Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (481)

Search Parameters:
Keywords = neurofibrillary tangles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2091 KiB  
Article
Exploring the Impact of Bioactive Compounds Found in Extra Virgin Olive Oil on NRF2 Modulation in Alzheimer’s Disease
by Marilena M. Bourdakou, Eleni M. Loizidou and George M. Spyrou
Antioxidants 2025, 14(8), 952; https://doi.org/10.3390/antiox14080952 (registering DOI) - 2 Aug 2025
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by amyloid-β (Aβ) plaques, neurofibrillary tangles, blood–brain barrier dysfunction, oxidative stress (OS), and neuroinflammation. Current treatments provide symptomatic relief, but do not halt the disease’s progression. OS plays a crucial role in AD pathogenesis [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by amyloid-β (Aβ) plaques, neurofibrillary tangles, blood–brain barrier dysfunction, oxidative stress (OS), and neuroinflammation. Current treatments provide symptomatic relief, but do not halt the disease’s progression. OS plays a crucial role in AD pathogenesis by promoting Aβ accumulation. Nuclear factor erythroid 2-related factor 2 (NRF2) is a key regulator of the antioxidant response, influencing genes involved in OS mitigation, mitochondrial function, and inflammation. Dysregulation of NRF2 is implicated in AD, making it a promising therapeutic target. Emerging evidence suggests that adherence to a Mediterranean diet (MD), which is particularly rich in polyphenols from extra virgin olive oil (EVOO), is associated with improved cognitive function and a reduced risk of mild cognitive impairment. Polyphenols can activate NRF2, enhancing endogenous antioxidant defenses. This study employs a computational approach to explore the potential of bioactive compounds in EVOO to modulate NRF2-related pathways in AD. We analyzed transcriptomic data from AD and EVOO-treated samples to identify NRF2-associated genes, and used chemical structure-based analysis to compare EVOO’s bioactive compounds with known NRF2 activators. Enrichment analysis was performed to identify common biological functions between NRF2-, EVOO-, and AD-related pathways. Our findings highlight important factors and biological functions that provide new insight into the molecular mechanisms through which EVOO consumption might influence cellular pathways associated with AD via modulation of the NRF2 pathway. The presented approach provides a different perspective in the discovery of compounds that may contribute to neuroprotective mechanisms in the context of AD. Full article
33 pages, 2423 KiB  
Review
Chaperone-Mediated Responses and Mitochondrial–Endoplasmic Reticulum Coupling: Emerging Insight into Alzheimer’s Disease
by Manish Kumar Singh, Minghao Fu, Sunhee Han, Jyotsna S. Ranbhise, Wonchae Choe, Sung Soo Kim and Insug Kang
Cells 2025, 14(15), 1179; https://doi.org/10.3390/cells14151179 - 31 Jul 2025
Abstract
Alzheimer’s disease (AD) is increasingly recognized as a multifactorial disorder driven by a combination of disruptions in proteostasis and organelle communication. The 2020 Lancet commission reported that approximately 10 million people worldwide were affected by AD in the mid-20th century. AD is the [...] Read more.
Alzheimer’s disease (AD) is increasingly recognized as a multifactorial disorder driven by a combination of disruptions in proteostasis and organelle communication. The 2020 Lancet commission reported that approximately 10 million people worldwide were affected by AD in the mid-20th century. AD is the most prevalent cause of dementia. By early 2030, the global cost of dementia is projected to rise by USD 2 trillion per year, with up to 85% of that cost attributed to daily patient care. Several factors have been implicated in the progression of neurodegeneration, including increased oxidative stress, the accumulation of misfolded proteins, the formation of amyloid plaques and aggregates, the unfolded protein response (UPR), and mitochondrial–endoplasmic reticulum (ER) calcium homeostasis. However, the exact triggers that initiate these pathological processes remain unclear, in part because clinical symptoms often emerge gradually and subtly, complicating early diagnosis. Among the early hallmarks of neurodegeneration, elevated levels of reactive oxygen species (ROS) and the buildup of misfolded proteins are believed to play pivotal roles in disrupting proteostasis, leading to cognitive deficits and neuronal cell death. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles is a characteristic feature of AD. These features contribute to chronic neuroinflammation, which is marked by the release of pro-inflammatory cytokines and chemokines that exacerbate oxidative stress. Given these interconnected mechanisms, targeting stress-related signaling pathways, such as oxidative stress (ROS) generated in the mitochondria and ER, ER stress, UPR, and cytosolic chaperones, represents a promising strategy for therapeutic intervention. This review focuses on the relationship between stress chaperone responses and organelle function, particularly the interaction between mitochondria and the ER, in the development of new therapies for AD and related neurodegenerative disorders. Full article
Show Figures

Figure 1

12 pages, 526 KiB  
Systematic Review
Advances in Understanding Chronic Traumatic Encephalopathy: A Systematic Review of Clinical and Pathological Evidence
by Francesco Orsini, Giovanni Pollice, Francesco Carpano, Luigi Cipolloni, Andrea Cioffi, Camilla Cecannecchia, Roberta Bibbò and Stefania De Simone
Forensic Sci. 2025, 5(3), 33; https://doi.org/10.3390/forensicsci5030033 - 30 Jul 2025
Viewed by 95
Abstract
Background/Objectives: Traumatic brain injury is one of the leading causes of death and disability. When traumatic brain injury is repeated over time, it can lead to the development of Chronic Traumatic Encephalopathy, a chronic neurodegenerative disease commonly observed in individuals who engage [...] Read more.
Background/Objectives: Traumatic brain injury is one of the leading causes of death and disability. When traumatic brain injury is repeated over time, it can lead to the development of Chronic Traumatic Encephalopathy, a chronic neurodegenerative disease commonly observed in individuals who engage in contact sports or military personnel involved in activities with a high risk of repeated head trauma. At autopsy, the examination of the brain reveals regional atrophy, corresponding to high concentrations of glutamate receptors. Microscopically, the primary findings are the deposition of neurofibrillary tangles and neuropil threads. The aim of this study is to highlight the clinical and histopathological characteristics of Chronic Traumatic Encephalopathy, providing diagnostic support to forensic pathologists. Additionally, it seeks to aid in the differential diagnosis of similar conditions. Methods: A review of literature was conducted following the PRISMA criteria. Of 274 articles, 7 were selected. Results: According to these papers, most patients were male and exhibited neurological symptoms and neuropsychiatric impairments, and a proportion of them committed suicide or had aggressive behavior. Conclusions: Chronic Traumatic Encephalopathy remains largely underdiagnosed during life. The definitive diagnosis of Chronic Traumatic Encephalopathy is established post-mortem through the identification of pathognomonic tauopathy lesions. Early and accurate antemortem recognition, particularly in at-risk individuals, is highly valuable for its differentiation from other neurodegenerative conditions, thereby enabling appropriate clinical management and potential interventions. Full article
Show Figures

Figure 1

19 pages, 753 KiB  
Review
Neuroprotective Role of Omega-3 Fatty Acids: Fighting Alzheimer’s Disease
by Mervin Chávez-Castillo, María Paula Gotera, Pablo Duran, María P. Díaz, Manuel Nava, Clímaco Cano, Edgar Díaz-Camargo, Gabriel Cano, Raquel Cano, Diego Rivera-Porras and Valmore Bermúdez
Molecules 2025, 30(15), 3057; https://doi.org/10.3390/molecules30153057 - 22 Jul 2025
Viewed by 524
Abstract
Alzheimer’s disease (AD) is one of the main causes of dementia, with an exponential increment in its incidence as years go by. However, since pathophysiological mechanisms are complex and multifactorial, therapeutic strategies remain inconclusive and only provide symptomatic relief to patients. In order [...] Read more.
Alzheimer’s disease (AD) is one of the main causes of dementia, with an exponential increment in its incidence as years go by. However, since pathophysiological mechanisms are complex and multifactorial, therapeutic strategies remain inconclusive and only provide symptomatic relief to patients. In order to solve this problem, new strategies have been investigated over recent years for AD treatment. This field has been reborn due to epidemiological and preclinical findings that demonstrate the fact that omega-3 polyunsaturated fatty acids (ω-3 PUFAs) can be promising therapeutic agents because of their anti-inflammatory, antioxidant, and neurogenic-promoting activities, thus allowing us to classify these molecules as neuroprotectors. Similarly, ω-3 PUFAs perform important actions in the formation of characteristic AD lesions, amyloid-β plaques (Aβ) and neurofibrillary tangles, reducing the development of these structures. Altogether, the aforementioned actions hinder cognitive decline and possibly reduce AD development. In addition, ω-3 PUFAs modulate the inflammatory response by inhibiting the production of pro-inflammatory molecules and promoting the synthesis of specialised pro-resolving mediators. Consequently, the present review assesses the mechanisms by which ω-3 PUFAs can act as therapeutic molecules and the effectiveness of their use in patients. Clinical evidence so far has shown promising results on ω-3 PUFA effects, both in animal and epidemiological studies, but remains contradictory in clinical trials. More research on these molecules and their neuroprotective effects in AD is needed, as well as the establishment of future guidelines to obtain more reproducible results on this matter. Full article
Show Figures

Figure 1

20 pages, 1591 KiB  
Review
From Molecules to Medicines: The Role of AI-Driven Drug Discovery Against Alzheimer’s Disease and Other Neurological Disorders
by Mashael A. Alghamdi
Pharmaceuticals 2025, 18(7), 1041; https://doi.org/10.3390/ph18071041 - 14 Jul 2025
Viewed by 886
Abstract
The discovery of effective therapeutics against Alzheimer’s disease (AD) and other neurological disorders remains a significant challenge. Artificial intelligence (AI) tools are of considerable interest in modern drug discovery processes and, by exploiting machine learning (ML) algorithms and deep learning (DL) tools, as [...] Read more.
The discovery of effective therapeutics against Alzheimer’s disease (AD) and other neurological disorders remains a significant challenge. Artificial intelligence (AI) tools are of considerable interest in modern drug discovery processes and, by exploiting machine learning (ML) algorithms and deep learning (DL) tools, as well as data analytics, can expedite the identification of new drug targets and potential lead molecules. The current study was aimed at assessing the role of AI-based tools in the discovery of new drug targets against AD and other related neurodegenerative diseases and their efficacy in the discovery of new drugs against these diseases. AD represents a multifactorial neurological disease with limited therapeutics available for management and limited efficacy. The discovery of more effective medications is limited by the complicated pathophysiology of the disease, involving amyloid beta (Aβ), neurofibrillary tangles (NFTs), oxidative stress, and inflammation-induced damage in the brain. The integration of AI tools into the traditional drug discovery process against AD can help to find more effective, safe, highly potent compounds, identify new targets of the disease, and help in the optimization of lead molecules. A detailed literature review was performed to gather evidence regarding the most recent AI tools for drug discovery against AD, Parkinson’s disease (PD), multiple sclerosis (MLS), and epilepsy, focusing on biological markers, early diagnoses, and drug discovery using various databases like PubMed, Web of Science, Google Scholar, Scopus, and ScienceDirect to collect relevant literature. We evaluated the role of AI in analyzing multifaceted biological data and the properties of potential drug candidates and in streamlining the design of clinical trials. By exploring the intersection of AI and neuroscience, this review focused on providing insights into the future of AD treatment and the potential of AI to revolutionize the field of drug discovery. Our findings conclude that AI-based tools are not only cost-effective, but the success rate is extremely high compared to traditional drug discovery methods in identifying new therapeutic targets and in the screening of the majority of molecules for clinical trial purposes. Full article
Show Figures

Figure 1

17 pages, 1513 KiB  
Review
Rational Modulation of Liquid–Liquid Phase Separation Offers Novel Ways to Combat Tauopathies
by Xingxing Zhang, Lumiao Wang, Nixin Lin, Meng Gao and Yongqi Huang
Int. J. Mol. Sci. 2025, 26(14), 6709; https://doi.org/10.3390/ijms26146709 - 12 Jul 2025
Viewed by 520
Abstract
The microtubule-associated protein tau plays an essential role in regulating the dynamic assembly of microtubules and is implicated in axonal elongation and maturation, axonal transport, synaptic plasticity regulation, and genetic stability maintenance. Nevertheless, the assembly of tau into neurofibrillary tangles in neurons is [...] Read more.
The microtubule-associated protein tau plays an essential role in regulating the dynamic assembly of microtubules and is implicated in axonal elongation and maturation, axonal transport, synaptic plasticity regulation, and genetic stability maintenance. Nevertheless, the assembly of tau into neurofibrillary tangles in neurons is a pathological hallmark of a group of neurodegenerative diseases known as tauopathies. Despite enormous efforts and rapid advancements in the field, effective treatment remains lacking for these diseases. In this review, we provide an overview of the structure and phase transition of tau protein. In particular, we focus on the involvement of liquid–liquid phase separation in the biology and pathology of tau. We then discuss several potential strategies for combating tauopathies in the context of phase separation: (i) modulating the formation of tau condensates, (ii) delaying the liquid-to-solid transition of tau condensates, (iii) reducing the enrichment of aggregation-prone species into tau condensates, and (iv) suppressing abnormal post-translational modifications on tau inside condensates. Deciphering the structure–activity relationship of tau phase transition modulators and uncovering the conformational changes in tau during phase transitions will aid in developing therapeutic agents targeting tau in the context of phase separation. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 3083 KiB  
Article
Hypergravity and ERK Inhibition Combined Synergistically Reduce Pathological Tau Phosphorylation in a Neurodegenerative Cell Model
by Valerio Mignucci, Ivana Barravecchia, Davide De Luca, Giacomo Siano, Cristina Di Primio, Jack J. W. A. van Loon and Debora Angeloni
Cells 2025, 14(14), 1058; https://doi.org/10.3390/cells14141058 - 10 Jul 2025
Viewed by 411
Abstract
This study evaluates the effects of hypergravity (HG) on a neurodegenerative model in vitro, looking at how HG influences Tau protein aggregation in Mouse Hippocampal Neuronal Cells (HT22) induced by neurofibrillary tangle seeds. Overall, 50× g significantly, synergistically, reduced the Tau aggregate Area [...] Read more.
This study evaluates the effects of hypergravity (HG) on a neurodegenerative model in vitro, looking at how HG influences Tau protein aggregation in Mouse Hippocampal Neuronal Cells (HT22) induced by neurofibrillary tangle seeds. Overall, 50× g significantly, synergistically, reduced the Tau aggregate Area when combined with ERK-inhibitor PD-0325901, correlating with decreased phosphorylation at critical residues pS262 and pS396. These findings suggest HG treatments may help mitigate cytoskeletal damage linked to Tau aggregation. Full article
(This article belongs to the Special Issue Ageing and Neurodegenerative Diseases, Second Edition)
Show Figures

Graphical abstract

37 pages, 2135 KiB  
Review
Neuroprotective Mechanisms of Red Algae-Derived Bioactive Compounds in Alzheimer’s Disease: An Overview of Novel Insights
by Tianzi Wang, Wenling Shi, Zijun Mao, Wei Xie and Guoqing Wan
Mar. Drugs 2025, 23(7), 274; https://doi.org/10.3390/md23070274 - 30 Jun 2025
Viewed by 543
Abstract
Alzheimer’s disease (AD) is characterized by β-amyloid plaques, neurofibrillary tangles, neuroinflammation, and oxidative stress—pathological features that pose significant challenges for the development of therapeutic interventions. Given these challenges, this review comprehensively evaluates the neuroprotective mechanisms of bioactive compounds derived from red algae, [...] Read more.
Alzheimer’s disease (AD) is characterized by β-amyloid plaques, neurofibrillary tangles, neuroinflammation, and oxidative stress—pathological features that pose significant challenges for the development of therapeutic interventions. Given these challenges, this review comprehensively evaluates the neuroprotective mechanisms of bioactive compounds derived from red algae, including polysaccharides and phycobiliproteins, which are considered a promising source of natural therapeutics for AD. Red algal constituents exhibit neuroprotective activities through multiple mechanisms. Sulfated polysaccharides (e.g., carrageenan, porphyran) suppress NF-κB-mediated neuroinflammation, modulate mitochondrial function, and enhance brain-derived neurotrophic factor (BDNF) expression. Phycobiliproteins (phycoerythrin, phycocyanin) and peptides derived from their degradation scavenge reactive oxygen species (ROS) and activate antioxidant pathways (e.g., Nrf2/HO-1), thus mitigating oxidative damage. Carotenoids (lutein, zeaxanthin) improve cognitive function through the inhibition of acetylcholinesterase and pro-inflammatory cytokines (TNF-α, IL-1β), while phenolic compounds (bromophenols, diphlorethol) provide protection by targeting multiple pathways involved in dopaminergic system modulation and Nrf2 pathway activation. Emerging extraction technologies—including microwave- and enzyme-assisted methods—have been shown to optimize the yield and maintain the bioactivity of these compounds. However, the precise identification of molecular targets and the standardization of extraction techniques remain critical research priorities. Overall, red algae-derived compounds hold significant potential for multi-mechanism AD interventions, providing novel insights for the development of therapeutic strategies with low toxicity. Full article
(This article belongs to the Special Issue Marine-Derived Bioactive Compounds for Neuroprotection)
Show Figures

Figure 1

15 pages, 351 KiB  
Review
Recent Advances in Antibody Therapy for Alzheimer’s Disease: Focus on Bispecific Antibodies
by Han-Mo Yang
Int. J. Mol. Sci. 2025, 26(13), 6271; https://doi.org/10.3390/ijms26136271 - 28 Jun 2025
Viewed by 815
Abstract
Alzheimer’s disease (AD) impacts more than half a million people worldwide, with no cure available. The regulatory approval of three anti-amyloid monoclonal antibodies (mAbs), including aducanumab, lecanemab, and donanemab, has established immunotherapy as a therapeutic approach to modify disease progression. Its multifactorial pathology, [...] Read more.
Alzheimer’s disease (AD) impacts more than half a million people worldwide, with no cure available. The regulatory approval of three anti-amyloid monoclonal antibodies (mAbs), including aducanumab, lecanemab, and donanemab, has established immunotherapy as a therapeutic approach to modify disease progression. Its multifactorial pathology, which involves amyloid-β (Aβ) plaques, tau neurofibrillary tangles, neuroinflammation, and cerebrovascular dysfunction, limits the efficacy of single-target therapies. The restricted blood–brain barrier (BBB) penetration and amyloid-related imaging abnormalities (ARIA), together with small treatment effects, demonstrate the necessity for advanced biologic therapies. Protein engineering advancements have created bispecific antibodies that bind to pathological proteins (e.g., Aβ, tau) and BBB shuttle receptors to boost brain delivery and dual therapeutic effects. This review combines existing information about antibody-based therapy in AD by focusing on bispecific antibody formats and their preclinical and clinical development, as well as biomarker-based patient selection and upcoming combination strategies. The combination of rationally designed bispecific antibodies with fluid and imaging biomarkers could show potential for overcoming existing therapeutic challenges and delivering significant clinical advantages. Full article
(This article belongs to the Special Issue New Insights in Antibody Therapy)
Show Figures

Figure 1

28 pages, 7888 KiB  
Article
Estradiol Prevents Amyloid Beta-Induced Mitochondrial Dysfunction and Neurotoxicity in Alzheimer’s Disease via AMPK-Dependent Suppression of NF-κB Signaling
by Pranav Mishra, Ehsan K. Esfahani, Paul Fernyhough and Benedict C. Albensi
Int. J. Mol. Sci. 2025, 26(13), 6203; https://doi.org/10.3390/ijms26136203 - 27 Jun 2025
Viewed by 665
Abstract
Alzheimer’s disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder characterized by memory loss and cognitive decline. In addition to its two major pathological hallmarks, extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs), recent evidence highlights the [...] Read more.
Alzheimer’s disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder characterized by memory loss and cognitive decline. In addition to its two major pathological hallmarks, extracellular amyloid beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs), recent evidence highlights the critical roles of mitochondrial dysfunction and neuroinflammation in disease progression. Aβ impairs mitochondrial function, which, in part, can subsequently trigger inflammatory cascades, creating a vicious cycle of neuronal damage. Estrogen receptors (ERs) are widely expressed throughout the brain, and the sex hormone 17β-estradiol (E2) exerts neuroprotection through both anti-inflammatory and mitochondrial mechanisms. While E2 exhibits neuroprotective properties, its mechanisms against Aβ toxicity remain incompletely understood. In this study, we investigated the neuroprotective effects of E2 against Aβ-induced mitochondrial dysfunction and neuroinflammation in primary cortical neurons, with a particular focus on the role of AMP-activated protein kinase (AMPK). We found that E2 treatment significantly increased phosphorylated AMPK and upregulated the expression of mitochondrial biogenesis regulator peroxisome proliferator-activated receptor gamma coactivator-1 α (PGC-1α), leading to improved mitochondrial respiration. In contrast, Aβ suppressed AMPK and PGC-1α signaling, impaired mitochondrial function, activated the pro-inflammatory nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), and reduced neuronal viability. E2 pretreatment also rescued Aβ-induced mitochondrial dysfunction, suppressed NF-κB activation, and, importantly, prevented the decline in neuronal viability. However, the pharmacological inhibition of AMPK using Compound C (CC) abolished these protective effects, resulting in mitochondrial collapse, elevated inflammation, and cell death, highlighting AMPK’s critical role in mediating E2’s actions. Interestingly, while NF-κB inhibition using BAY 11-7082 partially restored mitochondrial respiration, it failed to prevent Aβ-induced cytotoxicity, suggesting that E2’s full neuroprotective effects rely on broader AMPK-dependent mechanisms beyond NF-κB suppression alone. Together, these findings establish AMPK as a key mediator of E2’s protective effects against Aβ-driven mitochondrial dysfunction and neuroinflammation, providing new insights into estrogen-based therapeutic strategies for AD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

27 pages, 2568 KiB  
Review
Interplay Between Aging and Tau Pathology in Alzheimer’s Disease: Mechanisms and Translational Perspectives
by Mohammed Alrouji, Mohammed S. Alshammari, Syed Tasqeeruddin and Anas Shamsi
Antioxidants 2025, 14(7), 774; https://doi.org/10.3390/antiox14070774 - 24 Jun 2025
Viewed by 961
Abstract
Aging is a key risk factor for neurodegenerative disorders and is associated with widespread systemic and brain-specific changes. Alzheimer’s disease (AD), a progressive and irreversible brain disorder, primarily affects older adults and leads to a gradual decline in cognitive function. The underlying disease [...] Read more.
Aging is a key risk factor for neurodegenerative disorders and is associated with widespread systemic and brain-specific changes. Alzheimer’s disease (AD), a progressive and irreversible brain disorder, primarily affects older adults and leads to a gradual decline in cognitive function. The underlying disease mechanisms often begin years before clinical symptoms appear, limiting the effectiveness of current treatments. Several factors linked to aging—including inflammation, oxidative stress, impaired metabolism, and protein aggregation—contribute to the onset and progression of AD. A central feature of AD is the abnormal accumulation of amyloid beta (Aβ) and tau, a microtubule-associated protein, driven by post-translational modifications such as acetylation and hyperphosphorylation. These modifications lead to structural changes in tau, promoting the formation of neurofibrillary tangles (NFTs), which are more closely associated with cognitive decline than Aβ plaques. Interestingly, tau accumulation and the resulting cognitive impairments are often observed in aged individuals without Aβ deposition, highlighting tauopathy as a distinct contributor to age-related cognitive decline. This review focuses on new developments in therapeutic approaches that target oxidative stress, protein aggregation, and neuroinflammation, and our current understanding of the molecular pathways relating aging and tau pathology in AD. Full article
Show Figures

Figure 1

35 pages, 2933 KiB  
Review
NEU1-Mediated Extracellular Vesicle Glycosylation in Alzheimer’s Disease: Mechanistic Insights into Intercellular Communication and Therapeutic Targeting
by Mohd Adnan, Arif Jamal Siddiqui, Fevzi Bardakci, Malvi Surti, Riadh Badraoui and Mitesh Patel
Pharmaceuticals 2025, 18(6), 921; https://doi.org/10.3390/ph18060921 - 19 Jun 2025
Viewed by 658
Abstract
Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is marked by the pathological accumulation of amyloid-β plaques and tau neurofibrillary tangles, both of which disrupt neuronal communication and function. Emerging evidence highlights the role of extracellular vesicles (EVs) as key mediators of intercellular communication, [...] Read more.
Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is marked by the pathological accumulation of amyloid-β plaques and tau neurofibrillary tangles, both of which disrupt neuronal communication and function. Emerging evidence highlights the role of extracellular vesicles (EVs) as key mediators of intercellular communication, particularly in the propagation of pathological proteins in AD. Among the regulatory factors influencing EV composition and function, neuraminidase 1 (NEU1), a lysosomal sialidase responsible for desialylating glycoproteins has gained attention for its involvement in EV glycosylation. This review explores the role of NEU1 in modulating EV glycosylation, with particular emphasis on its influence on immune modulation and intracellular trafficking pathways and the subsequent impact on intercellular signaling and neurodegenerative progression. Altered NEU1 activity has been associated with abnormal glycan profiles on EVs, which may facilitate the enhanced spread of amyloid-β and tau proteins across neural networks. By regulating glycosylation, NEU1 influences EV stability, targeting and uptake by recipient cells, primarily through the desialylation of surface glycoproteins and glycolipids, which alters the EV charge, recognition and receptor-mediated interactions. Targeting NEU1 offers a promising therapeutic avenue to restore EV homeostasis and reduces pathological protein dissemination. However, challenges persist in developing selective NEU1 inhibitors and effective delivery methods to the brain. Furthermore, altered EV glycosylation patterns may serve as potential biomarkers for early AD diagnosis and monitoring. Overall, this review highlights the importance of NEU1 in AD pathogenesis and advocates for deeper investigation into its regulatory functions, with the aim of advancing therapeutic strategies and biomarker development for AD and related neurological disabilities. Full article
(This article belongs to the Special Issue Pharmacotherapy for Alzheimer’s Disease)
Show Figures

Graphical abstract

26 pages, 959 KiB  
Review
Autophagy and Alzheimer’s Disease: Mechanisms and Impact Beyond the Brain
by Zaw Myo Hein, Thirupathirao Vishnumukkala, Barani Karikalan, Aisyah Alkatiri, Farida Hussan, Saravanan Jagadeesan, Mohd Amir Kamaruzzaman, Muhammad Danial Che Ramli, Che Mohd Nasril Che Mohd Nassir and Prarthana Kalerammana Gopalakrishna
Cells 2025, 14(12), 911; https://doi.org/10.3390/cells14120911 - 16 Jun 2025
Viewed by 1089
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by neuronal loss, cognitive decline, and pathological hallmarks such as amyloid-beta (Aβ) plaques and tau neurofibrillary tangles. Recent evidence highlights autophagy as a pivotal mechanism in cellular homeostasis, mediating the clearance of misfolded proteins [...] Read more.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder marked by neuronal loss, cognitive decline, and pathological hallmarks such as amyloid-beta (Aβ) plaques and tau neurofibrillary tangles. Recent evidence highlights autophagy as a pivotal mechanism in cellular homeostasis, mediating the clearance of misfolded proteins and damaged organelles. However, impaired autophagy contributes significantly to AD pathogenesis by disrupting proteostasis, exacerbating neuroinflammation, and promoting synaptic dysfunction. This review aims to scrutinize the intricate relationship between autophagy dysfunction and AD progression, explaining key pathways including macroautophagy, chaperone-mediated autophagy (CMA), and selective autophagy processes such as mitophagy and aggrephagy. This further extends the discussion beyond the central nervous system, evaluating the role of hepatic autophagy in Aβ clearance and systemic metabolic regulation. An understanding of autophagy’s involvement in AD pathology via various mechanisms could give rise to a novel therapeutic strategy targeting autophagic modulation to mitigate disease progression in the future. Full article
(This article belongs to the Special Issue Biological Mechanisms in the Treatment of Neuropsychiatric Diseases)
Show Figures

Figure 1

28 pages, 1703 KiB  
Review
Cytoskeletal Proteins and Alzheimer’s Disease Pathogenesis: Focusing on the Interplay with Tau Pathology
by Gege Jiang, Guanfeng Xie, Xiaoyi Li and Jing Xiong
Biomolecules 2025, 15(6), 831; https://doi.org/10.3390/biom15060831 - 6 Jun 2025
Viewed by 908
Abstract
The aggregation of Tau protein into neurofibrillary tangles (NFTs), a hallmark of Alzheimer’s disease (AD), is associated with cognitive decline. Recent studies have revealed that neuronal cytoskeletal instability drives early AD pathogenesis. The physiological interaction between tau and the microtubule (MT) is crucial [...] Read more.
The aggregation of Tau protein into neurofibrillary tangles (NFTs), a hallmark of Alzheimer’s disease (AD), is associated with cognitive decline. Recent studies have revealed that neuronal cytoskeletal instability drives early AD pathogenesis. The physiological interaction between tau and the microtubule (MT) is crucial for maintaining axonal transport and stability. However, aberrant post-translational modifications (PTMs) in the MT binding domain—such as phosphorylation, acetylation and ubiquitination—trigger tau dissociation, causing microtubule collapse, transport deficits, and synaptic dysfunction. MT dysregulation also affects actin/cofilin-mediated dendritic spine destabilization and causes the hyperplasia of the glial intermediate filament, which exacerbates neuroinflammation and synaptic toxicity. This review systematically explores the functions of neuronal cytoskeletons, deciphers the molecular crosstalk between tau pathology and cytoskeletal remodeling, and proposes multi-target therapeutic strategies to restore cytoskeletal homeostasis, thereby providing novel perspectives for precision interventions in AD Full article
(This article belongs to the Special Issue Pathogenesis and Neuropathology of Alzheimer's Disease)
Show Figures

Figure 1

25 pages, 1948 KiB  
Review
The Role and Pathogenesis of Tau Protein in Alzheimer’s Disease
by Xiaoyue Hong, Linshu Huang, Fang Lei, Tian Li, Yi Luo, Mengliu Zeng and Zhuo Wang
Biomolecules 2025, 15(6), 824; https://doi.org/10.3390/biom15060824 - 5 Jun 2025
Viewed by 1501
Abstract
Alzheimer’s disease (AD), a predominant neurodegenerative disorder, is clinically characterized by progressive cognitive deterioration and behavioral deficits. An in-depth understanding of the pathogenesis and neuropathology of AD is essential for the development of effective treatments and early diagnosis techniques. The neuropathological signature of [...] Read more.
Alzheimer’s disease (AD), a predominant neurodegenerative disorder, is clinically characterized by progressive cognitive deterioration and behavioral deficits. An in-depth understanding of the pathogenesis and neuropathology of AD is essential for the development of effective treatments and early diagnosis techniques. The neuropathological signature of AD involves two hallmark lesions: intraneuronal neurofibrillary tangles composed of hyperphosphorylated tau aggregates and extracellular senile plaques containing amyloid-β (Aβ) peptide depositions. Although Aβ-centric research has dominated AD investigations over the past three decades, pharmacological interventions targeting Aβ pathology have failed to demonstrate clinical efficacy. Tau, a microtubule-associated protein predominantly localized to neuronal axons, orchestrates microtubule stabilization and axonal transport through dynamic tubulin interactions under physiological conditions. In AD pathogenesis, however, tau undergoes pathogenic post-translational modifications (PTMs), encompassing hyperphosphorylation, lysine acetylation, methylation, ubiquitination, and glycosylation. These PTM-driven alterations induce microtubule network disintegration, mitochondrial dysfunction, synaptic impairment, and neuroinflammatory cascades, ultimately culminating in irreversible neurodegeneration and progressive cognitive decline. This review synthesizes contemporary advances in tau PTM research and delineates their mechanistic contributions to AD pathogenesis, thereby establishing a framework for biomarker discovery, targeted therapeutic development, and precision medicine approaches in tauopathies. This review synthesizes contemporary advances in tau PTM research and delineates their mechanistic contributions to AD pathogenesis, thereby establishing a solid theoretical and experimental basis for the early diagnosis of neurodegenerative diseases, the discovery of therapeutic targets, and the development of novel therapeutic strategies. Full article
(This article belongs to the Special Issue Pathogenesis and Neuropathology of Alzheimer's Disease)
Show Figures

Figure 1

Back to TopTop