Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = new auxiliary ligands

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1271 KB  
Article
Rhenium(I) Complexes with 2-(1,2,4-Triazol-5-yl)-β-Carboline-Based Bidentate Luminophores and Neutral Co-Ligands: Towards Tunable Phosphorescence and Efficient Singlet Dioxygen Photoproduction
by Joschua Lüke, Iván Maisuls, Alexander Hepp and Cristian A. Strassert
Int. J. Mol. Sci. 2025, 26(21), 10349; https://doi.org/10.3390/ijms262110349 - 24 Oct 2025
Viewed by 240
Abstract
A bidentate ligand concept based on β-carbolines functionalized with a 1,2,4-triazolyl-moiety was designed and realized, enabling the development of a series of neutral rhenium(I) complexes. This new class of anionic ligands, incorporating either an unsubstituted 9H-pyrido[3,4-b]indole core ( [...] Read more.
A bidentate ligand concept based on β-carbolines functionalized with a 1,2,4-triazolyl-moiety was designed and realized, enabling the development of a series of neutral rhenium(I) complexes. This new class of anionic ligands, incorporating either an unsubstituted 9H-pyrido[3,4-b]indole core (LnHo) or a 9-methyl-substitued variant (LMe-nHo), was developed towards tailored photofunctionality. Structural modification via methyl substitution at the indole moiety was found to enhance overall phosphorescence efficiency. Comparative studies of two monodentate auxiliary units revealed that 1,3,5-triaza-7-phosphaadamantane (PTA) significantly reduces the photoluminescence efficiency compared to pyridine (Py). Solvent-dependent photoluminescence studies indicated that a lowered polarity leads to an increase in photoluminescence quantum yields (ΦL). The complex Re(LMe-nHo)Py emerged as the most efficient emitter, displaying a ΦL of 44% in dichloromethane (DCM). Notably, all complexes exhibited efficient quenching of excited triplet states by diffusional collision with triplet dioxygen (3O2), yielding good singlet dioxygen (1O2) photoproduction efficiencies (ΦΔ) with a maximum of 45% observed for Re(LnHo)Py. These results highlight the suitability of these complexes for applications requiring efficient phosphorescence and oxygen photosensitization, such as bioimaging, and photodynamic therapy or photooxidation catalysis, while underscoring the central role of the tailored β-carboline-based chromoluminophores in enabling precise tuneability of photophysical properties. Full article
Show Figures

Figure 1

12 pages, 5169 KB  
Article
Phosphorescent Sensor Based on Iridium(III) Complex with Aggregation-Induced Emission Activity for Facile Detection of Volatile Acids
by Yu Pei, Yan Sun and Dongxia Zhu
Molecules 2024, 29(24), 6041; https://doi.org/10.3390/molecules29246041 - 22 Dec 2024
Cited by 2 | Viewed by 1434
Abstract
Phosphorescent sensors are essential for rapid visual sensing of volatile acids, due to their profound impact on ecosystems and human health. However, solid phosphorescent materials for acid-base stimulus response are still rare, and it is important to achieve real-time monitoring of volatile acids. [...] Read more.
Phosphorescent sensors are essential for rapid visual sensing of volatile acids, due to their profound impact on ecosystems and human health. However, solid phosphorescent materials for acid-base stimulus response are still rare, and it is important to achieve real-time monitoring of volatile acids. In order to obtain an efficient and rapid response to volatile acid stimulation, N-H and -NH2 substituents are introduced into an auxiliary ligand to synthesize a new cationic Ir(III) complex (Ir-NH). The AIE property of Ir-NH leads to enhanced emission in the aggregated state, which facilitates the construction of solid-state acid-base sensors. More importantly, due to the introduction of -NH2 and N-H in the molecular structure, reversible switching of the emission color of Ir-NH under acid-base stimulation was successfully achieved. A convenient and efficient sensing device for volatile acid monitoring was prepared using Ir-NH as the active material. Our results provide a new strategy for designing phosphorescent materials with AIE and acid-base stimulus-responsive properties. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry 2.0)
Show Figures

Figure 1

15 pages, 9858 KB  
Article
Hydrothermal Assembly, Structural Multiplicity, and Catalytic Knoevenagel Condensation Reaction of a Series of Coordination Polymers Based on a Pyridine-Tricarboxylic Acid
by Xiuqi Kang, Chao Ren, Zhenzhong Mei, Xiaoxiang Fan, Jijun Xue, Yongliang Shao and Jinzhong Gu
Molecules 2023, 28(22), 7474; https://doi.org/10.3390/molecules28227474 - 8 Nov 2023
Cited by 10 | Viewed by 1726
Abstract
A pyridine-tricarboxylic acid, 5-(3′,5′-dicarboxylphenyl)nicotinic acid (H3dpna), was employed as a adjustable block to assemble a series of coordination polymers under hydrothermal conditions. The seven new coordination polymers were formulated as [Co(μ3-Hdpna)(μ-dpey)]n·nH [...] Read more.
A pyridine-tricarboxylic acid, 5-(3′,5′-dicarboxylphenyl)nicotinic acid (H3dpna), was employed as a adjustable block to assemble a series of coordination polymers under hydrothermal conditions. The seven new coordination polymers were formulated as [Co(μ3-Hdpna)(μ-dpey)]n·nH2O (1), [Zn4.5(μ6-dpna)3(phen)3]n (2), [Co1.5(μ6-dpna)(2,2′-bipy)]n (3), [Zn1.5(μ6-dpna)(2,2′-bipy)]n (4), [Co3(μ3-dpna)2(4,4′-bipy)2(H2O)8]n·2nH2O (5),[Co(bpb)2(H2O)4]n[Co2(μ3-dpna)2(H2O)4]n·3nH2O (6), and [Mn1.5(μ6-dpna)(μ-dpea)]n (7), wherein 1,2-di(4-pyridyl)ethylene (dpey), 1,10-phenanthroline (phen), 2,2′-bipyridine(2,2′-bipy),4,4′-bipyridine(4,4′-bipy),1,4-bis(pyrid-4-yl)benzene (bpb), and 1,2-di(4-pyridyl)ethane (dpea) were employed as auxiliary ligands. The structural variation of polymers 17 spans the range from a 2D sheet (14, 6, and 7) to a 3D metal–organic framework (MOF, 5). Polymers 17 were investigated as heterogeneous catalysts in the Knoevenagel condensation reaction, leading to high condensation product yields (up to 100%) under optimized conditions. Various reaction conditions, substrate scope, and catalyst recycling were also researched. This work broadens the application of H3dpna as a versatile tricarboxylate block for the fabrication of functional coordination polymers. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

22 pages, 7560 KB  
Review
Monoterpene Thiols: Synthesis and Modifications for Obtaining Biologically Active Substances
by Denis V. Sudarikov, Liliya E. Nikitina, Patrick Rollin, Evgeniy S. Izmest’ev and Svetlana A. Rubtsova
Int. J. Mol. Sci. 2023, 24(21), 15884; https://doi.org/10.3390/ijms242115884 - 1 Nov 2023
Cited by 2 | Viewed by 5096
Abstract
Monoterpene thiols are one of the classes of natural flavors that impart the smell of citrus fruits, grape must and wine, black currants, and guava and are used as flavoring agents in the food and perfume industries. Synthetic monoterpene thiols have found an [...] Read more.
Monoterpene thiols are one of the classes of natural flavors that impart the smell of citrus fruits, grape must and wine, black currants, and guava and are used as flavoring agents in the food and perfume industries. Synthetic monoterpene thiols have found an application in asymmetric synthesis as chiral auxiliaries, derivatizing agents, and ligands for metal complex catalysis and organocatalysts. Since monoterpenes and monoterpenoids are a renewable source, there are emerging trends to use monoterpene thiols as monomers for producing new types of green polymers. Monoterpene thioderivatives are also known to possess antioxidant, anticoagulant, antifungal, and antibacterial activity. The current review covers methods for the synthesis of acyclic, mono-, and bicyclic monoterpene thiols, as well as some investigations related to their usage for the preparation of the compounds with antimicrobial properties. Full article
(This article belongs to the Special Issue Antimicrobial Agents and Resistance Mechanisms)
Show Figures

Scheme 1

11 pages, 2369 KB  
Article
Syntheses, Crystal Structures, and Catalytic Properties of Three Cu(II) and Cobalt(II) Coordination Compounds Based on an Ether-Bridged Tetracarboxylic Acid
by Xiuqi Kang, Hongyu Wang, Zhenzhong Mei, Xiaoxiang Fan and Jinzhong Gu
Molecules 2023, 28(19), 6911; https://doi.org/10.3390/molecules28196911 - 2 Oct 2023
Viewed by 1908
Abstract
Three new products, [Cu2(μ3-dppa)(2,2′-bipy)2(H2O)]n·2nH2O (1), [Co4(μ4-dppa)2(phen)4(H2O)4]·2H2O (2), [...] Read more.
Three new products, [Cu2(μ3-dppa)(2,2′-bipy)2(H2O)]n·2nH2O (1), [Co4(μ4-dppa)2(phen)4(H2O)4]·2H2O (2), and [Co2(μ6-dppa)(μ-4,4′-bipy)(H2O)2]n·3nH2O (3) were synthesized using a hydrothermal method from Cu(II) and Co(II) metal(II) chlorides, 3-(3,4-dicarboxyphenoxy)phthalic acid (H4dppa), and different auxiliary ligands, namely 2,2′-bipyridine (2,2′-bipy),1,10-phenanthroline (phen), and 4,4′-bipyridine (4,4′-bipy). Products 13 were characterized by elemental analysis, FTIR, TGA, PXRD, SEM, and single-crystal X-ray crystallography. The structure of 1 features a 1D chain of the 2C1 topological type. Compound 2 shows a discrete tetrameric complex. Product 3 demonstrates a 3D metal–organic framework (MOF) with the new topology. Their structure and topology, thermal stability, and catalytic activity were studied. In particular, excellent catalytic activity was demonstrated for copper(II)-polymer 1 in the cyanosilylation reaction at 35 °C. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

17 pages, 5355 KB  
Review
Tetrahedral Imidazolate Frameworks with Auxiliary Ligands (TIF-Ax): Synthetic Strategies and Applications
by Tong Hao, Hui-Zi Li, Fei Wang and Jian Zhang
Molecules 2023, 28(16), 6031; https://doi.org/10.3390/molecules28166031 - 12 Aug 2023
Cited by 3 | Viewed by 2015
Abstract
Zeolitic imidazolate frameworks (ZIFs) are an important subclass of metal–organic frameworks (MOFs). Recently, we reported a new kind of MOF, namely tetrahedral imidazolate frameworks with auxiliary ligands (TIF-Ax), by adding linear ligands (Hint) into the zinc–imidazolate system. Introducing linear ligands into the M [...] Read more.
Zeolitic imidazolate frameworks (ZIFs) are an important subclass of metal–organic frameworks (MOFs). Recently, we reported a new kind of MOF, namely tetrahedral imidazolate frameworks with auxiliary ligands (TIF-Ax), by adding linear ligands (Hint) into the zinc–imidazolate system. Introducing linear ligands into the M2+-imidazolate system overcomes the limitation of imidazole derivatives. Thanks to the synergistic effect of two different types of ligands, a series of new TIF-Ax with interesting topologies and a special pore environment has been reported, and they have attracted extensive attention in gas adsorption, separation, catalysis, heavy metal ion capture, and so on. In this review, we give a comprehensive overview of TIF-Ax, including their synthesis methods, structural diversity, and multi-field applications. Finally, we also discuss the challenges and perspectives of the rational design and syntheses of new TIF-Ax from the aspects of their composition, solvent, and template. This review provides deep insight into TIF-Ax and a reference for scholars with backgrounds of porous materials, gas separation, and catalysis. Full article
Show Figures

Figure 1

17 pages, 20552 KB  
Article
A Series of New Manganese(II) Polynuclear Complexes Based on Nitrothiacalix[4]arenes: The Study of Interplay between Macrocycle Platform Flexibility and Structural Diversity of Coordination Compounds
by Alexander S. Ovsyannikov, Iuliia V. Strelnikova, Ilya D. Shutilov, Daut R. Islamov, Pavel V. Dorovatovskii, Aidar T. Gubaidullin, Artem S. Agarkov, Svetlana E. Solovieva and Igor S. Antipin
Crystals 2023, 13(7), 1017; https://doi.org/10.3390/cryst13071017 - 26 Jun 2023
Cited by 6 | Viewed by 1796
Abstract
Four new manganese(II) complexes, based on dinitro and tetranitrothiacalix[4]arenes, were synthesized and characterized from structural points of view in the crystalline phase. It was revealed that thiacalix[4]arenes decorated with two and four electron withdrawing groups, when combined with MnCl2, afforded the [...] Read more.
Four new manganese(II) complexes, based on dinitro and tetranitrothiacalix[4]arenes, were synthesized and characterized from structural points of view in the crystalline phase. It was revealed that thiacalix[4]arenes decorated with two and four electron withdrawing groups, when combined with MnCl2, afforded the formation of similar tetranuclear complexes 1 and 2a with two non-equivalent metal ions and a rhombic geometry of the metallic cluster core. The distortion of the coordination sphere of metal cations within the obtained complexes was found to be dependent on the number of nitro groups located at the upper rim of the macrocyclic backbone, adopted in cone conformation. The tetranuclear complex 2b of a different type, displaying the formation of a dinuclear cluster core, crystallized in a non-centrosymmetric space group was obtained, when tetranitrothiacalix[4]arene, adopted in a partial cone conformation, was involved in coordination with manganese(II) cations. The switching of coordination behavior for the macrocyclic ligand in 2b was achieved due to the presence of upper-rim-disposed electron-withdrawing nitro groups, increasing the flexibility of the macrocyclic backbone by breaking the H-bonding between the OH phenolate moieties within the ligand structure. Finally, the use of 2,2′-bipyridine as an auxiliary ligand in coordination with tetranitrothiacalix[4]arene and manganese(II) cations led to the third type complex formation 3, where the macrocycle platform adopted in a 1.2-alternate conformation. Full article
(This article belongs to the Special Issue Synthesis and Characterization of Metal-Organic Structures)
Show Figures

Figure 1

16 pages, 2583 KB  
Article
Spin Frustrated Pyrazolato Triangular CuII Complex: Structure and Magnetic Properties, an Overview
by Walter Cañón-Mancisidor, Patricio Hermosilla-Ibáñez, Evgenia Spodine, Verónica Paredes-García, Carlos J. Gómez-García and Diego Venegas-Yazigi
Magnetochemistry 2023, 9(6), 155; https://doi.org/10.3390/magnetochemistry9060155 - 11 Jun 2023
Cited by 3 | Viewed by 2754
Abstract
The synthesis and structural characterization of a new triangular Cu3–μ3OH pyrazolato complex of formula, [Cu33−OH)(pz)3(Hpz)3][BF4]2 (1−Cu3), Hpz = pyrazole, is presented. The triangular unit forms [...] Read more.
The synthesis and structural characterization of a new triangular Cu3–μ3OH pyrazolato complex of formula, [Cu33−OH)(pz)3(Hpz)3][BF4]2 (1−Cu3), Hpz = pyrazole, is presented. The triangular unit forms a quasi-isosceles triangle with Cu–Cu distances of 3.3739(9), 3.3571(9), and 3.370(1) Å. This complex is isostructural to the hexanuclear complex [Cu33−OH)(pz)3(Hpz)3](ClO4)2]2 (QOPJIP). A comparative structural analysis with other reported triangular Cu3–μ3OH pyrazolato complexes has been carried out, showing that, depending on the pyrazolato derivative, an auxiliary ligand or counter-anion can affect the nuclearity and/or the dimensionality of the system. The magnetic properties of 1−Cu3 are analyzed using experimental data and DFT calculation. A detailed analysis was performed on the magnetic properties, comparing experimental and theoretical data of other molecular triangular Cu3–μ3OH complexes, showing that the displacement of the μ3−OH from the Cu3 plane, together with the type of organic ligands, influences the nature of the magnetic exchange interaction between the spin-carrier centers, since it affects the overlap of the magnetic orbitals involved in the exchange pathways. Finally, a detailed comparison of the magnetic properties of 1−Cu3 and QOPJIP was carried out, which allowed us to understand the differences in their magnetic properties. Full article
Show Figures

Figure 1

24 pages, 4280 KB  
Article
Structural Diversity, XAS and Magnetism of Copper(II)-Nickel(II) Heterometallic Complexes Based on the [Ni(NCS)6]4− Unit
by Natalia Tereba, Tadeusz M. Muzioł, Joanna Wiśniewska, Robert Podgajny, Alina Bieńko and Grzegorz Wrzeszcz
Materials 2023, 16(2), 731; https://doi.org/10.3390/ma16020731 - 11 Jan 2023
Cited by 1 | Viewed by 3085
Abstract
The new heterometallic compounds, [{Cu(pn)2}2Ni(NCS)6]n·2nH2O (1), [{CuII(trien)}2Ni(NCS)6CuI(NCS)]n (2) and [Cu(tren)(NCS)]4[Ni(NCS)6] (3) (pn = 1,2-diaminopropane, [...] Read more.
The new heterometallic compounds, [{Cu(pn)2}2Ni(NCS)6]n·2nH2O (1), [{CuII(trien)}2Ni(NCS)6CuI(NCS)]n (2) and [Cu(tren)(NCS)]4[Ni(NCS)6] (3) (pn = 1,2-diaminopropane, trien = triethylenetetramine and tren = tris(2-aminoethylo)amine), were obtained and characterized by X-ray analysis, IR spectra, XAS and magnetic measurements. Compounds 1, 2 and 3 show the structural diversity of 2D, 1D and 0D compounds, respectively. Depending on the polyamine used, different coordination polyhedron for Cu(II) was found, i.e., distorted octahedral (1), square pyramidal (2) and trigonal bipyramidal (3), whereas coordination polyhedron for nickel(II) was always octahedral. It provides an approach for tailoring magnetic properties by proper selection of auxiliary ligands determining the topology. In 1, thiocyanate ligands form bridges between the copper and nickel ions, creating 2D layers of sql topology with weak ferromagnetic interactions. Compound 2 is a mixed-valence copper coordination polymer and shows the rare ladder topology of 1D chains decorated with [CuII(tren)]2+ antennas as the side chains attached to nickel(II). The ladder rails are formed by alternately arranged Ni(II) and Cu(I) ions connected by N2 thiocyanate anions and rungs made by N3 thiocyanate. For the Cu(I) ions, the tetrahedral thiocyanate environment mixed N/S donor atoms was found, confirming significant coordination spheres rearrangement occurring at the copper precursor together with the reduction in some Cu(II) to Cu(I). Such topology enables significant simplification of the magnetic properties modeling by assuming magnetic coupling inside {NiIICuII2} trinuclear units separated by diamagnetic [Cu(NCS)(SCN)3]3− linkers. Compound 3 shows three discrete mononuclear units connected by N-H…N and N-H…S hydrogen bonds. Analysis of XAS proves that the average ligand character and the covalency of the unoccupied metal d-based orbitals for copper(II) and nickel(II) increase in the following order: 123. In 1 and 2, a weak ferromagnetic coupling between copper(II) and nickel(II) was found, but in 2, additional and stronger antiferromagnetic interaction between copper(II) ions prevailed. Compound 3, as an ionic pair, shows, as expected, a spin-only magnetic moment. Full article
Show Figures

Figure 1

5 pages, 1274 KB  
Proceeding Paper
Designing a Phosphino-Thiosemicarbazone Ligand Capable of Stabilizing Coinage Metal Ions
by Isabel Velo-Heleno, Sandra Fernández-Fariña, Lara Rouco, Miguel Martínez-Calvo and Rosa Pedrido
Chem. Proc. 2022, 12(1), 44; https://doi.org/10.3390/ecsoc-26-13638 - 16 Nov 2022
Viewed by 1312
Abstract
Thiosemicarbazones are interesting organic skeletons due to their great coordinative versatility and their interesting biological and pharmacological properties, as well as their structural diversity. However, the isolation of their monovalent coinage metal complexes, such as Cu(I), Ag(I) and Au(I), is a partially studied [...] Read more.
Thiosemicarbazones are interesting organic skeletons due to their great coordinative versatility and their interesting biological and pharmacological properties, as well as their structural diversity. However, the isolation of their monovalent coinage metal complexes, such as Cu(I), Ag(I) and Au(I), is a partially studied field, since co-ligands with soft donor atoms such as phosphines are required. In this context, our research group has been studying a new family of ligands capable of stabilizing coinage complexes without the need for auxiliary co-ligands. To this end, it was decided to incorporate a phosphorus atom into the structure of a thiosemicarbazone kernel. This work presents the design, synthesis and structural characterization of a new phosphino-thiosemicarbazone ligand. Full article
Show Figures

Figure 1

16 pages, 3526 KB  
Article
New Heterotrinuclear CuIILnIIICuII (Ln = Ho, Er) Compounds with the Schiff Base: Syntheses, Structural Characterization, Thermal and Magnetic Properties
by Beata Cristóvão, Dariusz Osypiuk and Agata Bartyzel
Materials 2022, 15(12), 4299; https://doi.org/10.3390/ma15124299 - 17 Jun 2022
Cited by 3 | Viewed by 2405
Abstract
New heterotrinuclear complexes with the general formula [Cu2Ln(H2L)(HL)(NO3)2]·MeOH (Ln = Ho (1), Er (2), H4L = N,N′-bis(2,3-dihydroxybenzylidene)-1,3-diaminopropane) were synthesized using compartmental Schiff base ligand in conjugation [...] Read more.
New heterotrinuclear complexes with the general formula [Cu2Ln(H2L)(HL)(NO3)2]·MeOH (Ln = Ho (1), Er (2), H4L = N,N′-bis(2,3-dihydroxybenzylidene)-1,3-diaminopropane) were synthesized using compartmental Schiff base ligand in conjugation with auxiliary ligands. The compounds were characterized by elemental analysis, ATR-FTIR spectroscopy, X-ray diffraction, TG, DSC, TG-FTIR and XRD analysis. The N2O4 salen-type ligand coordinates 3d and 4f metal centers via azomethine nitrogen and phenoxo oxygen atoms, respectively, to form heteropolynuclear complexes having CuO2Ln cores. In the crystals 1 and 2, two terminal Cu(II) ions are penta-coordinated with a distorted square-pyramidal geometry and a LnIII ion with trigonal dodecahedral geometry is coordinated by eight oxygen atoms from [CuII(H2L)(NO3)] and [CuII(HL)(NO3)]2− units. Compounds 1 and 2 are stable at room temperature. During heating, they decompose in a similar way. In the first decomposition step, they lose solvent molecules. The exothermic decomposition of ligands is connected with emission large amounts of gaseous products e.g., water, nitric oxides, carbon dioxide, carbon monoxide. The final solid products of decomposition 1 and 2 in air are mixtures of CuO and Ho2O3/Er2O3. The measurements of magnetic susceptibilities and field dependent magnetization indicate the ferromagnetic interaction between CuII and HoIII ions 1. Full article
Show Figures

Figure 1

13 pages, 3522 KB  
Article
Identification and Functional Analysis of Glutathione S-Transferases from Sitophilus zeamais in Olfactory Organ
by Daosong Xia, Renwen Zheng, Jianhua Huang, Sihan Lu and Qingfeng Tang
Insects 2022, 13(3), 259; https://doi.org/10.3390/insects13030259 - 5 Mar 2022
Cited by 15 | Viewed by 3776
Abstract
Odorant-degrading enzymes (ODEs) play an important role in rapidly degrading and inactivating odorant molecules that have completed information transmission, as well as in maintaining the stability and sensitivity of insect olfactory sensing systems. Glutathione S-transferases (GSTs), as a group of ODEs, supposedly bear [...] Read more.
Odorant-degrading enzymes (ODEs) play an important role in rapidly degrading and inactivating odorant molecules that have completed information transmission, as well as in maintaining the stability and sensitivity of insect olfactory sensing systems. Glutathione S-transferases (GSTs), as a group of ODEs, supposedly bear the ability to catalyze the conjugation of glutathione (GSH) and xenobiotic odorant molecules in the degrading process. However, there are few reports regarding the role of the GST genes of Sitophilus zeamais in the degrading process. Thus, we characterized 13 full-length genes encoding GST sequences from S. zeamais, of which only SzeaGSTd1 contained a high abundance in the antennae. Ligand-binding assays implied that SzeaGSTd1 was able to catalyze the conjugation of GSH with 2, 4-dinitrochlorobenzene (CDNB). We investigated whether recombinant SzeaGSTd1 bears the ability to degrade the volatile molecules of the host; among the host volatiles, and found capryl alcohol to be a suitable substrate for SzeaGSTd1. These results strongly suggest that SzeaGSTd1 probably plays a role in auxiliary host location by degrading the host volatiles of capryl alcohol and exhibits a potential biological function in the olfactory sensing system of S. zeamais. Knowledge of the potential functions of SzeaGSTd1 will provide new ideas for biological control strategies for S. zeamais. Full article
Show Figures

Figure 1

26 pages, 59237 KB  
Review
Copper(II) Phenanthroline-Based Complexes as Potential AntiCancer Drugs: A Walkthrough on the Mechanisms of Action
by Sebastiano Masuri, Petr Vaňhara, Maria Grazia Cabiddu, Lukáš Moráň, Josef Havel, Enzo Cadoni and Tiziana Pivetta
Molecules 2022, 27(1), 49; https://doi.org/10.3390/molecules27010049 - 22 Dec 2021
Cited by 58 | Viewed by 8884
Abstract
Copper is an endogenous metal ion that has been studied to prepare a new antitumoral agent with less side-effects. Copper is involved as a cofactor in several enzymes, in ROS production, in the promotion of tumor progression, metastasis, and angiogenesis, and has been [...] Read more.
Copper is an endogenous metal ion that has been studied to prepare a new antitumoral agent with less side-effects. Copper is involved as a cofactor in several enzymes, in ROS production, in the promotion of tumor progression, metastasis, and angiogenesis, and has been found at high levels in serum and tissues of several types of human cancers. Under these circumstances, two strategies are commonly followed in the development of novel anticancer Copper-based drugs: the sequestration of free Copper ions and the synthesis of Copper complexes that trigger cell death. The latter strategy has been followed in the last 40 years and many reviews have covered the anticancer properties of a broad spectrum of Copper complexes, showing that the activity of these compounds is often multi factored. In this work, we would like to focus on the anticancer properties of mixed Cu(II) complexes bearing substituted or unsubstituted 1,10-phenanthroline based ligands and different classes of inorganic and organic auxiliary ligands. For each metal complex, information regarding the tested cell lines and the mechanistic studies will be reported and discussed. The exerted action mechanisms were presented according to the auxiliary ligand/s, the metallic centers, and the increasing complexity of the compound structures. Full article
(This article belongs to the Special Issue Coordination Chemistry in Cancer Therapy)
Show Figures

Figure 1

13 pages, 1588 KB  
Article
Generation of a Soluble Form of Human Endoglin Fused to Green Fluorescent Protein
by Lidia Ruiz-Llorente, M. Cristina Vega, Francisco J. Fernández, Carmen Langa, Nicholas W. Morrell, Paul D. Upton and Carmelo Bernabeu
Int. J. Mol. Sci. 2021, 22(20), 11282; https://doi.org/10.3390/ijms222011282 - 19 Oct 2021
Cited by 3 | Viewed by 3779
Abstract
Endoglin (Eng, CD105) is a type I membrane glycoprotein that functions in endothelial cells as an auxiliary receptor for transforming growth factor β (TGF-β)/bone morphogenetic protein (BMP) family members and as an integrin ligand, modulating the vascular pathophysiology. Besides the membrane-bound [...] Read more.
Endoglin (Eng, CD105) is a type I membrane glycoprotein that functions in endothelial cells as an auxiliary receptor for transforming growth factor β (TGF-β)/bone morphogenetic protein (BMP) family members and as an integrin ligand, modulating the vascular pathophysiology. Besides the membrane-bound endoglin, there is a soluble form of endoglin (sEng) that can be generated by the action of the matrix metalloproteinase (MMP)-14 or -12 on the juxtamembrane region of its ectodomain. High levels of sEng have been reported in patients with preeclampsia, hypercholesterolemia, atherosclerosis and cancer. In addition, sEng is a marker of cardiovascular damage in patients with hypertension and diabetes, plays a pathogenic role in preeclampsia, and inhibits angiogenesis and tumor proliferation, migration, and invasion in cancer. However, the mechanisms of action of sEng have not yet been elucidated, and new tools and experimental approaches are necessary to advance in this field. To this end, we aimed to obtain a fluorescent form of sEng as a new tool for biological imaging. Thus, we cloned the extracellular domain of endoglin in the pEGFP-N1 plasmid to generate a fusion protein with green fluorescent protein (GFP), giving rise to pEGFP-N1/Eng.EC. The recombinant fusion protein was characterized by transient and stable transfections in CHO-K1 cells using fluorescence microscopy, SDS-PAGE, immunodetection, and ELISA techniques. Upon transfection with pEGFP-N1/Eng.EC, fluorescence was readily detected in cells, indicating that the GFP contained in the recombinant protein was properly folded into the cytosol. Furthermore, as evidenced by Western blot analysis, the secreted fusion protein yielded the expected molecular mass and displayed a specific fluorescent signal. The fusion protein was also able to bind to BMP9 and BMP10 in vitro. Therefore, the construct described here could be used as a tool for functional in vitro studies of the extracellular domain of endoglin. Full article
(This article belongs to the Special Issue Recombinant Proteins 2.0)
Show Figures

Figure 1

9 pages, 12416 KB  
Article
Relationship between Antioxidant Activity and Ligand Basicity in the Dipicolinate Series of Oxovanadium(IV) and Dioxovanadium(V) Complexes
by Joanna Drzeżdżon, Marta Pawlak, Natalia Matyka, Artur Sikorski, Barbara Gawdzik and Dagmara Jacewicz
Int. J. Mol. Sci. 2021, 22(18), 9886; https://doi.org/10.3390/ijms22189886 - 13 Sep 2021
Cited by 15 | Viewed by 3178
Abstract
Oxidative stress plays an important role in the pathogenesis of many serious diseases, including cancer, atherosclerosis, coronary artery disease, Parkinson’s disease, Alzheimer’s disease, stroke and myocardial infarction. In the body’s natural biochemical processes, harmful free radicals are formed, which can be removed with [...] Read more.
Oxidative stress plays an important role in the pathogenesis of many serious diseases, including cancer, atherosclerosis, coronary artery disease, Parkinson’s disease, Alzheimer’s disease, stroke and myocardial infarction. In the body’s natural biochemical processes, harmful free radicals are formed, which can be removed with the help of appropriate enzymes, a balanced diet or the supply of synthetic antioxidant substances such as flavonoids, vitamins or anthocyanins to the body. Due to the growing demand for antioxidant substances, new complex compounds of transition metal ions with potential antioxidant activity are constantly being sought. In this study, four oxovanadium(IV) and dioxovanadium(V) dipicolinate (dipic) complexes with 1,10-phenanthroline (phen), 2,2′-bipyridyl (bipy) and the protonated form of 2-phenylpyridine (2-phephyH): (1) [VO(dipic)(H2O)2]·2 H2O, (2) [VO(dipic)(phen)]·3 H2O, (3) [VO(dipic)(bipy)]·H2O and (4) [VOO(dipic)](2-phepyH)·H2O were synthesized including one new complex, so far unknown and not described in the literature, i.e., [VOO(dipic)](2-phepyH)·H2O. The oxovanadium(IV) dipicolinate complexes with 1,10-phenanthroline and 2,2′-bipyridyl have been characterized by several physicochemical methods: NMR, MALDI-TOF-MS, IR, but new complex [VOO(dipic)](2-phepyH)·H2O has been examined by XRD to confirm its structure. The antioxidant activities of four complexes have been examined by the nitrotetrazolium blue (NBT) method towards superoxide anion. All complexes exhibit high reactivity with superoxide anion and [VOO(dipic)](2-phepyH)·H2O has higher antioxidant activity than L-ascorbic acid. Our studies confirmed that high basicity of the auxiliary ligand increases the reactivity of the complex with the superoxide radical. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop