Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = natural phosphonic acids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5146 KiB  
Review
Active Polymers Decorated with Major Acid Groups for Water Treatment: Potentials and Challenges
by Avneesh Kumar and Dong Wook Chang
Polymers 2025, 17(1), 29; https://doi.org/10.3390/polym17010029 - 26 Dec 2024
Viewed by 1561
Abstract
Polymers exhibiting ion-conduction capabilities are essential components of water-purifying devices. These polymers not only transport selective ions but are also mechanically robust; thus, they can be processed as membranes. In this review, we highlight major acidic polymers and their engineered morphologies and optimized [...] Read more.
Polymers exhibiting ion-conduction capabilities are essential components of water-purifying devices. These polymers not only transport selective ions but are also mechanically robust; thus, they can be processed as membranes. In this review, we highlight major acidic polymers and their engineered morphologies and optimized properties, including metal selectivity and water permeation or retention. Crucial phenomena, such as self-assembly in acid-group-functionalized polymers for driving water transportation, are discussed. It was observed that the phosphonic acid groups containing polymers are rather suitable for the selective adsorption of toxic metals, and thus, are superior to their sulfonated counterparts. Additionally, due to their amphoteric nature, phosphonated polymers displayed several modes of metal complexations, which makes them appropriate for eliminating a wide range of metals. Further observation indicates that aromatic-acid-functionalized polymers are more durable. Temperature- and pH-responsive polymers were also found to be promising candidates for a controlled water-treatment process. Nevertheless, considering the morphology, water retention, and metal adsorption, acid-functionalized polymers, especially phosphonated ones, have the potential to remain as the materials of choice after additional advancements. Further perspectives regarding improvements in acidic polymers and their fabricated membranes for water treatment are presented. Full article
(This article belongs to the Special Issue Advanced Polymer Materials for Water and Wastewater Treatment)
Show Figures

Figure 1

21 pages, 4046 KiB  
Article
Phosphonates of Pectobacterium atrosepticum: Discovery and Role in Plant–Pathogen Interactions
by Olga Parfirova, Polina Mikshina, Olga Petrova, Andrey Smolobochkin, Alexander Pashagin, Alexander Burilov and Vladimir Gorshkov
Int. J. Mol. Sci. 2024, 25(21), 11516; https://doi.org/10.3390/ijms252111516 - 26 Oct 2024
Cited by 1 | Viewed by 1177
Abstract
Many phytopathogens’ gene products that contribute to plant–pathogen interactions remain unexplored. In one of the most harmful phytopathogenic bacterium Pectobacterium atrosepticum (Pba), phosphonate-related genes have been previously shown to be among the most upregulated following host plant colonization. However, phosphonates, compounds [...] Read more.
Many phytopathogens’ gene products that contribute to plant–pathogen interactions remain unexplored. In one of the most harmful phytopathogenic bacterium Pectobacterium atrosepticum (Pba), phosphonate-related genes have been previously shown to be among the most upregulated following host plant colonization. However, phosphonates, compounds characterized by a carbon–phosphorus bond in their composition, have not been described in Pectobacterium species and other phytopathogenic bacteria, with the exception of Pseudomonas syringae and Pantoea ananatis. Our study aimed to determine whether Pba synthesizes extracellular phosphonates and, if so, to analyze their physiological functions. We demonstrated that Pba produces two types of extracellular phosphonates: 2-diethoxyphosphorylethanamine and phenylphosphonic acid. Notably, such structures have not been previously described among natural phosphonates. The production of Pba phosphonates was shown to be positively regulated by quorum sensing and in the presence of pectic compounds. Pba phosphonates were found to have a positive effect on Pba stress resistance and a negative effect on Pba virulence. The discovered Pba phosphonates are discussed as metabolites that enable Pba to control its “harmful properties”, thereby maintaining its ecological niche (the host plant) in a relatively functional state for an extended period. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

26 pages, 15538 KiB  
Review
Stereoselective Syntheses of Organophosphorus Compounds
by Oleg I. Kolodiazhnyi and Anastasy O. Kolodiazhna
Symmetry 2024, 16(3), 342; https://doi.org/10.3390/sym16030342 - 12 Mar 2024
Cited by 6 | Viewed by 2619
Abstract
The review is devoted to the theoretical and synthetic aspects of the stereochemistry of organophosphorus compounds. Organophosphorus compounds are not only widely exist in biologically active pharmaceuticals and agrochemicals, but also have widespread applications in material science and organic synthesis as ligands for [...] Read more.
The review is devoted to the theoretical and synthetic aspects of the stereochemistry of organophosphorus compounds. Organophosphorus compounds are not only widely exist in biologically active pharmaceuticals and agrochemicals, but also have widespread applications in material science and organic synthesis as ligands for transition metal complexes. One of the mainstreams for the development in this field is the creation of biologically active organophosphorus compounds that are searched and used as drugs or plant-protecting agents, which leads to the elaboration of advanced methods and monitoring, yielding up-to-date approaches to perform synthesis in an environmentally friendly manner. The review consists of two parts. The first part presents methods for the asymmetric synthesis of organophosphorus compounds using asymmetric organocatalysis and metal complex catalysis. In the review is described the nature of the chirality generation in the prebiotic period, the mechanisms of asymmetric induction, and double stereodifferentiation are discussed. The use of these methods for the preparation of chiral phosphorus analogs of natural compounds (phosphono-isonorstatin, phosphono-GABOB, phosphacarnitine, bis-phosphonates, and others) is described. Some data concerning of λ5-phosphanediones as metaphosphate anion analogues are also reported. The second part of the presented review shows examples of the use of these methods for the synthesis of phosphorus analogues of natural compounds—chiral phosphonoamino acids and hydroxyphosphonates: phosphonoaspartic acid, phosphonoglutamic acid, phosphonohomoproline, chiral bis-phosphonates. The reaction of dehydration aromatization with the formation of pho sphono isoindolinones, including isoindolinone bis-phosphonates, has been studied. Some of the synthesized compounds showed biological activity as protein tyrosine phosphatase inhibitors. A phosphonic analogue of iso-norstatine was synthesized. A stereoselective method for the synthesis of tetradecapentaenoic acid derivatives was developed. Full article
(This article belongs to the Collection Feature Papers in Chemistry)
Show Figures

Figure 1

20 pages, 3772 KiB  
Article
Derivatives of Betulin and Betulinic Acid Containing a Phosphonate Group—In Silico Studies and Preliminary In Vitro Assessment of Antiviral Activity
by Ewa Bębenek, Paweł Pęcak, Monika Kadela-Tomanek, Beata Orzechowska and Elwira Chrobak
Appl. Sci. 2024, 14(4), 1452; https://doi.org/10.3390/app14041452 - 9 Feb 2024
Cited by 1 | Viewed by 2019
Abstract
Viral diseases affecting both humans and animals are a serious public problem. Chemical modifications of the structure of compounds of natural origin, e.g., betulin, seem to be a promising model in the search for new antiviral agents. The subject of our work was [...] Read more.
Viral diseases affecting both humans and animals are a serious public problem. Chemical modifications of the structure of compounds of natural origin, e.g., betulin, seem to be a promising model in the search for new antiviral agents. The subject of our work was to conduct preliminary tests on the antiviral activity of phosphonic derivatives of betulin and betulinic acid and to assess the pharmacokinetic profile of target compounds. Human (HHV-1, HAdV-5) and animal viruses (BEV, VSV) were used in the in vitro tests. Additionally, this paper presents the results of research using in silico methods (ADMET and molecular docking). Two compounds (betulin 29-phosphonate 3 and 3-(3′,3′-dimethylsuccinyl)betulin acid 29-phosphonate 8a) showed antiviral activity against BEV, and compound 3 was also active against HAdV-5. For compound 3, which showed advantageous pharmacokinetic parameters, molecular docking was performed to determine possible interactions with the cellular target HAdV-5 endopeptidase, which plays an important role in various functions of the virus. Selecting the most active derivatives makes it possible to plan tests on an animal model. Full article
(This article belongs to the Special Issue Plant-Based Compounds or Extractions for Medical Applications)
Show Figures

Figure 1

22 pages, 10863 KiB  
Article
Delineated 3-1-BenCarMethInYlPro-Phosphonic Acid’s Adroit Activity against Lung Cancer through Multitargeted Docking, MM\GBSA, QM-DFT and Multiscale Simulations
by Mohammed Ageeli Hakami, Ali Hazazi, Fawaz Albloui, Amal F. Gharib, Fouzeyyah Ali Alsaeedi, Osama Abdulaziz, Abdulfattah Y. Alhazmi and Ahad Amer Alsaiari
Int. J. Mol. Sci. 2024, 25(1), 592; https://doi.org/10.3390/ijms25010592 - 2 Jan 2024
Cited by 3 | Viewed by 2088
Abstract
Lung cancer is a pervasive and challenging disease with limited treatment options, with global health challenges often present with complex molecular profiles necessitating the exploration of innovative therapeutic strategies. Single-target drugs have shown limited success due to the heterogeneity of this disease. Multitargeted [...] Read more.
Lung cancer is a pervasive and challenging disease with limited treatment options, with global health challenges often present with complex molecular profiles necessitating the exploration of innovative therapeutic strategies. Single-target drugs have shown limited success due to the heterogeneity of this disease. Multitargeted drug designing is imperative to combat this complexity by simultaneously targeting multiple target proteins and pathways, which can enhance treatment efficacy and overcome resistance by addressing the dynamic nature of the disease and stopping tumour growth and spread. In this study, we performed the molecular docking studies of Drug Bank compounds with a multitargeted approach against crucial proteins of lung cancer such as heat shock protein 5 (BIP/GRP78) ATPase, myosin 9B RhoGAP, EYA2 phosphatase inhibitor, RSK4 N-terminal kinase, and collapsin response mediator protein-1 (CRMP-1) using HTVS, SP with XP algorithms, and poses were filtered using MM\GBSA which identified [3-(1-Benzyl-3-Carbamoylmethyl-2-Methyl-1h-Indol-5-Yloxy)-Propyl-]-Phosphonic Acid (3-1-BenCarMethIn YlPro-Phosphonic Acid) (DB02504) as multitargeted drug candidate with docking and MM\GBSA score ranges from −5.83 to −10.66 and −7.56 to −50.14 Kcal/mol, respectively. Further, the pharmacokinetic and QM-based DFT studies have shown complete acceptance results, and interaction fingerprinting reveals that ILE, GLY, VAL, TYR, LEU, and GLN were among the most interacting residues. The 100 ns MD simulation in the SPC water model with NPT ensemble showed stable performance with deviation and fluctuations <2 Å with huge interactions, making it a promising multitargeted drug candidate; however, experimental studies are needed before use. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

12 pages, 2456 KiB  
Article
Organically Functionalized Porous Aluminum Phosphonate for Efficient Synthesis of 5-Hydroxymethylfurfural from Carbohydrates
by Riddhi Mitra, Bhabani Malakar and Asim Bhaumik
Catalysts 2023, 13(11), 1449; https://doi.org/10.3390/catal13111449 - 19 Nov 2023
Cited by 2 | Viewed by 1905
Abstract
Naturally occurring fossil fuels are the major resource of energy in our everyday life, but with the huge technological development over the years and subsequent energy demand, the reserve of this energy resource is depleting at an alarming rate, which will challenge our [...] Read more.
Naturally occurring fossil fuels are the major resource of energy in our everyday life, but with the huge technological development over the years and subsequent energy demand, the reserve of this energy resource is depleting at an alarming rate, which will challenge our net energy resources in the near future. Thus, an alternative sustainable energy resource involving biomass and bio-refinery has become the most emerging and demanding approach, where biofuels can be derived effectively from abundant biomass via valuable chemical intermediates like 5-hydroxymethylfurfural (5-HMF). 5-HMF is a valuable platform chemical for the synthesis of fuel and fine chemicals. Herein, we report the synthesis of the organically functionalized porous aluminum phosphonate materials: Ph-ALPO-1 in the absence of any template and Ph-ALPO-2 by using 1,3-diaminopropane-N,N,N′,N′-tetraacetic acid as a small organic molecule template and phenylphosphonic acid as a phosphate source. These hybrid phosphonates are used as acid catalysts for the synthesis of 5-HMF from carbohydrates derived from biomass resources. These Ph-ALPO-1 and Ph-ALPO-2 materials catalyzed the dehydration of fructose to 5-HMF with total yields of 74.6% and 90.7%, respectively, in the presence of microwave-assisted optimized reaction conditions. Full article
(This article belongs to the Special Issue Biomass Derived Heterogeneous and Homogeneous Catalysts, 2nd Edition)
Show Figures

Graphical abstract

25 pages, 4146 KiB  
Article
Hybrids of Sterically Hindered Phenols and Diaryl Ureas: Synthesis, Switch from Antioxidant Activity to ROS Generation and Induction of Apoptosis
by Elmira Gibadullina, Margarita Neganova, Yulia Aleksandrova, Hoang Bao Tran Nguyen, Alexandra Voloshina, Mikhail Khrizanforov, Thi Thu Nguyen, Ekaterina Vinyukova, Konstantin Volcho, Dmitry Tsypyshev, Anna Lyubina, Syumbelya Amerhanova, Anna Strelnik, Julia Voronina, Daut Islamov, Rakhmetulla Zhapparbergenov, Nurbol Appazov, Beauty Chabuka, Kimberley Christopher, Alexander Burilov, Nariman Salakhutdinov, Oleg Sinyashin and Igor Alabuginadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2023, 24(16), 12637; https://doi.org/10.3390/ijms241612637 - 10 Aug 2023
Cited by 7 | Viewed by 3498
Abstract
The utility of sterically hindered phenols (SHPs) in drug design is based on their chameleonic ability to switch from an antioxidant that can protect healthy tissues to highly cytotoxic species that can target tumor cells. This work explores the biological activity of a [...] Read more.
The utility of sterically hindered phenols (SHPs) in drug design is based on their chameleonic ability to switch from an antioxidant that can protect healthy tissues to highly cytotoxic species that can target tumor cells. This work explores the biological activity of a family of 45 new hybrid molecules that combine SHPs equipped with an activating phosphonate moiety at the benzylic position with additional urea/thiourea fragments. The target compounds were synthesized by reaction of iso(thio)cyanates with C-arylphosphorylated phenols containing pendant 2,6-diaminopyridine and 1,3-diaminobenzene moieties. The SHP/urea hybrids display cytotoxic activity against a number of tumor lines. Mechanistic studies confirm the paradoxical nature of these substances which combine pronounced antioxidant properties in radical trapping assays with increased reactive oxygen species generation in tumor cells. Moreover, the most cytotoxic compounds inhibited the process of glycolysis in SH-SY5Y cells and caused pronounced dissipation of the mitochondrial membrane of isolated rat liver mitochondria. Molecular docking of the most active compounds identified the activator allosteric center of pyruvate kinase M2 as one of the possible targets. For the most promising compounds, 11b and 17b, this combination of properties results in the ability to induce apoptosis in HuTu 80 cells along the intrinsic mitochondrial pathway. Cyclic voltammetry studies reveal complex redox behavior which can be simplified by addition of a large excess of acid that can protect some of the oxidizable groups by protonations. Interestingly, the re-reduction behavior of the oxidized species shows considerable variations, indicating different degrees of reversibility. Such reversibility (or quasi-reversibility) suggests that the shift of the phenol-quinone equilibrium toward the original phenol at the lower pH may be associated with lower cytotoxicity. Full article
Show Figures

Figure 1

27 pages, 6959 KiB  
Article
Optimal Synthesis of Novel Phosphonic Acid Modified Diatomite Adsorbents for Effective Removal of Uranium(VI) Ions from Aqueous Solutions
by Natalia Kobylinska, Oksana Dudarko, Agnieszka Gładysz-Płaska, Valentyn A. Tertykh and Marek Majdan
Materials 2023, 16(15), 5263; https://doi.org/10.3390/ma16155263 - 26 Jul 2023
Cited by 9 | Viewed by 1810
Abstract
The authors synthesized a series of functionalized diatomite-based materials and assessed their U(VI) removal performance. Phosphor-derivative-modified diatomite adsorbents were synthesized by the three-route procedures: polymerisation (DIT-Vin-PAin), covalent (DIT-Vin-PAcov), and non-covalent (DIT-PA) immobilization of the functional [...] Read more.
The authors synthesized a series of functionalized diatomite-based materials and assessed their U(VI) removal performance. Phosphor-derivative-modified diatomite adsorbents were synthesized by the three-route procedures: polymerisation (DIT-Vin-PAin), covalent (DIT-Vin-PAcov), and non-covalent (DIT-PA) immobilization of the functional groups. The effects of the diatomite modification have been studied using powder XRD, solid state NMR, FTIR spectroscopy, electronic microscopy, EDX, acid–base titrations, etc. The maximum adsorption capacities of DIT-Vin-PAcov, DIT-PA, and DIT-Vin-PAin samples were 294.3 mg/g, 253.8 mg/g, and 315.9 mg/g, respectively, at pH0 = 9.0. The adsorption amount of U(VI) ions using the prepared DIT-Vin-PAin was 95.63%, which is higher compared with that of the natural diatomite at the same concentration. The adsorption studies demonstrated that the phosphonic and hydroxyl groups on the surface of the diatomite played pivotal roles in the U(VI) adsorption. The U(VI) ions as a “hard” Lewis acid could easily form bonds with the “hard” donor P-containing ligands, so that the as-prepared DIT-Vin-PAin sample had excellent adsorption properties. The monolayer adsorption of the analyte on the surface of the raw diatomite and DIT-PA was observed. It was found from the thermodynamic parameters that the uptake of the U(VI) ions by the obtained adsorbents was a spontaneous process with an endothermic effect. Findings of the present work highlight the potential for using modified diatomite as effective and reusable adsorbents for the extraction of U(VI) in the waste, river, and tap waters with satisfactory results. Full article
Show Figures

Figure 1

12 pages, 4038 KiB  
Article
Multiscale Theoretical Study of Sulfur Dioxide (SO2) Adsorption in Metal–Organic Frameworks
by Charalampos G. Livas, Dionysios Raptis, Emmanuel Tylianakis and George E. Froudakis
Molecules 2023, 28(7), 3122; https://doi.org/10.3390/molecules28073122 - 31 Mar 2023
Cited by 9 | Viewed by 3350
Abstract
In the present work, we used DFT in order to study the interaction of SO2 with 41 strategically functionalized benzenes that can be incorporated in MOF linkers. The interaction energy of phenyl phosphonic acid (–PO3H2) with SO2 [...] Read more.
In the present work, we used DFT in order to study the interaction of SO2 with 41 strategically functionalized benzenes that can be incorporated in MOF linkers. The interaction energy of phenyl phosphonic acid (–PO3H2) with SO2 was determined to be the strongest (−10.1 kcal/mol), which is about 2.5 times greater than the binding energy with unfunctionalized benzene (−4.1 kcal/mol). To better understand the nature of SO2 interactions with functionalized benzenes, electron redistribution density maps of the relevant complexes with SO2 were created. In addition, three of the top performing functional groups were selected (–PO3H2, –CNH2NOH, –OSO3H) to modify the IRMOF-8 organic linker and calculate its SO2 adsorption capacity with Grand Canonical Monte Carlo (GCMC) simulations. Our results showed a great increase in the absolute volumetric uptake at low pressures, indicating that the suggested functionalization technique can be used to enhance the SO2 uptake capability not only in MOFs but in a variety of porous materials. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

19 pages, 7280 KiB  
Article
Antifouling Potential of Diadema setosum and Sonneratia lanceolata Extracts for Marine Applications
by Mujahidah Mohd Ramzi, Nor Izzati Abd Rahman, Nurul Najihah Rawi, Kesaven Bhubalan, Fazilah Ariffin, Noor Wini Mazlan, Jasnizat Saidin, Muhd Danish-Daniel, Julius Yong Fu Siong, Kamariah Bakar, Nor Atikah Mohd Zin, Ahmad Khusairi Azemi and Noraznawati Ismail
J. Mar. Sci. Eng. 2023, 11(3), 602; https://doi.org/10.3390/jmse11030602 - 13 Mar 2023
Cited by 7 | Viewed by 3672
Abstract
Marine resources such as marine invertebrates and mangrove plants favor the production of secondary metabolites that exhibit antifouling properties. These natural-derived compounds are considered environmentally friendly compared to synthetic compounds with similar activity and technological applications. The current study was conducted to determine [...] Read more.
Marine resources such as marine invertebrates and mangrove plants favor the production of secondary metabolites that exhibit antifouling properties. These natural-derived compounds are considered environmentally friendly compared to synthetic compounds with similar activity and technological applications. The current study was conducted to determine the antifouling properties of Diadema setosum (DS) and Sonneratia lanceolata (SL) crude extracts and their incorporated paints, in addition to the identification of the metabolites involved. Both crude extracts were tested against Pseudomonas aeruginosa via a crystal violet assay, while the incorporated paints with 5% (SL5% and DS5%) and 10% (SL10% and DS10%) weight per volume (w/v) were tested in an aquarium and submerged in the seawater at Kemaman and Pulau Redang (Malaysia) for field testing. The identification of the bioactive compounds from the crude extracts was carried out using Liquid Chromatography-Mass Spectrometry (LC-MS). The results of the crystal violet assay showed that both of the crude extracts reduced the biofilm formed by Pseudomonas aeruginosa. The marine bacteria growths contained in natural seawater were inhibited the most by SL5%, followed by DS5%, DS10%, and SL10% in the aquarium testing. Based on the photographic observation, all of the paints incorporated with the crude extracts successfully reduced the settlement of fouling organisms compared to the blank paint, as lesser macroalgae were found growing on the SL5%, DS5%, and DS10%. The LC-MS results showed 3-Methyloxiranyl phosphonic acid; (2RS,3SR)-form from the SL crude extract, while the 8-Decene-1,3,5-triol, 3-Hydroxyundecanoic acid, and 1-O-(6-Deoxy-6-sulfoglucopyranosyl)glycerol; α-D-form, 3-Hexadecanoyl from the DS crude extract were involved in the antifouling properties. In conclusion, both crude extracts have the potential to be developed as antifouling agents. Full article
(This article belongs to the Special Issue Marine Environmentally-Friendly Antifouling Technology)
Show Figures

Figure 1

13 pages, 3027 KiB  
Article
Nanomechanics of Ultrathin Carbon Nanomembranes
by Marinos Dimitropoulos, George Trakakis, Nikolaus Meyerbröker, Raphael Gehra, Polina Angelova, Albert Schnieders, Christos Pavlou, Christos Kostaras, Costas Galiotis and Konstantinos Dassios
Nanomaterials 2023, 13(2), 267; https://doi.org/10.3390/nano13020267 - 8 Jan 2023
Cited by 5 | Viewed by 2462
Abstract
Ultrathin carbon nanomembranes (CNMs) are two-dimensional materials (2DM) of a few nm thickness with sub-nm intrinsic pores that mimic the biofiltration membranes found in nature. They enable highly selective, permeable, and energy-efficient water separation and can be produced at large scales on porous [...] Read more.
Ultrathin carbon nanomembranes (CNMs) are two-dimensional materials (2DM) of a few nm thickness with sub-nm intrinsic pores that mimic the biofiltration membranes found in nature. They enable highly selective, permeable, and energy-efficient water separation and can be produced at large scales on porous substrates with tuned properties. The present work reports the mechanical performance of such CNMs produced by p-nitrobiphenyl phosphonic acid (NBPS) or polyvinylbiphenyl (PVBP) and their composite membranes of microporous supporting substrates, which constitute indispensable information for ensuring their mechanical stability during operation. Measuring the nanomechanical properties of the ultrathin material was achieved by atomic force microscopy (AFM) on membranes both supported on flat substrates and suspended on patterned substrates (“composite membrane”). The AFM analysis showed that the CNMs presented Young’s modulus in the range of 2.5–8 GPa. The composite membranes’ responses were investigated by tensile testing in a micro-tensile stage as a function of substrate thickness and substrate pore density and diameter, which were found to affect the mechanical properties. Thermogravimetric analysis was used to investigate the thermal stability of composite membranes at high temperatures. The results revealed the structural integrity of CNMs, while critical parameters governing their mechanical response were identified and discussed. Full article
Show Figures

Figure 1

20 pages, 4451 KiB  
Article
Co-Delivery System of Curcumin and Colchicine Using Functionalized Mesoporous Silica Nanoparticles Promotes Anticancer and Apoptosis Effects
by Khaled AbouAitah, Ahmed A. F. Soliman, Anna Swiderska-Sroda, Amr Nassrallah, Julita Smalc-Koziorowska, Stanislaw Gierlotka and Witold Lojkowski
Pharmaceutics 2022, 14(12), 2770; https://doi.org/10.3390/pharmaceutics14122770 - 11 Dec 2022
Cited by 20 | Viewed by 3515
Abstract
Purpose: Many natural agents have a high anticancer potential, and their combination may be advantageous for improved anticancer effects. Such agents, however, often are not water soluble and do not efficiently target cancer cells, and the kinetics of their action is poorly controlled. [...] Read more.
Purpose: Many natural agents have a high anticancer potential, and their combination may be advantageous for improved anticancer effects. Such agents, however, often are not water soluble and do not efficiently target cancer cells, and the kinetics of their action is poorly controlled. One way to overcome these barriers is to combine natural agents with nanoparticles. Our aim in the current study was to fabricate an anticancer nanoformulation for co-delivery of two natural agents, curcumin (CR) and colchicine (CL), with a core-shell structure. Using cancer cell lines, we compared the anticancer efficacy between the combination and a nanoformulation with CL alone. Methods: For the single-drug nanoformulation, we used phosphonate groups to functionalize mesoporous silica nanoparticles (MSNs) and loaded the MSNs with CL. Additional loading of this nanoformulation with CR achieved the co-delivery format. To create the structure with a core shell, we selected a chitosan–cellulose mixture conjugated with targeting ligands of folic acid for the coating. For evaluating anticancer and apoptosis effects, we assessed changes in important genes and proteins in apoptosis (p53, caspase-3, Bax, Bcl-2) in several cell lines (MCF-7, breast adenocarcinoma; HCT-116, colon carcinoma; HOS, human osteosarcoma; and A-549, non–small cell lung cancer). Results: Nanoformulations were successfully synthesized and contained 10.9 wt.% for the CL single-delivery version and 18.1 wt.% for the CL+CR co-delivery nanoformulation. Anticancer effects depended on treatment, cell line, and concentration. Co-delivery nanoformulations exerted anticancer effects that were significantly superior to those of single delivery or free CL or CR. Anticancer effects by cell line were in the order of HCT-116 > A549 > HOS > MCF-7. The lowest IC50 value was obtained for the nanoformulation consisting of CL and CR coated with a polymeric shell conjugated with FA (equivalent to 4.1 ± 0.05 µg/mL). With dual delivery compared with the free agents, we detected strongly increased p53, caspase-3, and Bax expression, but inhibition of Bcl-2, suggesting promotion of apoptosis. Conclusions: Our findings, although preliminary, indicate that the proposed dual delivery nanoformulation consisting of nanocore: MSNs loaded with CL and CR and coated with a shell of chitosan–cellulose conjugated folic acid exerted strong anticancer and apoptotic effects with potent antitumor activity against HCT-116 colon cells. The effect bested CL alone. Evaluating and confirming the efficacy of co-delivery nanoformulations will require in vivo studies. Full article
Show Figures

Graphical abstract

10 pages, 2884 KiB  
Article
Thermal Degradation of Organophosphorus Flame Retardants
by Bob A. Howell
Polymers 2022, 14(22), 4929; https://doi.org/10.3390/polym14224929 - 15 Nov 2022
Cited by 44 | Viewed by 3459
Abstract
The development of new organophosphorus flame retardants for polymeric materials is spurred by relatively low toxicity, effectiveness, and demand for replacement of more traditional materials. To function, these compounds must decompose in a degrading polymer matrix to form species which promote modification of [...] Read more.
The development of new organophosphorus flame retardants for polymeric materials is spurred by relatively low toxicity, effectiveness, and demand for replacement of more traditional materials. To function, these compounds must decompose in a degrading polymer matrix to form species which promote modification of the solid phase or generate active radical moieties that escape to the gas phase and interrupt combustion propagating reactions. An understanding of the decomposition process for these compounds may provide insight into the nature of flame retardant action which they may offer and suggest parameters for the synthesis of effective new organophosphorus flame retardants. The thermal degradation of a series of organophosphorus esters varying in the level of oxygenation at phosphorus—alkyl phosphate, aryl phosphate, phosphonate, phosphinate—has been examined. Initial degradation in all cases corresponds to elimination of a phosphorus acid. However, the facility with which this occurs is strongly dependent on the level of oxygenation at phosphorus. For alkyl phosphates elimination occurs rapidly at relatively low temperature. The same process occurs at somewhat higher temperature for aryl phosphates. Elimination of a phosphorus acid from phosphonate or phosphinate occurs more slowly and at much higher temperature. Further, the acids formed from elimination rapidly degrade further to evolve volatile species. Full article
(This article belongs to the Special Issue Advances in Flame Retardant Polymeric Materials II)
Show Figures

Figure 1

13 pages, 2036 KiB  
Article
Tailoring the Electrical Energy Storage Capability of Dielectric Polymer Nanocomposites via Engineering of the Host–Guest Interface by Phosphonic Acids
by Shaojing Wang, Peng Xu, Xiangyi Xu, Da Kang, Jie Chen, Zhe Li and Xingyi Huang
Molecules 2022, 27(21), 7225; https://doi.org/10.3390/molecules27217225 - 25 Oct 2022
Cited by 3 | Viewed by 1714
Abstract
Polymer nanocomposites have attracted broad attention in the area of dielectric and energy storage. However, the electrical and chemical performance mismatch between inorganic nanoparticles and polymer leads to interfacial incompatibility. In this study, phosphonic acid molecules with different functional ligands were introduced to [...] Read more.
Polymer nanocomposites have attracted broad attention in the area of dielectric and energy storage. However, the electrical and chemical performance mismatch between inorganic nanoparticles and polymer leads to interfacial incompatibility. In this study, phosphonic acid molecules with different functional ligands were introduced to the surface of BaTiO3 (BT) nanoparticles to tune their surface properties and tailor the host–guest interaction between BT and poly(vinylideneflyoride-co-hexafluroro propylene) (P(VDF-HFP)). The dielectric properties and electrical energy storage capability of the nanocomposites were recorded by broadband dielectric spectroscopy and electric displacement measurements, respectively. The influence of the ligand length and polarity on the dielectric properties and electrical energy storage of the nanocomposites was documented. The nanocomposite with 5 vol% 2,3,4,5,6-pentafluorobenzyl phosphonic acid (PFBPA)-modified BT had the highest energy density of 12.8 J cm−3 at 400 MV m−1, i.e., a 187% enhancement in the electrical energy storage capability over the pure P(VDF-HFP). This enhancement can be attributed to the strong electron-withdrawing effect of the pentafluorobenzyl group of PFBPA, which changed the electronic nature of the polymer–particle interface. On the other hand, PFBPA improves the compatibility of the host–guest interface in the nanocomposites and decreases the electrical mismatch of the interface. These results provide new insights into the design and preparation of high-performance dielectric nanocomposites. Full article
(This article belongs to the Special Issue Recent Advances in Dielectric Polymers)
Show Figures

Figure 1

16 pages, 4824 KiB  
Article
Recovery of Lead (II) Ions from Aqueous Solutions Using G-26 and MTS9570 Resins with Sulfonic/Phosphonic Functional Groups
by Salem Elfeghe, Qiuyue Sheng, Abbas Mamudu, Lesley Anne James and Yahui Zhang
Minerals 2022, 12(10), 1312; https://doi.org/10.3390/min12101312 - 18 Oct 2022
Cited by 2 | Viewed by 2526
Abstract
This study presents Pb(II) recovery/removal from water solutions using two different commercial ion-exchange resins, i.e., Dowex G-26 with sulfonic functional group and Puromet™ MTS9570 with sulfonic and phosphonic functional groups. Overall, 100% Pb(II) recovery/removal by both resins was obtained at solution pH 3.5, [...] Read more.
This study presents Pb(II) recovery/removal from water solutions using two different commercial ion-exchange resins, i.e., Dowex G-26 with sulfonic functional group and Puromet™ MTS9570 with sulfonic and phosphonic functional groups. Overall, 100% Pb(II) recovery/removal by both resins was obtained at solution pH 3.5, resin dosage 25 g/L, adsorption time 30 min, room temperature, and initial Pb(II) concentration 1000 mg/L. Langmuir, Freundlich, and Temkin isotherms were used to model the experimental data. The mechanism of the adsorption process was investigated using kinetic and thermodynamic models. The experimental data fitted very well with the pseudo-second-order kinetic model, and thermodynamic analysis showed that the adsorption of Pb(II) from acidic solution onto both resins was a spontaneous and endothermic process in nature. Regeneration of the resins loaded with lead ions was tested for three cycles to evaluate the resin recyclability. Good stability of G-26 and performance degradation of MTS9570 resin was observed. Full article
Show Figures

Figure 1

Back to TopTop