Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (104)

Search Parameters:
Keywords = nanostructured lipid nanocarrier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 808 KiB  
Review
A Review of Formulation Strategies for Cyclodextrin-Enhanced Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs)
by Tarek Alloush and Burcu Demiralp
Int. J. Mol. Sci. 2025, 26(13), 6509; https://doi.org/10.3390/ijms26136509 - 6 Jul 2025
Viewed by 962
Abstract
The advancement of efficient drug delivery systems continues to pose a significant problem in pharmaceutical sciences, especially for compounds with limited water solubility. Lipid-based systems, including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have emerged as viable options owing to their [...] Read more.
The advancement of efficient drug delivery systems continues to pose a significant problem in pharmaceutical sciences, especially for compounds with limited water solubility. Lipid-based systems, including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), have emerged as viable options owing to their biocompatibility, capability to safeguard labile chemicals, and potential for prolonged release. Nonetheless, the encapsulation efficiency (EE) and release dynamics of these carriers can be enhanced by including cyclodextrins (CDs)—cyclic oligosaccharides recognized for their ability to form inclusion complexes with hydrophobic compounds. This article offers an extensive analysis of CD-modified SLNs and NLCs as multifunctional drug delivery systems. The article analyses the fundamental principles of these systems, highlighting the pre-complexation of the drug with cyclodextrins before lipid incorporation, co-encapsulation techniques, and surface adsorption after formulation. Attention is concentrated on the physicochemical interactions between cyclodextrins and lipid matrices, which influence essential factors such as particle size, encapsulation efficiency, and colloidal stability. The review includes characterization techniques, such as particle size analysis, zeta potential measurement, drug release studies, and Fourier-transform infrared spectroscopy (FT-IR)/Nuclear Magnetic Resonance (NMR) analyses. The study highlights the application of these systems across many routes of administration, including oral, topical, and mucosal, illustrating their adaptability and potential for targeted delivery. The review outlines current formulation challenges, including stability issues, drug leakage, and scalability concerns, and proposes solutions through advanced approaches, such as stimuli-responsive release mechanisms and computer modeling for system optimization. The study emphasizes the importance of regulatory aspects and outlines future directions in the development of CD-lipid hybrid nanocarriers, showcasing its potential to revolutionize the delivery of poorly soluble drugs. Full article
(This article belongs to the Special Issue Research on Cyclodextrin)
Show Figures

Graphical abstract

18 pages, 1061 KiB  
Article
Design of Clofazimine-Loaded Lipid Nanoparticles Using Smart Pharmaceutical Technology Approaches
by Helena Rouco, Nicola Filippo Virzì, Carolina Menéndez-Rodríguez, Carmen Potel, Patricia Diaz-Rodriguez and Mariana Landin
Pharmaceutics 2025, 17(7), 873; https://doi.org/10.3390/pharmaceutics17070873 - 2 Jul 2025
Viewed by 458
Abstract
Background/Objectives: Clofazimine (CFZ) is a versatile antimicrobial active against several bacterial species, although its reduced aqueous solubility and the occurrence of side effects limit its use. Nanostructured lipid carriers (NLCs) constitute an interesting approach to increase drug bioavailability and safety. However, the [...] Read more.
Background/Objectives: Clofazimine (CFZ) is a versatile antimicrobial active against several bacterial species, although its reduced aqueous solubility and the occurrence of side effects limit its use. Nanostructured lipid carriers (NLCs) constitute an interesting approach to increase drug bioavailability and safety. However, the development of nanoparticle-based formulations is challenging. In the present work, a combination of smart pharmaceutical technology approaches was proposed to develop CFZ-loaded NLCs, taking advantage of previous knowledge on NLCs screening. Methods: A design space previously established using Artificial Intelligence (AI) tools was applied to develop CFZ-loaded NLC formulations. After formulation characterization, Neurofuzzy Logic (NFL) and in silico docking simulations were employed to enhance the understanding of lipid nanocarriers. Then, the performance of formulations designed following NFL guidelines was characterized in terms of biocompatibility, using murine fibroblasts, and antimicrobial activity against several strains of Staphylococcus aureus. Results: The followed approach enabled CFZ-loaded NLC formulations with optimal properties, including small size and high antimicrobial payload. NFL was useful to investigate the existing interactions between NLC components and homogenization conditions, that influence CFZ-loaded NLCs’ final properties. Also, in silico docking simulations were successfully applied to examine interactions and affinity between the drug and the lipid matrix components. Finally, the designed CFZ-loaded formulations demonstrated suitable biocompatibility, together with antimicrobial activity. Conclusions: The implementation of smart strategies during nanoparticle-based therapeutics development, such as those described in this manuscript, would enable the more efficient design of new systems for suitable antimicrobial delivery. Full article
Show Figures

Figure 1

16 pages, 1258 KiB  
Article
NLC-Based Rifampicin Delivery System: Development and Characterization for Improved Drug Performance Against Staphylococcus aureus
by Javiera Carrasco-Rojas, Felipe I. Sandoval, Christina M. A. P. Schuh, Carlos F. Lagos, Javier O. Morales, Francisco Arriagada and Andrea C. Ortiz
Pharmaceutics 2025, 17(6), 799; https://doi.org/10.3390/pharmaceutics17060799 - 19 Jun 2025
Viewed by 577
Abstract
Background/Objectives: Rifampicin is a typical antibiotic used for the treatment of Staphylococcus aureus (S. aureus) infections; however, its clinical utility is limited by poor aqueous solubility, chemical instability, and increasing bacterial resistance. Nanostructured lipid carriers (NLCs) offer a promising strategy [...] Read more.
Background/Objectives: Rifampicin is a typical antibiotic used for the treatment of Staphylococcus aureus (S. aureus) infections; however, its clinical utility is limited by poor aqueous solubility, chemical instability, and increasing bacterial resistance. Nanostructured lipid carriers (NLCs) offer a promising strategy to improve drug solubility, stability, and antimicrobial performance. Methods: In this study, rifampicin-loaded NLC (NLC-RIF) was developed using a hot homogenization with a low energy method and characterized in terms of particle size, polydispersity index, zeta potential, encapsulation efficiency, colloidal stability, and drug loading. Results: In vitro release studies under sink conditions demonstrated a biphasic release pattern, best described by the Korsmeyer–Peppas model, suggesting a combination of diffusion and matrix erosion mechanisms. Antimicrobial activity against S. aureus revealed a substantial increase in potency for NLC-RIF, with an IC50 of 0.46 ng/mL, approximately threefold lower than that of free rifampicin. Cytotoxicity assays in HepG2 cells confirmed over 90% cell viability across all tested concentrations. Conclusions: These findings highlight the potential of NLC-RIF as a biocompatible and effective nanocarrier system for enhancing rifampicin delivery and antibacterial activity. Full article
(This article belongs to the Special Issue Nanoparticle-Mediated Targeted Drug Delivery Systems)
Show Figures

Figure 1

24 pages, 1900 KiB  
Review
Nanotechnology-Based Face Masks: Transforming the Cosmetics Landscape
by Vivek P. Chavda, Hetvi K. Solanki, Dixa A. Vaghela, Karishma Prajapati and Lalitkumar K. Vora
Micro 2025, 5(1), 11; https://doi.org/10.3390/micro5010011 - 7 Mar 2025
Viewed by 2543
Abstract
The cosmetic market is constantly evolving and ever-changing, particularly with the introduction and incorporation of nanotechnology-based processes into cosmetics for the production of unique formulations with both aesthetic and therapeutic benefits. There is no doubt that nanotechnology is an emerging technology for cosmetic [...] Read more.
The cosmetic market is constantly evolving and ever-changing, particularly with the introduction and incorporation of nanotechnology-based processes into cosmetics for the production of unique formulations with both aesthetic and therapeutic benefits. There is no doubt that nanotechnology is an emerging technology for cosmetic formulations. Among the numerous cosmetic items, incorporating nanomaterials has provided a greater scope and is commonly utilized in facial masks, hair products, antiaging creams, sunscreen creams, and lipsticks. In cosmetics, nanosized materials, including lipid crystals, liposomes, lipid NPs, inorganic nanocarriers, polymer nanocarriers, solid lipid nanocarriers (SLNs), nanostructured lipid carriers (NLCs), nanofibers, nanocrystals, and nanoemulsions, have become common ingredients. The implementation of nanotechnology in the formulation of face masks will improve its efficacy. Nanotechnology enhances the penetration of active ingredients used in the preparation of face masks, such as peel-off masks and sheet masks, which results in better effects. The emphasis of this review is mainly on the formulation of cosmetic face masks, in which the impact of nanotechnology has been demonstrated to improve the product performance on the skin. Full article
(This article belongs to the Section Microscale Biology and Medicines)
Show Figures

Graphical abstract

24 pages, 23251 KiB  
Article
In Vitro Evaluation of the Safety and Antineoplastic Effects in Gastrointestinal Tumors of Nanostructured Lipid Carriers Loaded with Berberine
by Denitsa Stefanova, Yordan Yordanov, Radostina Bogdanova, Christina Voycheva, Borislav Tzankov, Teodora Popova, Magdalena Kondeva-Burdina, Virginia Tzankova, Natalia Toncheva-Moncheva, Diana Tzankova and Marta Slavkova
Pharmaceutics 2025, 17(3), 331; https://doi.org/10.3390/pharmaceutics17030331 - 4 Mar 2025
Cited by 1 | Viewed by 1084
Abstract
Background/Objectives: Natural substances have been a widely studied source of both pharmaceutical excipients and drugs. Berberine (BRB) is a benzylisoquinoline alkaloid isolated from different plant sources. It possesses various pharmacological properties including antibacterial, antitumor, antidiabetic, neuroprotective, hepatoprotective, anti-inflammatory, antioxidant, etc. However, the [...] Read more.
Background/Objectives: Natural substances have been a widely studied source of both pharmaceutical excipients and drugs. Berberine (BRB) is a benzylisoquinoline alkaloid isolated from different plant sources. It possesses various pharmacological properties including antibacterial, antitumor, antidiabetic, neuroprotective, hepatoprotective, anti-inflammatory, antioxidant, etc. However, the limited aqueous solubility hinders its application. Nanosized drug delivery systems are an innovative approach for addressing various challenges regarding drug delivery via different routes of administration. Their utilization could improve the solubility of active constituents. Methods: A melt-emulsification and ultrasonication technique was applied for the preparation of nanostructured lipid carriers (NLCs). They were thoroughly physicochemically characterized by the means of Dynamic Light Scattering, TEM, FTIR, DSC, TGA, and In Vitro release. The In Vitro efficacy and safety were evaluated on cholangiocarcinoma, colorectal adenocarcinoma, hepatocellular carcinoma, lymphoma, fibroblast, and cardioblast cells, as well as rat liver microsomes by means of cytotoxicity assays and the comet assay. Results: The obtained nanoparticles had a spherical shape and size around 158.2 ± 1.8 nm with negative zeta potential. They revealed successful drug loading and improved dissolution of berberine in physiological conditions. The In Vitro safety studies showed that loading BRB in NLCs resulted in improved or retained cytotoxicity to tumor cell lines and reduced cytotoxicity to normal cell lines and liver microsomes. The NLC itself increased microsomal malondialdehyde (MDA) and comet formation. Conclusions: A successful preparation of NLCs with berberine is presented. The nanocarriers show favorable physicochemical and biopharmaceutical properties. The cellular experiments show that the NLC loading of berberine could improve its anticancer efficacy and safety. These findings highlight the potential applicability of berberine in gastrointestinal neoplasms and build the foundation for future practical translation. Full article
Show Figures

Figure 1

21 pages, 3750 KiB  
Article
Exploring Nano-Delivery Systems to Enhance the Edaravone Performance in Amyotrophic Lateral Sclerosis Treatment
by Brandon Aguiar, Ana Rita Alfenim, Cláudia Sofia Machado, Joana Moreira, Miguel Pinto, Francisco J. Otero-Espinar, Fernanda Borges and Carlos Fernandes
Int. J. Mol. Sci. 2025, 26(5), 2146; https://doi.org/10.3390/ijms26052146 - 27 Feb 2025
Viewed by 1041
Abstract
Edaravone is one of the treatment options for Amyotrophic Lateral Sclerosis, but its therapeutic efficacy is limited due to the incapacity to cross the blood–brain barrier, as well as its short life span and poor stability, which is ultimately caused by its tautomerism [...] Read more.
Edaravone is one of the treatment options for Amyotrophic Lateral Sclerosis, but its therapeutic efficacy is limited due to the incapacity to cross the blood–brain barrier, as well as its short life span and poor stability, which is ultimately caused by its tautomerism in physiological condions. This work presents an overview about the use of several nanoformulations based on polymeric, protein, lipidic, or hybrid structure as suitable and stable drug delivery systems for encapsulating edaravone. We also evaluated the functionalization of nanoparticles with pegylated chains using the polyethylene glycol or tocopherol polyethylene glycol succinate and the possibility of preparing polymeric nanoparticles at different pH (7.4, 9, and 11). Edaravone was sucessfully encapsulated in polymeric, lipid–polymer hybrid, and lipidic nanoparticles. The use of higher pH values in the synthesis of polymeric nanoparticles has led to a decrease in nanoparticle size and an increase in the percentage of encapsulation efficiency. However, the resulting nanoformulations are not stable. Only polymeric and hybrid nanoparticles showed good stability over 80 days of storage, mainly at 4 °C. Overall, the nanoformulations tested did not show cytotoxicity in the SH-SY5Y cell line except the nanostructured lipid carrier formulations that showed some cytotoxicity possibly due to lipidic peroxidation. In conclusion, this work shows that edaravone can be encapsulated in different nanocarriers that could act as an interesting alternative for the treatment of Amyotrophic Lateral Sclerosis. Full article
(This article belongs to the Special Issue Molecular Advances in Liposome-Based Drug Delivery Systems)
Show Figures

Figure 1

28 pages, 11504 KiB  
Article
Phytoactive-Loaded Lipid Nanocarriers for Simvastatin Delivery: A Drug Repositioning Strategy Against Lung Cancer
by Rocío Gambaro, Cecilia Y. Chain, Sebastian Scioli-Montoto, Ailin Moreno, Cristián Huck-Iriart, María Esperanza Ruiz, José S. Cisneros, Diego G. Lamas, Julia Tau, Stephan Gehring, Germán A. Islan and Boris Rodenak-Kladniew
Pharmaceutics 2025, 17(2), 255; https://doi.org/10.3390/pharmaceutics17020255 - 14 Feb 2025
Viewed by 1105
Abstract
Background/Objectives: Drug repurposing explores new applications for approved medications, such as simvastatin (SV), a lipid-lowering drug that has shown anticancer potential but is limited by solubility and side effects. This study aims to enhance SV delivery and efficacy against lung cancer cells using [...] Read more.
Background/Objectives: Drug repurposing explores new applications for approved medications, such as simvastatin (SV), a lipid-lowering drug that has shown anticancer potential but is limited by solubility and side effects. This study aims to enhance SV delivery and efficacy against lung cancer cells using bioactive lipid nanoparticles formulated with plant-derived monoterpenes as both nanostructuring agents and anticancer molecules. Methods: Lipid nanoparticles were produced by ultrasonication and characterized for morphology, size, zeta potential, and polydispersity index (PDI). Monoterpenes (linalool-LN-, limonene, 1,8-cineole) or Crodamol® were used as liquid lipids. Encapsulation efficiency (EE), release profiles, stability, biocompatibility, protein adsorption, cytotoxicity, and anticancer effects were evaluated. Results: The nanoparticles exhibited high stability, size: 94.2 ± 0.9–144.0 ± 2.6 nm, PDI < 0.3, and zeta potential: −4.5 ± 0.7 to −16.3 ± 0.8 mV. Encapsulation of SV in all formulations enhanced cytotoxicity against A549 lung cancer cells, with NLC/LN/SV showing the highest activity and being chosen for further investigation. Sustained SV release over 72 h and EE > 95% was observed for NLC/LN/SV. SAXS/WAXS analysis revealed that LN altered the crystallographic structure of nanoparticles. NLC/LN/SV demonstrated excellent biocompatibility and developed a thin serum protein corona in vitro. Cellular studies showed efficient uptake by A549 cells, G0/G1 arrest, mitochondrial hyperpolarization, reactive oxygen species production, and enhanced cell death compared to free SV. NLC/LN/SV more effectively inhibited cancer cell migration than free SV. Conclusions: NLC/LN/SV represents a promising nanocarrier for SV repurposing, combining enhanced anticancer activity, biocompatibility, and sustained stability for potential lung cancer therapy. Full article
(This article belongs to the Special Issue Natural Nanoparticle for Cancer Diagnosis and Treatment, 2nd Edition)
Show Figures

Figure 1

29 pages, 9386 KiB  
Review
Nanostructured Formulations for a Local Treatment of Cancer: A Mini Review About Challenges and Possibilities
by Tatiane Roquete Amparo, Tamires Cunha Almeida, Lucas Resende Dutra Sousa, Viviane Flores Xavier, Glenda Nicioli da Silva, Geraldo Célio Brandão and Orlando David Henrique dos Santos
Pharmaceutics 2025, 17(2), 205; https://doi.org/10.3390/pharmaceutics17020205 - 6 Feb 2025
Cited by 2 | Viewed by 1473
Abstract
Cancer represents a significant societal, public health, and economic challenge. Conventional chemotherapy is based on systemic administration; however, it has current limitations, including poor bioavailability, high-dose requirements, adverse side effects, low therapeutic indices, and the development of multiple drug resistance. These factors underscore [...] Read more.
Cancer represents a significant societal, public health, and economic challenge. Conventional chemotherapy is based on systemic administration; however, it has current limitations, including poor bioavailability, high-dose requirements, adverse side effects, low therapeutic indices, and the development of multiple drug resistance. These factors underscore the need for innovative strategies to enhance drug delivery directly to tumours. However, local treatment also presents significant challenges, including the penetration of the drug through endothelial layers, tissue density in the tumour microenvironment, tumour interstitial fluid pressure, physiological conditions within the tumour, and permanence at the site of action. Nanotechnology represents a promising alternative for addressing these challenges. This narrative review elucidates the potential of nanostructured formulations for local cancer treatment, providing illustrative examples and an analysis of the advantages and challenges associated with this approach. Among the nanoformulations developed for the local treatment of breast, bladder, colorectal, oral, and melanoma cancer, polymeric nanoparticles, liposomes, lipid nanoparticles, and nanohydrogels have demonstrated particular efficacy. These systems permit mucoadhesion and enhanced tissue penetration, thereby increasing the drug concentration at the tumour site (bioavailability) and consequently improving anti-tumour efficacy and potentially reducing adverse effects. In addition to studies indicating chemotherapy, nanocarriers can be used as a theranostic approach and in combination with irradiation methods. Full article
(This article belongs to the Special Issue Nanoformulations for Local Treatment of Cancer, Infections and Wounds)
Show Figures

Figure 1

16 pages, 2361 KiB  
Article
Potential of Newly Synthesized Sea Buckthorn Phytocarriers as Anti-Inflammatory Active Agents
by Ionela Daniela Popescu, Elena Codrici, Sevinci Pop, Tudor Emanuel Fertig, Maria Dudău, Iliuta Laurentiu Anghelache, Nicoleta Constantin, Radu Marian Marinescu, Vlad Mihai Voiculescu, Georgiana Ileana Badea, Mirela Diaconu, Monica Elisabeta Maxim, Mihaela Scurtu, Kliment Zanov, Ana-Maria Enciu, Simona Carmen Litescu and Cristiana Tanase
Pharmaceuticals 2025, 18(2), 212; https://doi.org/10.3390/ph18020212 - 5 Feb 2025
Viewed by 1112
Abstract
Background: Phytocarriers are advanced drug delivery systems that use biocompatible and biodegradable materials to enhance the efficacy, stability, and bioavailability of natural products. The sea buckthorn (Hippophae rhamnoides L.) berry extract is rich in essential fatty acids and antioxidants, including vitamin C, [...] Read more.
Background: Phytocarriers are advanced drug delivery systems that use biocompatible and biodegradable materials to enhance the efficacy, stability, and bioavailability of natural products. The sea buckthorn (Hippophae rhamnoides L.) berry extract is rich in essential fatty acids and antioxidants, including vitamin C, vitamin E, and anthocyanins, which contribute to its wide-ranging health benefits. In this study, we assessed the morphology, intracellular delivery, and anti-inflammatory effect of sodium cholate (NaC) and sodium deoxycholate (NaDC)-based phytocarriers loaded with ethanolic extract from sea buckthorn berries (sea buckthorn carrier nanostructures, further defined as phytocarriers). Methods: Negative and electron cryo-microscopy were used to analyze hollow and loaded nanocarriers. The cyto-compatibility of nanocarriers was assessed by endpoint (LDH and MTS) and real-time cell assays, on both human fibroblasts (HS27) and human normal monocytes (SC). The anti-inflammatory effect of hollow and loaded nanocarriers was tested by multiplexing. Results: The negative and electron cryo-microscopy analyses showed that NaC-based phytocarriers were spherical, whilst NaDC-based phytocarriers were predominantly polymorphic. Moreover, the NaDC-based phytocarriers frequently formed large lipid networks or “plaques”. Although 24 h cytotoxicity testing showed both types of nanocarriers are biocompatible with human fibroblasts and monocytes, based on a long-term real-time assay, NaDC delayed fibroblast proliferation. NaC sea buckthorn phytocarriers did not impair fibroblast proliferation in the long term and they were uptaken by cells, as shown by hyperspectral microscopy. NaC nanocarriers and NaC sea buckthorn phytocarriers induced an anti-inflammatory effect, lowering IL-8 cytokine production in normal human monocytes as soon as 4 h of treatment lapsed. Conclusions: NaC-derived phytocarriers loaded with sea buckthorn alcoholic extract are a cell-compatible delivery system with anti-inflammatory properties. Full article
(This article belongs to the Special Issue Bioactive Compounds Derived from Plants and Their Medicinal Potential)
Show Figures

Figure 1

26 pages, 11321 KiB  
Article
Curcumin-Loaded Lipid Nanocarriers: A Targeted Approach for Combating Oxidative Stress in Skin Applications
by Aggeliki Liakopoulou, Sophia Letsiou, Konstantinos Avgoustakis, George P. Patrinos, Fotini N. Lamari and Sophia Hatziantoniou
Pharmaceutics 2025, 17(2), 144; https://doi.org/10.3390/pharmaceutics17020144 - 21 Jan 2025
Cited by 1 | Viewed by 1407
Abstract
Background/Objectives: Oxidative stress significantly impacts skin health, contributing to conditions like aging, pigmentation, and inflammatory disorders. Curcumin, with its potent antioxidant properties, faces challenges of low solubility, stability, and bioavailability. This study aimed to encapsulate curcumin in three lipid nanocarriers—solid lipid nanoparticles (SLNs), [...] Read more.
Background/Objectives: Oxidative stress significantly impacts skin health, contributing to conditions like aging, pigmentation, and inflammatory disorders. Curcumin, with its potent antioxidant properties, faces challenges of low solubility, stability, and bioavailability. This study aimed to encapsulate curcumin in three lipid nanocarriers—solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and nanoemulsions (NEs)—to enhance its stability, bioavailability, and antioxidant efficacy for potential therapeutic applications in oxidative-stress-related skin disorders. Methods: The lipid nanocarriers were characterized for size, polydispersity index, ζ-potential, and encapsulation efficiency. Stability tests under various conditions and antioxidant activity assays (DPPH and FRAP methods) were conducted. Cytotoxicity in human dermal fibroblasts was assessed using MTT assays, while the expression of key antioxidant genes was evaluated in human dermal fibroblasts under oxidative stress. Skin penetration studies were performed to analyze curcumin’s distribution across the stratum corneum layers. Results: All nanocarriers demonstrated high encapsulation efficiency and stability over 90 days. NLCs exhibited superior long-term stability and enhanced skin penetration, while NE formulations facilitated rapid antioxidant effects. Antioxidant assays confirmed that curcumin encapsulation preserved and enhanced its bioactivity, particularly in NLCs. Gene expression analysis revealed upregulation of key antioxidant markers (GPX1, GPX4, SOD1, KEAP1, and NRF2) with curcumin-loaded nanocarriers under oxidative and non-oxidative conditions. Cytotoxicity studies confirmed biocompatibility across all formulations. Conclusions: Lipid nanocarriers effectively enhance curcumin’s stability, antioxidant activity, and skin penetration, presenting a targeted strategy for managing oxidative stress in skin applications. Their versatility offers opportunities for tailored therapeutic formulations addressing specific skin conditions, from chronic disorders like psoriasis to acute stress responses such as sunburn. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

37 pages, 2634 KiB  
Review
The Potential Application of Nanocarriers in Delivering Topical Antioxidants
by Zulfan Zazuli, Rika Hartati, Cornelia Rosasepti Rowa, Sukmadjaja Asyarie and Satrialdi
Pharmaceuticals 2025, 18(1), 56; https://doi.org/10.3390/ph18010056 - 6 Jan 2025
Cited by 1 | Viewed by 2325
Abstract
The imbalance in the production of reactive oxygen species (ROS) with endogenous antioxidant capacity leads to oxidative stress, which drives many disorders, especially in the skin. In such conditions, supplementing exogenous antioxidants may help the body prevent the negative effect of ROS. However, [...] Read more.
The imbalance in the production of reactive oxygen species (ROS) with endogenous antioxidant capacity leads to oxidative stress, which drives many disorders, especially in the skin. In such conditions, supplementing exogenous antioxidants may help the body prevent the negative effect of ROS. However, the skin, as the outermost barrier of the body, provides a perfect barricade, making the antioxidant delivery complicated. Several strategies have been developed to enhance the penetration of antioxidants through the skin, one of which is nanotechnology. This review focuses on utilizing several nanocarrier systems, including nanoemulsions, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and polymeric nanoparticles, for transporting antioxidants into the skin. We also reveal ROS formation in the skin and the role of antioxidant therapy, as well as the natural sources of antioxidants. Furthermore, we discuss the clinical application of topical antioxidant therapy concomitantly with the current status of using nanotechnology to deliver topical antioxidants. This review will accelerate the advancement of topical antioxidant therapy. Full article
Show Figures

Graphical abstract

23 pages, 2695 KiB  
Review
Lipidic and Inorganic Nanoparticles for Targeted Glioblastoma Multiforme Therapy: Advances and Strategies
by Ewelina Musielak and Violetta Krajka-Kuźniak
Micro 2025, 5(1), 2; https://doi.org/10.3390/micro5010002 - 3 Jan 2025
Cited by 8 | Viewed by 2549
Abstract
Due to their biocompatibility, nontoxicity, and surface conjugation properties, nanomaterials are effective nanocarriers capable of encapsulating chemotherapeutic drugs and facilitating targeted delivery across the blood–brain barrier (BBB). Although research on nanoparticles for brain cancer treatment is still in its early stages, these systems [...] Read more.
Due to their biocompatibility, nontoxicity, and surface conjugation properties, nanomaterials are effective nanocarriers capable of encapsulating chemotherapeutic drugs and facilitating targeted delivery across the blood–brain barrier (BBB). Although research on nanoparticles for brain cancer treatment is still in its early stages, these systems hold great potential to revolutionize drug delivery. Glioblastoma multiforme (GBM) is one of the most common and lethal brain tumors, and its heterogeneous and aggressive nature complicates current treatments, which primarily rely on surgery. One of the significant obstacles to effective treatment is the poor penetration of drugs across the BBB. Moreover, GBM is often referred to as a “cold” tumor, characterized by an immunosuppressive tumor microenvironment (TME) and minimal immune cell infiltration, which limits the effectiveness of immunotherapies. Therefore, developing novel, more effective treatments is critical to improving the survival rate of GBM patients. Current strategies for enhancing treatment outcomes focus on the controlled, targeted delivery of chemotherapeutic agents to GBM cells across the BBB using nanoparticles. These therapies must be designed to engage specialized transport systems, allowing for efficient BBB penetration, improved therapeutic efficacy, and reduced systemic toxicity and drug degradation. Lipid and inorganic nanoparticles can enhance brain delivery while minimizing side effects. These formulations may include epitopes—small antigen fragments that bind directly to free antibodies, B cell receptors, or T cell receptors—that interact with transport systems and enable BBB crossing, thereby boosting therapeutic efficacy. Lipid-based nanoparticles (LNPs), such as liposomes, niosomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs), are among the most promising delivery systems due to their unique properties, including their size, surface modification capabilities, and proven biosafety. Additionally, inorganic nanoparticles such as gold nanoparticles, mesoporous silica, superparamagnetic iron oxide nanoparticles, and dendrimers offer promising alternatives. Inorganic nanoparticles (INPs) can be easily engineered, and their surfaces can be modified with various elements or biological ligands to enhance BBB penetration, targeted delivery, and biocompatibility. Strategies such as surface engineering and functionalization have been employed to ensure biocompatibility and reduce cytotoxicity, making these nanoparticles safer for clinical applications. The use of INPs in GBM treatment has shown promise in improving the efficacy of traditional therapies like chemotherapy, radiotherapy, and gene therapy, as well as advancing newer treatment strategies, including immunotherapy, photothermal and photodynamic therapies, and magnetic hyperthermia. This article reviews the latest research on lipid and inorganic nanoparticles in treating GBM, focusing on active and passive targeting approaches. Full article
(This article belongs to the Section Microscale Biology and Medicines)
Show Figures

Figure 1

24 pages, 3898 KiB  
Systematic Review
A Systematic Review of Spironolactone Nano-Formulations for Topical Treatment of Skin Hyperandrogenic Disorders and Chronic Wounds
by Saedah Dereiah, Muhammad Usman Ghori and Barbara R. Conway
Pharmaceutics 2025, 17(1), 27; https://doi.org/10.3390/pharmaceutics17010027 - 27 Dec 2024
Cited by 1 | Viewed by 2288
Abstract
Background/Objectives: Spironolactone (SP), an aldosterone inhibitor widely used to treat androgen-dependent disorders such as acne, hirsutism, and alopecia, has demonstrated therapeutic potential in both oral and topical formulations. However, SP’s low solubility and poor bioavailability in conventional formulations have driven the development of [...] Read more.
Background/Objectives: Spironolactone (SP), an aldosterone inhibitor widely used to treat androgen-dependent disorders such as acne, hirsutism, and alopecia, has demonstrated therapeutic potential in both oral and topical formulations. However, SP’s low solubility and poor bioavailability in conventional formulations have driven the development of novel nanocarriers to enhance its efficacy. This review systematically examines recent advancements in SP-loaded nanocarriers, including lipid nanoparticles (LNPs), vesicular nanoparticles (VNPs), polymeric nanoparticles (PNPs), and nanofibers (NFs). Methods: A search strategy was developed, and the relevant literature was systematically searched using databases such as Scopus, PubMed, and Google Scholar. The review process, including screening, inclusion, and exclusion criteria, adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: A comprehensive analysis of 13 eligible research articles, corresponding to 15 studies, highlights key aspects such as encapsulation efficiency, stability, particle size, and in vitro and in vivo efficacy. Six studies focused on lipid nanoparticles (LNPs), including solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs), which were found to improve SP’s bioavailability and skin permeation. Another six studies investigated vesicular nanoparticles (VNPs), such as ethosomes and niosomes, demonstrating superior skin targeting and penetration capabilities. Two studies on polymeric nanoparticles (PNPs) showed effectiveness in delivering SP to hair follicles for the treatment of alopecia and acne. Additionally, one study on SP-loaded nanofibers indicated significant potential for topical rosacea therapy. Conclusions: SP-loaded nanocarrier systems represent promising advancements in targeted topical therapy. However, further clinical studies are required to optimize their safety, efficacy, and delivery mechanisms. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

16 pages, 1006 KiB  
Review
Lipid-Based Niclosamide Delivery: Comparative Efficacy, Bioavailability, and Potential as a Cancer Drug
by Jihoo Woo, Russell W. Wiggins and Shizue Mito
Lipidology 2024, 1(2), 134-149; https://doi.org/10.3390/lipidology1020010 - 1 Dec 2024
Viewed by 2085
Abstract
Niclosamide, an FDA-approved anti-parasitic drug, has demonstrated significant potential as a repurposed anti-cancer agent due to its ability to interfere with multiple oncogenic pathways. However, its clinical application has been hindered by poor solubility and bioavailability. Lipid-based nanocarrier systems such as liposomes, solid [...] Read more.
Niclosamide, an FDA-approved anti-parasitic drug, has demonstrated significant potential as a repurposed anti-cancer agent due to its ability to interfere with multiple oncogenic pathways. However, its clinical application has been hindered by poor solubility and bioavailability. Lipid-based nanocarrier systems such as liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), and lipid nanoemulsions (LNE), along with lipid prodrugs, have successfully been employed by researchers to overcome these limitations and improve niclosamide’s pharmacokinetic profile. Lipids are the core organic compounds which serve as the foundation of these advanced drug delivery methods and in turn play a critical role in enhancing niclosamide’s therapeutic efficacy through improving drug solubility and bioavailability. Lipid-based nanoparticles encapsulate niclosamide, protect it from degradation, facilitate drug delivery and release, and may facilitate targeted delivery in the future. While niclosamide holds significant potential as an anticancer agent due to its multi-pathway inhibitory effects, the challenges associated with its poor bioavailability and rapid clearance underscore the need for innovative delivery methods and chemical modifications to unlock its full therapeutic potential. This review aims to present the latest instances of lipid-based delivery of niclosamide and to compile successful strategies which may be employed when aiming to develop effective anticancer therapies. Full article
Show Figures

Figure 1

18 pages, 1098 KiB  
Review
Liposomes and Ethosomes: Comparative Potential in Enhancing Skin Permeability for Therapeutic and Cosmetic Applications
by Ewelina Musielak and Violetta Krajka-Kuźniak
Cosmetics 2024, 11(6), 191; https://doi.org/10.3390/cosmetics11060191 - 5 Nov 2024
Cited by 14 | Viewed by 6283
Abstract
Skin diseases are a common health problem affecting millions of people worldwide. Effective treatment often depends on the precise delivery of drugs to the affected areas. One promising approach is currently the transdermal drug delivery system (TDDS), whose significant challenge is the poor [...] Read more.
Skin diseases are a common health problem affecting millions of people worldwide. Effective treatment often depends on the precise delivery of drugs to the affected areas. One promising approach is currently the transdermal drug delivery system (TDDS), whose significant challenge is the poor penetration of many compounds into the skin due to the stratum corneum (SC), which acts as a formidable barrier. To overcome this limitation, nanocarriers have emerged as a highly effective alternative. This review discusses the use of liposomes and ethosomes for transdermal drug delivery. Liposomes are micro- or nanostructures consisting of a lipid bilayer surrounding an aqueous core. They facilitate transdermal drug penetration and may be advantageous for site-specific targeting. Some methods of treating skin diseases involve incorporating drugs such as acyclovir, dithranol, and tretinoin or bioactive compounds such as fluconazole, melanin, glycolic acid, kojic acid, and CoQ10 into nanocarriers. The inability of liposomes to pass through the narrowed intercellular channels of the stratum corneum led to the invention of lipid-based vesicular systems such as ethosomes. They are structurally similar to conventional liposomes, as they are prepared from phospholipids, but they contain a high ethanol concentration. Ethosomes are noninvasive carriers that allow drugs to reach the deep layers of the skin. Examples of commonly used substances and drugs combined with ethosomes in cosmetics include methotrexate, ascorbic acid, vitamin A and E, and colchicine. A significant development in this area is the use of rutin-loaded ethosomes. Encapsulating rutin in ethosomes significantly improves its stability and enhances skin penetration, allowing more efficient delivery to deeper skin layers. In cosmetics, rutin–ethosome formulations are used to protect the skin from oxidative stress, reduce redness, and improve capillary strength, making it a valuable formulation in anti-aging and anti-inflammatory products. The results of the first clinical trial of the acyclovir–ethosome formulation confirm that ethosomes require further investigation. The work provides an update on recent advances in pharmaceutical and cosmetic applications, mentioning the essential points of commercially available formulations, clinical trials, and patents in the recent past. Full article
Show Figures

Figure 1

Back to TopTop