Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (138)

Search Parameters:
Keywords = neural cell fate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7732 KiB  
Review
The Morphogenesis, Pathogenesis, and Molecular Regulation of Human Tooth Development—A Histological Review
by Dorin Novacescu, Cristina Stefania Dumitru, Flavia Zara, Marius Raica, Cristian Silviu Suciu, Alina Cristina Barb, Marina Rakitovan, Antonia Armega Anghelescu, Alexandu Cristian Cindrea, Szekely Diana and Pusa Nela Gaje
Int. J. Mol. Sci. 2025, 26(13), 6209; https://doi.org/10.3390/ijms26136209 - 27 Jun 2025
Viewed by 508
Abstract
Odontogenesis, the development of teeth, is a complex, multistage process that unfolds from early embryogenesis through tooth eruption and maturation. It serves as a classical model of organogenesis due to the intricate reciprocal interactions between cranial neural crest-derived mesenchyme and oral epithelium. This [...] Read more.
Odontogenesis, the development of teeth, is a complex, multistage process that unfolds from early embryogenesis through tooth eruption and maturation. It serves as a classical model of organogenesis due to the intricate reciprocal interactions between cranial neural crest-derived mesenchyme and oral epithelium. This narrative review synthesizes current scientific knowledge on human tooth development, tracing the journey from the embryological origins in the first branchial arch to the formation of a fully functional tooth and its supporting structures. Key morphogenetic stages—bud, cap, bell, apposition, and root formation—are described in detail, highlighting the cellular events and histological features characterizing each stage. We discuss the molecular and cellular regulatory networks that orchestrate odontogenesis, including the conserved signaling pathways (Wnt, BMP, FGF, SHH, EDA) and transcription factors (e.g., PAX9, MSX1/2, PITX2) that drive tissue patterning and cell differentiation. The coordinated development of supporting periodontal tissues (cementum, periodontal ligament, alveolar bone, gingiva) is also examined as an integral part of tooth organogenesis. Finally, developmental anomalies (such as variations in tooth number, size, and form) and the fate of residual embryonic epithelial cells are reviewed to underscore the clinical significance of developmental processes. Understanding the normal course of odontogenesis provides crucial insight into congenital dental disorders and lays a foundation for advances in regenerative dental medicine. Full article
Show Figures

Figure 1

25 pages, 937 KiB  
Review
T-Cadherin (CDH13) and Non-Coding RNAs: The Crosstalk Between Health and Disease
by Kseniya Rubina, Artem Maier, Polina Klimovich, Veronika Sysoeva, Daniil Romashin, Ekaterina Semina and Vsevolod Tkachuk
Int. J. Mol. Sci. 2025, 26(13), 6127; https://doi.org/10.3390/ijms26136127 - 26 Jun 2025
Viewed by 605
Abstract
T-cadherin (CDH13) is an atypical, glycosyl-phosphatidylinositol-anchored cadherin with functions ranging from axon guidance and vascular patterning to adipokine signaling and cell-fate specification. Originally identified as a homophilic cue for migrating neural crest cells, projecting axons, and growing blood vessels, it later [...] Read more.
T-cadherin (CDH13) is an atypical, glycosyl-phosphatidylinositol-anchored cadherin with functions ranging from axon guidance and vascular patterning to adipokine signaling and cell-fate specification. Originally identified as a homophilic cue for migrating neural crest cells, projecting axons, and growing blood vessels, it later emerged as a dual metabolic receptor for cardioprotective high-molecular-weight adiponectin and atherogenic low-density lipoproteins. We recently showed that mesenchymal stem/stromal cells lacking T-cadherin are predisposed to adipogenesis, underscoring its role in lineage choice. Emerging evidence indicates that CDH13 expression and function are fine-tuned by non-coding RNAs (ncRNAs). MiR-199b-5p, miR-377-3p, miR-23a/27a/24-2, and the miR-142 family directly bind CDH13 3′-UTR or its epigenetic regulators, affecting transcription or accelerating decay. Long non-coding RNAs (lncRNAs), including antisense transcripts CDH13-AS1/AS2, brain-restricted FEDORA, and context-dependent LINC00707 and UPAT, either sponge these miRNAs or recruit DNMT/TET enzymes to the CDH13 promoter. Circular RNAs (circRNAs), i.e.circCDH13 and circ_0000119, can add a third level of complexity by sequestering miRNA repressors or boosting DNMT1. Collectively, this ncRNA circuitry regulates T-cadherin across cardiovascular, metabolic, oncogenic, and neurodegenerative conditions. This review integrates both experimentally validated data and in silico predictions to map the ncRNA-CDH13 crosstalk between health and disease, opening new avenues for biomarker discovery and RNA-based therapeutics. Full article
(This article belongs to the Special Issue Regulation by Non-Coding RNAs 2025)
Show Figures

Figure 1

30 pages, 2663 KiB  
Review
IGFBP-2 and IGF-II: Key Components of the Neural Stem Cell Niche? Implications for Glioblastoma Pathogenesis
by Abigail J. Harland and Claire M. Perks
Int. J. Mol. Sci. 2025, 26(10), 4749; https://doi.org/10.3390/ijms26104749 - 15 May 2025
Viewed by 1079
Abstract
Glioblastoma is a fatal and aggressive cancer with no cure. It is becoming increasingly clear that glioblastoma initiation is a result of adult neural stem cell (NSC) transformation—most likely those within the subventricular zone (SVZ). Indeed, transcriptomic analysis indicates that glioblastomas are reminiscent [...] Read more.
Glioblastoma is a fatal and aggressive cancer with no cure. It is becoming increasingly clear that glioblastoma initiation is a result of adult neural stem cell (NSC) transformation—most likely those within the subventricular zone (SVZ). Indeed, transcriptomic analysis indicates that glioblastomas are reminiscent of a neurodevelopmental hierarchy, in which neural stem and progenitor markers are widely expressed by tumour stem-like cells. However, NSC fates and the cues that drive them are poorly understood. Studying the crosstalk within NSC niches may better inform our understanding of glioblastoma initiation and development. Insulin-like growth factor binding protein 2 (IGFBP-2) has a well-established prognostic role in glioblastoma, and cell-based mechanistic studies show the independent activation of downstream oncogenic pathways. However, IGFBP-2 is more commonly recognised as a modulator of insulin-like growth factors (IGFs) for receptor tyrosine kinase signal propagation or attenuation. In the adult human brain, both IGFBP-2 and IGF-II expression are retained in the choroid plexus (ChP) and secreted into the cerebral spinal fluid (CSF). Moreover, secretion by closely associated cells and NSCs themselves position IGFBP-2 and IGF-II as interesting factors within the NSC niche. In this review, we will highlight the experimental findings that show IGFBP-2 and IGF-II influence NSC behaviour. Moreover, we will link this to glioblastoma biology and demonstrate the requirement for further analysis of these factors in glioma stem cells (GSCs). Full article
(This article belongs to the Special Issue The Role of the IGF Axis in Disease, 4th Edition)
Show Figures

Figure 1

16 pages, 1521 KiB  
Perspective
Origins of Aortic Coarctation: A Vascular Smooth Muscle Compartment Boundary Model
by Christina L. Greene, Geoffrey Traeger, Akshay Venkatesh, David Han and Mark W. Majesky
J. Dev. Biol. 2025, 13(2), 13; https://doi.org/10.3390/jdb13020013 - 18 Apr 2025
Viewed by 1865
Abstract
Compartment boundaries divide the embryo into segments with distinct fates and functions. In the vascular system, compartment boundaries organize endothelial cells into arteries, capillaries, and veins that are the fundamental units of a circulatory network. For vascular smooth muscle cells (SMCs), such boundaries [...] Read more.
Compartment boundaries divide the embryo into segments with distinct fates and functions. In the vascular system, compartment boundaries organize endothelial cells into arteries, capillaries, and veins that are the fundamental units of a circulatory network. For vascular smooth muscle cells (SMCs), such boundaries produce mosaic patterns of investment based on embryonic origins with important implications for the non-uniform distribution of vascular disease later in life. The morphogenesis of blood vessels requires vascular cell movements within compartments as highly-sensitive responses to changes in fluid flow shear stress and wall strain. These movements underline the remodeling of primitive plexuses, expansion of lumen diameters, regression of unused vessels, and building of multilayered artery walls. Although the loss of endothelial compartment boundaries can produce arterial–venous malformations, little is known about the consequences of mislocalization or the failure to form SMC-origin-specific boundaries during vascular development. We propose that the failure to establish a normal compartment boundary between cardiac neural-crest-derived SMCs of the 6th pharyngeal arch artery (future ductus arteriosus) and paraxial-mesoderm-derived SMCs of the dorsal aorta in mid-gestation embryos leads to aortic coarctation observed at birth. This model raises new questions about the effects of fluid flow dynamics on SMC investment and the formation of SMC compartment borders during pharyngeal arch artery remodeling and vascular development. Full article
Show Figures

Figure 1

27 pages, 3416 KiB  
Review
Effects of Thermal Environment on Bone Microenvironment: A Narrative Review
by Jiahao Yin, Qiao Guan, Minyou Chen, Yanting Cao, Jun Zou and Lingli Zhang
Int. J. Mol. Sci. 2025, 26(8), 3501; https://doi.org/10.3390/ijms26083501 - 9 Apr 2025
Cited by 1 | Viewed by 1126
Abstract
Research findings reveal that thermal environments precisely regulate the skeletal system through a triple regulation of “structural morphology-cellular dynamics-molecular mechanisms”: At the tissue morphology level, moderate heat exposure can promote increased bone density and longitudinal growth, as well as improved fracture load and [...] Read more.
Research findings reveal that thermal environments precisely regulate the skeletal system through a triple regulation of “structural morphology-cellular dynamics-molecular mechanisms”: At the tissue morphology level, moderate heat exposure can promote increased bone density and longitudinal growth, as well as improved fracture load and yield point, but may negatively affect geometric shape and cortical bone thickness. Continuous high-temperature exposure harms bone structure, manifested as changes in biomechanical characteristics such as decreased toughness and rigidity. At the cellular level, thermal environments directly affect the proliferation/apoptosis balance of osteoblasts and osteoclasts, and by regulating osteocyte network activity and bone marrow mesenchymal stem cell fate decisions, these four cell populations form temperature-dependent metabolic regulatory circuits. At the molecular dimension, heat stress can activate the release of neural factors such as CGRP and NPY, which possess dual regulatory functions promoting both bone formation and resorption; simultaneously achieving coordinated regulation of angiogenesis and fat inhibition through VEGF and TGFβ. The thermal environment–bone regulatory mechanisms revealed in this study have important translational value: they not only provide theoretical basis for biomechanical protection strategies for high-temperature workers and athletes, but also offer innovative entry points for analyzing the pathological mechanisms of heat stroke secondary bone injury and osteoporosis through heat stress-related signaling pathways, while establishing a theoretical foundation for the development of temperature-responsive functionalized biomaterials in bone tissue engineering. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

10 pages, 895 KiB  
Opinion
Latest News from the “Guardian”: p53 Directly Activates Asymmetric Stem Cell Division Regulators
by Ana Carmena
Int. J. Mol. Sci. 2025, 26(7), 3171; https://doi.org/10.3390/ijms26073171 - 29 Mar 2025
Viewed by 717
Abstract
Since its discovery in 1979, the human tumor suppressor gene TP53—also known as the “guardian of the genome”—has been the subject of intense research. Mutated in most human cancers, TP53 has traditionally been considered a key fighter against stress factors by trans-activating [...] Read more.
Since its discovery in 1979, the human tumor suppressor gene TP53—also known as the “guardian of the genome”—has been the subject of intense research. Mutated in most human cancers, TP53 has traditionally been considered a key fighter against stress factors by trans-activating a network of target genes that promote cell cycle arrest, DNA repair, or apoptosis. Intriguingly, over the past years, novel non-canonical functions of p53 in unstressed cells have also emerged, including the mode of stem cell division regulation. However, the mechanisms by which p53 modulates these novel functions remain incompletely understood. In a recent work, we found that Drosophila p53 controls asymmetric stem cell division (ASCD) in neural stem cells by transcriptionally activating core ASCD regulators, such as the conserved cell-fate determinants Numb and Brat (NUMB and TRIM3/TRIM2/TRIM32 in humans, respectively). In this short communication, we comment on this new finding, the mild phenotypes associated with Drosophila p53 mutants in this context, as well as novel avenues for future research. Full article
Show Figures

Figure 1

15 pages, 3967 KiB  
Article
Development of a Three-Dimensional Pathology-Simulating Model of Neurotrauma Using a Polymer-Encapsulated Neural Cell Network
by Jessica Patricia Wiseman, Zoe Dombros-Ryan, Jack Griffiths, Christopher Adams and Divya Maitreyi Chari
Gels 2025, 11(4), 247; https://doi.org/10.3390/gels11040247 - 27 Mar 2025
Viewed by 597
Abstract
Penetrating traumatic injuries of the brain have a poor clinical prognosis necessitating development of new therapies to improve neurological outcomes. Laboratory research is hampered by reliance on highly invasive experimental approaches in living animals to simulate penetrating injuries e.g., by cutting/crushing the brain [...] Read more.
Penetrating traumatic injuries of the brain have a poor clinical prognosis necessitating development of new therapies to improve neurological outcomes. Laboratory research is hampered by reliance on highly invasive experimental approaches in living animals to simulate penetrating injuries e.g., by cutting/crushing the brain tissue, with a range of associated ethical, technical and logistical challenges. Accordingly, there is a critical need to develop neuromimetic in vitro alternative neural models to reduce harm to animals. However, most in vitro, reductionist simulations of brain injury are too simplistic to simulate the complex environment of the injured nervous system. We recently reported a complex, two-dimensional in vitro mouse model of neurotrauma containing five major brain cell types to replicate neural architecture, grown on a “hard” glass substrate in a brain cell sheet. We now demonstrate the translation of this approach into a three-dimensional tissue injury model, by propagating the entire cellular network in a “soft” compliant collagen hydrogel, similar to native brain tissue stiffness (an important determinant of cell fate). A multicellular network of neural cells was observed to form in the polymer matrix containing all major brain cell populations, including the immune cells (microglia). We demonstrate that it is feasible to create a reproducible, focal traumatic injury in the synthesised neural tissue construct. Importantly, key pathological features of neurological injury, such as astrocyte scarring, immune cell (microglial) activation, impeded axonal outgrowth and stem/progenitor cell migration, can be successfully induced. We also prove that it is feasible to implant a biomaterial into the lesion gap to study neural cell responses for screening applications. The findings support the concept that the model can be used in a versatile manner for advanced neural modelling. Full article
(This article belongs to the Special Issue Hydrogels in Biomedicine)
Show Figures

Graphical abstract

20 pages, 9261 KiB  
Article
Characterization of Mesenchymal and Neural Stem Cells Response to Bipolar Microsecond Electric Pulses Stimulation
by Giorgia Innamorati, Marina Sanchez-Petidier, Giulia Bergafora, Camilla Codazzi, Valentina Palma, Francesca Camera, Caterina Merla, Franck M. André, Maria Pedraza, Victoria Moreno Manzano, Laura Caramazza, Micol Colella, Paolo Marracino, Marco Balucani, Francesca Apollonio, Micaela Liberti and Claudia Consales
Int. J. Mol. Sci. 2025, 26(1), 147; https://doi.org/10.3390/ijms26010147 - 27 Dec 2024
Cited by 1 | Viewed by 1078
Abstract
In the tissue regeneration field, stem cell transplantation represents a promising therapeutic strategy. To favor their implantation, proliferation and differentiation need to be controlled. Several studies have demonstrated that stem cell fate can be controlled by applying continuous electric field stimulation. This study [...] Read more.
In the tissue regeneration field, stem cell transplantation represents a promising therapeutic strategy. To favor their implantation, proliferation and differentiation need to be controlled. Several studies have demonstrated that stem cell fate can be controlled by applying continuous electric field stimulation. This study aims to characterize the effect of a specific microsecond electric pulse stimulation (bipolar pulses of 100 µs + 100 µs, delivered for 30 min at an intensity of 250 V/cm) to induce an increase in cell proliferation on mesenchymal stem cells (MSCs) and induced neural stem cells (iNSCs). The effect was evaluated in terms of (i) cell counting, (ii) cell cycle, (iii) gene expression, and (iv) apoptosis. The results show that 24 h after the stimulation, cell proliferation, cell cycle, and apoptosis are not affected, but variation in the expression of specific genes involved in these processes is observed. These results led us to investigate cell proliferation until 72 h from the stimulation, observing an increase in the iNSCs number at this time point. The main outcome of this study is that the microsecond electric pulses can modulate stem cell proliferation. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

26 pages, 2549 KiB  
Review
Therapeutic Exploitation of Neuroendocrine Transdifferentiation Drivers in Prostate Cancer
by Zoe R. Maylin, Christopher Smith, Adam Classen, Mohammad Asim, Hardev Pandha and Yuzhuo Wang
Cells 2024, 13(23), 1999; https://doi.org/10.3390/cells13231999 - 3 Dec 2024
Cited by 1 | Viewed by 2563
Abstract
Neuroendocrine prostate cancer (NEPC), an aggressive and lethal subtype of prostate cancer (PCa), often arises as a resistance mechanism in patients undergoing hormone therapy for prostate adenocarcinoma. NEPC is associated with a significantly poor prognosis and shorter overall survival compared to conventional prostate [...] Read more.
Neuroendocrine prostate cancer (NEPC), an aggressive and lethal subtype of prostate cancer (PCa), often arises as a resistance mechanism in patients undergoing hormone therapy for prostate adenocarcinoma. NEPC is associated with a significantly poor prognosis and shorter overall survival compared to conventional prostate adenocarcinoma due to its aggressive nature and limited response to standard of care therapies. This transdifferentiation, or lineage reprogramming, to NEPC is characterised by the loss of androgen receptor (AR) and prostate-specific antigen (PSA) expression, and the upregulation of neuroendocrine (NE) biomarkers such as neuron-specific enolase (NSE), chromogranin-A (CHGA), synaptophysin (SYP), and neural cell adhesion molecule 1 (NCAM1/CD56), which are critical for NEPC diagnosis. The loss of AR expression culminates in resistance to standard of care PCa therapies, such as androgen-deprivation therapy (ADT) which target the AR signalling axis. This review explores the drivers of NE transdifferentiation. Key genetic alterations, including those in the tumour suppressor genes RB1, TP53, and PTEN, and changes in epigenetic regulators, particularly involving EZH2 and cell-fate-determining transcription factors (TFs) such as SOX2, play significant roles in promoting NE transdifferentiation and facilitate the lineage switch from prostate adenocarcinoma to NEPC. The recent identification of several other key novel drivers of NE transdifferentiation, including MYCN, ASCL1, BRN2, ONECUT2, and FOXA2, further elucidates the complex regulatory networks and pathways involved in this process. We suggest that, given the multifactorial nature of NEPC, novel therapeutic strategies that combine multiple modalities are essential to overcome therapeutic resistance and improve patient outcomes. Full article
Show Figures

Figure 1

12 pages, 5784 KiB  
Article
Tlx Promotes Stroke-Induced Neurogenesis and Neuronal Repair in Young and Aged Mice
by Dilaware Khan, Dagmar Bock, Hai-Kun Liu and Sajjad Muhammad
Int. J. Mol. Sci. 2024, 25(22), 12440; https://doi.org/10.3390/ijms252212440 - 19 Nov 2024
Cited by 2 | Viewed by 1192
Abstract
Stroke is one of the leading causes of chronic disability in humans. It has been proposed that the endogenous neural stem/progenitor cells generate new neurons in the damaged area. Still, the contribution of these cells is negligible because a low number of newborn [...] Read more.
Stroke is one of the leading causes of chronic disability in humans. It has been proposed that the endogenous neural stem/progenitor cells generate new neurons in the damaged area. Still, the contribution of these cells is negligible because a low number of newborn mature neurons are formed. Tlx conventional knock-out mice, Tlx-CreERT2 mice, and Tlx-overexpressing (Tlx-OE) mice were specifically chosen for their unique genetic characteristics, which were crucial for the experiments. Permanent and transient middle cerebral artery occlusion was used to induce stroke in the mice. Immunostainings for doublecortin and GFP/BrdU/NeuN were performed to study neurogenesis and fate mapping. The rotarod test was performed to assess motor deficits. Here, we show that stroke-induced neurogenesis is dramatically increased with the additional expression of two copies of the nuclear receptor-coding gene tailless (Tlx, also known as Nr2e1), which has been shown to be a master regulator of subventricular zone (SVZ) neural stem cells (NSCs). We show that Tlx expression is upregulated after stroke, and stroke-induced neurogenesis is blocked when Tlx is inactivated. Tlx overexpression in NSCs leads to massive induction of neurogenesis via stroke. More newborn mature neurons are formed in Tlx-overexpressing mice, leading to improved coordination and motor function recovery. Most importantly, we also demonstrate that this process is sustained in aged mice, where stroke-induced neurogenesis is nearly undetectable in wild-type animals. This study provides the first stem cell-specific genetic evidence that endogenous NSCs can be exploited by manipulating their master regulator, Tlx, and thus suggests a novel therapeutic strategy for neuronal repair. Full article
(This article belongs to the Special Issue Advances in Research on Neurogenesis: 3rd Edition)
Show Figures

Figure 1

25 pages, 10236 KiB  
Article
Human-Brain-Derived Ischemia-Induced Stem Cell Transplantation Is Associated with a Greater Neurological Functional Improvement Compared with Human-Bone Marrow-Derived Mesenchymal Stem Cell Transplantation in Mice After Stroke
by Shuichi Tanada, Takayuki Nakagomi, Akiko Nakano-Doi, Toshinori Sawano, Shuji Kubo, Yoji Kuramoto, Kazutaka Uchida, Kenichi Yamahara, Nobutaka Doe and Shinichi Yoshimura
Int. J. Mol. Sci. 2024, 25(22), 12065; https://doi.org/10.3390/ijms252212065 - 10 Nov 2024
Cited by 1 | Viewed by 1497
Abstract
The transplantation of injury/ischemia-induced stem cells (iSCs) extracted from post-stroke human brains can improve the neurological functions of mice after stroke. However, the usefulness of iSCs as an alternative stem cell source remains unclear. The current study aimed to assess the efficacy of [...] Read more.
The transplantation of injury/ischemia-induced stem cells (iSCs) extracted from post-stroke human brains can improve the neurological functions of mice after stroke. However, the usefulness of iSCs as an alternative stem cell source remains unclear. The current study aimed to assess the efficacy of iSC and mesenchymal stem cell (MSC) transplantation. In this experiment, equal numbers of human brain-derived iSCs (h-iSCs) (5.0 × 104 cells/μL) and human bone marrow-derived MSCs (h-MSCs) (5.0 × 104 cells/μL) were intracranially transplanted into post-stroke mouse brains after middle cerebral artery occlusion. Results showed that not only h-iSC transplantation but also h-MSC transplantation activated endogenous neural stem/progenitor cells (NSPCs) around the grafted sites and promoted neurological functional improvement. However, mice that received h-iSC transplantation experienced improvement in a higher number of behavioral tasks compared with those that received h-MSC transplantation. To investigate the underlying mechanism, NSPCs extracted from the ischemic areas of post-stroke mouse brains were cocultured with h-iSCs or h-MSCs. After coincubation, NSPCs, h-iSCs, and h-MSCs were selectively collected via fluorescence-activated cell sorting. Next, their traits were analyzed via microarray analysis. The genes related to various neuronal lineages in NSPCs after coincubation with h-iSCs were enriched compared with those in NSPCs after coincubation with h-MSCs. In addition, the gene expression patterns of h-iSCs relative to those of h-MSCs showed that the expression of genes related to synapse formation and neurotransmitter-producing neurons increased more after coincubation with NSPCs. Hence, cell–cell interactions with NSPCs promoted transdifferentiation toward functional neurons predominantly in h-iSCs. In accordance with these findings, immunohistochemistry showed that the number of neuronal networks between NSPCs and h-iSCs was higher than that between NSPCs and h-MSCs. Therefore, compared with h-MSC transplantation, h-iSC transplantation is associated with a higher neurological functional improvement, presumably by more effectively modulating the fates of endogenous NSPCs and grafted h-iSCs themselves. Full article
Show Figures

Figure 1

23 pages, 1933 KiB  
Review
Timing and Graded BMP Signalling Determines Fate of Neural Crest and Ectodermal Placode Derivatives from Pluripotent Stem Cells
by Keshi Chung, Malvina Millet, Ludivine Rouillon and Azel Zine
Biomedicines 2024, 12(10), 2262; https://doi.org/10.3390/biomedicines12102262 - 4 Oct 2024
Cited by 2 | Viewed by 3085
Abstract
Pluripotent stem cells (PSCs) offer many potential research and clinical benefits due to their ability to differentiate into nearly every cell type in the body. They are often used as model systems to study early stages of ontogenesis to better understand key developmental [...] Read more.
Pluripotent stem cells (PSCs) offer many potential research and clinical benefits due to their ability to differentiate into nearly every cell type in the body. They are often used as model systems to study early stages of ontogenesis to better understand key developmental pathways, as well as for drug screening. However, in order to fully realise the potential of PSCs and their translational applications, a deeper understanding of developmental pathways, especially in humans, is required. Several signalling molecules play important roles during development and are required for proper differentiation of PSCs. The concentration and timing of signal activation are important, with perturbations resulting in improper development and/or pathology. Bone morphogenetic proteins (BMPs) are one such key group of signalling molecules involved in the specification and differentiation of various cell types and tissues in the human body, including those related to tooth and otic development. In this review, we describe the role of BMP signalling and its regulation, the consequences of BMP dysregulation in disease and differentiation, and how PSCs can be used to investigate the effects of BMP modulation during development, mainly focusing on otic development. Finally, we emphasise the unique role of BMP4 in otic specification and how refined understanding of controlling its regulation could lead to the generation of more robust and reproducible human PSC-derived otic organoids for research and translational applications. Full article
(This article belongs to the Special Issue Pluripotent Stem Cell: Current Understanding and Future Directions)
Show Figures

Figure 1

25 pages, 2599 KiB  
Review
Lactylation: A Novel Post-Translational Modification with Clinical Implications in CNS Diseases
by Junyan Liu, Fengyan Zhao and Yi Qu
Biomolecules 2024, 14(9), 1175; https://doi.org/10.3390/biom14091175 - 19 Sep 2024
Cited by 10 | Viewed by 6961
Abstract
Lactate, an important metabolic product, provides energy to neural cells during energy depletion or high demand and acts as a signaling molecule in the central nervous system. Recent studies revealed that lactate-mediated protein lactylation regulates gene transcription and influences cell fate, metabolic processes, [...] Read more.
Lactate, an important metabolic product, provides energy to neural cells during energy depletion or high demand and acts as a signaling molecule in the central nervous system. Recent studies revealed that lactate-mediated protein lactylation regulates gene transcription and influences cell fate, metabolic processes, inflammation, and immune responses. This review comprehensively examines the regulatory roles and mechanisms of lactylation in neurodevelopment, neuropsychiatric disorders, brain tumors, and cerebrovascular diseases. This analysis indicates that lactylation has multifaceted effects on central nervous system function and pathology, particularly in hypoxia-induced brain damage. Highlighting its potential as a novel therapeutic target, lactylation may play a significant role in treating neurological diseases. By summarizing current findings, this review aims to provide insights and guide future research and clinical strategies for central nervous system disorders. Full article
Show Figures

Figure 1

20 pages, 2080 KiB  
Review
Inhalation Anesthetics Play a Janus-Faced Role in Self-Renewal and Differentiation of Stem Cells
by Xiaotong Hao, Yuan Li, Hairong Gao, Zhilin Wang and Bo Fang
Biomolecules 2024, 14(9), 1167; https://doi.org/10.3390/biom14091167 - 18 Sep 2024
Viewed by 1878
Abstract
Inhalation anesthesia stands as a pivotal modality within clinical anesthesia practices. Beyond its primary anesthetic effects, inhaled anesthetics have non-anesthetic effects, exerting bidirectional influences on the physiological state of the body and disease progression. These effects encompass impaired cognitive function, inhibition of embryonic [...] Read more.
Inhalation anesthesia stands as a pivotal modality within clinical anesthesia practices. Beyond its primary anesthetic effects, inhaled anesthetics have non-anesthetic effects, exerting bidirectional influences on the physiological state of the body and disease progression. These effects encompass impaired cognitive function, inhibition of embryonic development, influence on tumor progression, and so forth. For many years, inhaled anesthetics were viewed as inhibitors of stem cell fate regulation. However, there is now a growing appreciation that inhaled anesthetics promote stem cell biological functions and thus are now regarded as a double-edged sword affecting stem cell fate. In this review, the effects of inhaled anesthetics on self-renewal and differentiation of neural stem cells (NSCs), embryonic stem cells (ESCs), and cancer stem cells (CSCs) were summarized. The mechanisms of inhaled anesthetics involving cell cycle, metabolism, stemness, and niche of stem cells were also discussed. A comprehensive understanding of these effects will enhance our comprehension of how inhaled anesthetics impact the human body, thus promising breakthroughs in the development of novel strategies for innovative stem cell therapy approaches. Full article
Show Figures

Figure 1

14 pages, 2596 KiB  
Article
Wnt/β-Catenin Signaling Regulates Yap/Taz Activity during Embryonic Development in Zebrafish
by Matteo Astone, Chiara Tesoriero, Marco Schiavone, Nicola Facchinello, Natascia Tiso, Francesco Argenton and Andrea Vettori
Int. J. Mol. Sci. 2024, 25(18), 10005; https://doi.org/10.3390/ijms251810005 - 17 Sep 2024
Cited by 3 | Viewed by 2466
Abstract
Hippo-YAP/TAZ and Wnt/β-catenin signaling pathways, by controlling proliferation, migration, cell fate, stemness, and apoptosis, are crucial regulators of development and tissue homeostasis. We employed zebrafish embryos as a model system to elucidate in living reporter organisms the crosstalk between the two signaling pathways. [...] Read more.
Hippo-YAP/TAZ and Wnt/β-catenin signaling pathways, by controlling proliferation, migration, cell fate, stemness, and apoptosis, are crucial regulators of development and tissue homeostasis. We employed zebrafish embryos as a model system to elucidate in living reporter organisms the crosstalk between the two signaling pathways. Co-expression analysis between the Wnt/β-catenin Tg(7xTCF-Xla.Siam:GFP)ia4 and the Hippo-Yap/Taz Tg(Hsa.CTGF:nlsmCherry)ia49 zebrafish reporter lines revealed shared spatiotemporal expression profiles. These patterns were particularly evident in key developmental regions such as the midbrain–hindbrain boundary (MHB), epidermis, muscles, neural tube, notochord, floorplate, and otic vesicle. To investigate the relationship between the Wnt/β-catenin pathway and Hippo-Yap/Taz signaling in vivo, we conducted a series of experiments employing both pharmacological and genetic strategies. Modulation of the Wnt/β-catenin pathway with IWR-1, XAV939, or BIO resulted in a significant regulation of the Yap/Taz reporter signal, highlighting a clear correlation between β-catenin and Yap/Taz activities. Furthermore, genetic perturbation of the Wnt/β-catenin pathway, by APC inhibition or DKK1 upregulation, elicited evident and robust alteration of Yap/Taz activity. These findings revealed the intricate regulatory mechanisms underlying the crosstalk between the Wnt/β-catenin and Hippo-Yap/Taz signaling, shedding light on their roles in orchestrating developmental processes in vivo. Full article
(This article belongs to the Special Issue Zebrafish as a Model in Human Disease 2.0)
Show Figures

Figure 1

Back to TopTop