were tested alone and in combination with amphotericin B, fluconazole, or the echinocandins, micafungin and caspofungin. Results: (PhSe)2 alone was unable to inhibit C. auris, and antagonism or indifferent effects were observed in the combination of this compound with the antifungals tested. NikZ appeared not active alone either, but frequently acted cooperatively with conventional antifungals. Conclusion: Our data show that (PhSe)2 appears to not have a good potential to be a candidate in the development of new drugs to treat C. auris, but that nikZ is worthy of further study. Full article
15 pages, 5356 KiB  
Article
Characterization of the mbsA Gene Encoding a Putative APSES Transcription Factor in Aspergillus fumigatus
by Yong-Ho Choi, Sang-Cheol Jun, Min-Woo Lee, Jae-Hyuk Yu and Kwang-Soo Shin
Int. J. Mol. Sci. 2021, 22(7), 3777; https://doi.org/10.3390/ijms22073777 - 6 Apr 2021
Cited by 11 | Viewed by 2934
Abstract
The APSES family proteins are transcription factors (TFs) with a basic helix-loop-helix domain, known to regulate growth, development, secondary metabolism, and other biological processes in Aspergillus species. In the genome of the human opportunistic pathogenic fungus Aspergillus fumigatus, five genes predicted to [...] Read more.
The APSES family proteins are transcription factors (TFs) with a basic helix-loop-helix domain, known to regulate growth, development, secondary metabolism, and other biological processes in Aspergillus species. In the genome of the human opportunistic pathogenic fungus Aspergillus fumigatus, five genes predicted to encode APSES TFs are present. Here, we report the characterization of one of these genes, called mbsA (Afu7g05620). The deletion (Δ) of mbsA resulted in significantly decreased hyphal growth and asexual sporulation (conidiation), and lowered mRNA levels of the key conidiation genes abaA, brlA, and wetA. Moreover, ΔmbsA resulted in reduced spore germination rates, elevated sensitivity toward Nikkomycin Z, and significantly lowered transcripts levels of genes associated with chitin synthesis. The mbsA deletion also resulted in significantly reduced levels of proteins and transcripts of genes associated with the SakA MAP kinase pathway. Importantly, the cell wall hydrophobicity and architecture of the ΔmbsA asexual spores (conidia) were altered, notably lacking the rodlet layer on the surface of the ΔmbsA conidium. Comparative transcriptomic analyses revealed that the ΔmbsA mutant showed higher mRNA levels of gliotoxin (GT) biosynthetic genes, which was corroborated by elevated levels of GT production in the mutant. While the ΔmbsA mutant produced higher amount of GT, ΔmbsA strains showed reduced virulence in the murine model, likely due to the defective spore integrity. In summary, the putative APSES TF MbsA plays a multiple role in governing growth, development, spore wall architecture, GT production, and virulence, which may be associated with the attenuated SakA signaling pathway. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

14 pages, 464 KiB  
Review
Nikkomycin Z—Ready to Meet the Promise?
by David J. Larwood
J. Fungi 2020, 6(4), 261; https://doi.org/10.3390/jof6040261 - 30 Oct 2020
Cited by 59 | Viewed by 6245
Abstract
Nikkomycin Z (NikZ) has fungicidal activity against some fungal species which currently requires patients to endure chronic therapy, sometimes for years. This review highlights reports of NikZ activity against fungal species for which current therapeutics are still inadequate, as a potential roadmap for [...] Read more.
Nikkomycin Z (NikZ) has fungicidal activity against some fungal species which currently requires patients to endure chronic therapy, sometimes for years. This review highlights reports of NikZ activity against fungal species for which current therapeutics are still inadequate, as a potential roadmap for continuing investigation. The possibility of faster and more complete clinical resolution by using NikZ has attracted scientific attention for decades. NikZ inhibits chitin structure formation, which is important for fungi, but not found in mammals. NikZ raised no safety concerns in a human Phase 1 trial or in extensive toxicology studies. NikZ showed strong clinical benefit in dogs with natural Coccidioides infection. NikZ has protected animals against fatal infections of Candida albicans. NikZ provides high protection in synergistic combination with several agent classes against Candida and Aspergillus species. Full article
(This article belongs to the Special Issue Antifungal Agents Recently Approved or Under Development)
Show Figures

Figure 1

Back to TopTop