Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = nanostructure growth modelling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1224 KB  
Communication
Nanomechanics of Multi-Walled Carbon Nanotubes Growth Coupled with Morphological Dynamics of Catalyst Particles
by Shuze Zhu
Nanomaterials 2025, 15(18), 1441; https://doi.org/10.3390/nano15181441 - 19 Sep 2025
Viewed by 315
Abstract
Low-dimensional carbon nanostructures such as nanotubes, nanocones, and nanofibers can be grown in chemical vapor deposition (CVD) synthesis using catalyst nanoparticles. It is commonly observed that the morphology of solid catalyst nanoparticles continuously fluctuates during multi-walled carbon nanotube (MWCNT) growth. Interestingly, when the [...] Read more.
Low-dimensional carbon nanostructures such as nanotubes, nanocones, and nanofibers can be grown in chemical vapor deposition (CVD) synthesis using catalyst nanoparticles. It is commonly observed that the morphology of solid catalyst nanoparticles continuously fluctuates during multi-walled carbon nanotube (MWCNT) growth. Interestingly, when the diameter of the inner tube of the growing MWCNT reduces below a threshold value, the catalyst nanoparticle snaps out of the MWCNT and recovers its spherical shape. If the MWCNT is tapered, the catalyst nanoparticle may also break. In this study, large-scale molecular dynamics simulations and nanomechanical modeling are employed to elucidate the complete process of MWCNT growth coupled with morphological change in the catalytic nanoparticles. It is shown that the tendency to decrease the surface energy of the catalyst nanoparticle is the major underlying driving force for the variation in morphology under the mechanical constraint of the growing MWCNT. Importantly, the predicted critical inner CNT radius at the onset of the shape recovery is in excellent agreement with experimental observations. The combination of molecular dynamics simulations and theoretical modeling offer an alternative perspective on co-evolution of catalyst nanoparticles and the growth of low-dimensional carbon nanostructures. Full article
(This article belongs to the Special Issue Mechanics and Physics of Low-Dimensional Materials and Structures)
Show Figures

Graphical abstract

10 pages, 10211 KB  
Article
Orientation Relationships and Interface Structuring in Au-Seeded TiO2 Nanowires
by Adel M. Abuamr, Minghui Lin, Yushun Liu and Guozhen Zhu
Crystals 2025, 15(9), 766; https://doi.org/10.3390/cryst15090766 - 28 Aug 2025
Viewed by 471
Abstract
The Au–TiO2 interface plays a critical role in heterogeneous catalysis and nanostructure synthesis relevant to renewable energy applications. Using Au-seeded TiO2 nanowires as the model system, we observe that, in addition to the commonly reported orientation relationships (ORs) and atomically sharp [...] Read more.
The Au–TiO2 interface plays a critical role in heterogeneous catalysis and nanostructure synthesis relevant to renewable energy applications. Using Au-seeded TiO2 nanowires as the model system, we observe that, in addition to the commonly reported orientation relationships (ORs) and atomically sharp interfaces, Au–TiO2 interfaces can also exhibit ORs involving high-indexed planes, often accompanied by local disorder and atomic reconstructions involving multiple Ti-O monolayers. These interfacial rearrangements are promoted by high-temperature thermal treatment at 1000 °C during nanowire growth. The findings broaden our understanding of orientation relationships and interface structures in the Au–TiO2 system, offering valuable insights into interface-driven synthesis of oxide nanostructures and guiding future strategies for interface engineering in catalytic and electronic applications. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

11 pages, 1821 KB  
Article
Patterned Growth of Photocatalytic Heterostructures via a Biomimetic Molecular Recognition Approach Using Solid-Binding Peptides
by Ana Castellanos-Aliaga, Laura San-Miguel, Marta Cama, David G. Calatayud, Amador C. Caballero, Teresa Jardiel and Marco Peiteado
Appl. Sci. 2025, 15(17), 9399; https://doi.org/10.3390/app15179399 - 27 Aug 2025
Viewed by 483
Abstract
The advancement of photocatalytic materials is critical for addressing environmental challenges such as water remediation, where efficient, robust, and reusable systems are in high demand. In this search, the development of hierarchically organized photocatalytic configurations with spatial control over active sites can significantly [...] Read more.
The advancement of photocatalytic materials is critical for addressing environmental challenges such as water remediation, where efficient, robust, and reusable systems are in high demand. In this search, the development of hierarchically organized photocatalytic configurations with spatial control over active sites can significantly enhance performance. With this in mind, we present here a novel biomimetic approach for the patterned growth of TiO2-ZnO photocatalytic heterostructures using solid-binding peptides (SBPs) as molecular linkers. Specifically, using bi-functional SBPs with selective affinity for both oxides, we achieve site-specific, molecularly guided deposition of TiO2 nanoparticles onto pre-patterned ZnO-coated substrates. Leveraging the specific recognition capabilities and strong binding affinities of the engineered SBPs, the proposed biomimetic methodology allows for the fabrication of well-organized hybrid nanostructures under sustainable conditions. Photocatalytic degradation assays employing methyl orange as a model contaminant indicate that the patterned architecture enhances both the accessibility of the active photocatalytic sites and the recoverability of the material. This reusability is a critical parameter for the practical deployment of photocatalytic systems in water purification technologies. The obtained results underscore the potential of SBP-mediated molecular recognition as a versatile tool for green nanofabrication of functional materials with advanced architectural and catalytic properties. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Figure 1

10 pages, 1733 KB  
Communication
Mechanistic Insights into the Seed-Mediated Growth of Perovskite Nanostructures via a Two-Step Dissolution–Recrystallization Method
by Se-Yun Kim
Materials 2025, 18(12), 2858; https://doi.org/10.3390/ma18122858 - 17 Jun 2025
Viewed by 467
Abstract
In this study, we investigated the formation mechanism of organo-metal halide perovskite nanostructures through a two-step process categorized as dissolution–recrystallization. It is proposed that the initial formation of nanostructures is governed by the generation of seed grains, whereas the Ostwald ripening model explains [...] Read more.
In this study, we investigated the formation mechanism of organo-metal halide perovskite nanostructures through a two-step process categorized as dissolution–recrystallization. It is proposed that the initial formation of nanostructures is governed by the generation of seed grains, whereas the Ostwald ripening model explains only the subsequent growth stage of these structures. We suggest that newly generated grains—formed adjacent to pre-positioned grains—experience compressive stress arising from volume expansion during the phase transition from PbI2 to the MAPbI3 perovskite phase. Owing to their unstable state, these grains may serve as effective seeds for the nucleation and growth of nanostructures. Depending on the dipping time, diverse morphologies such as nanorods, plates, and cuboids were observed. The morphology, including the aspect ratio and growth direction of these nanostructures, appears to be strongly influenced by the residual compressive stress within the seed grains. These findings suggest that the shape and aspect ratio of perovskite nanostructures can be tailored by carefully regulating nucleation, dissolution, and growth dynamics during the two-step process. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

17 pages, 4524 KB  
Article
Resultant Incidence Angle: A Unique Criterion for Controlling the Inclined Columnar Nanostructure of Metallic Films
by Aurélien Besnard, Hamidreza Gerami, Marina Raschetti and Nicolas Martin
Nanomaterials 2025, 15(8), 620; https://doi.org/10.3390/nano15080620 - 18 Apr 2025
Viewed by 850
Abstract
The original Glancing Angle Deposition (GLAD) technique was developed using the evaporation process, i.e., in high vacuum, with a nearly punctual source, and with the substrate aligned with the source axis. In this specific case, the substrate tilt angle can be assumed to [...] Read more.
The original Glancing Angle Deposition (GLAD) technique was developed using the evaporation process, i.e., in high vacuum, with a nearly punctual source, and with the substrate aligned with the source axis. In this specific case, the substrate tilt angle can be assumed to be equal to the impinging incidence angle of evaporated atoms. With the sputtering process, the deposition pressure is higher, sources are larger, and substrates are not intrinsically aligned with the source. As a result, deviations from the growth models applied for evaporation are reported, and the substrate tilt angle is no longer relevant for describing the impinging atomic flux. To control the inclined nanostructure of metallic films, a relevant description of the atomic flux is required, applicable across all deposition configurations. In this work, transport simulation is used to determine the resultant incidence angle, a unique criterion relevant to each specific deposition condition. The different representations of the flux are described and discussed, and some typical examples of the resultant angles are presented. Ten elements are investigated: three hcp transition metals (Ti, Zr, and Hf), six bcc transition metals (V, Nb, Ta, Cr, Mo, and W), and one fcc post-transition metal (Al). Full article
Show Figures

Graphical abstract

12 pages, 3158 KB  
Article
Nanostructure-Integrated Electrode Based on Ni/NiO Coaxial Bilayer Nanotube Array with Large Specific Capacitance for Miniaturized Applications
by Qianxun Gong, Xiaoyan Huang, Yong Liu, Sijie Zhang and Tian Yu
Materials 2025, 18(6), 1286; https://doi.org/10.3390/ma18061286 - 14 Mar 2025
Cited by 1 | Viewed by 994
Abstract
The fast development of portable electronics demands electrodes for supercapacitors that are compatible with miniaturized device applications. In this study, an orderly aligned coaxial bilayer nanotube array made of transition metal/transition metal oxides was adopted as a nanostructure-integrated electrode for applications as miniaturized [...] Read more.
The fast development of portable electronics demands electrodes for supercapacitors that are compatible with miniaturized device applications. In this study, an orderly aligned coaxial bilayer nanotube array made of transition metal/transition metal oxides was adopted as a nanostructure-integrated electrode for applications as miniaturized micro-supercapacitors. Using Ni and NiO as our model materials, the corresponding Ni/NiO-CBNTA electrodes were fabricated using templated growth and post-thermal oxidation. The Ni shells served as parts of the 3D nano-architectured collector, providing a large specific surface area, and the pseudocapacitive NiO layers were directly attached and electrically connected to the collector without any additives. The vertical growth of orderly aligned Ni/NiO-CBNTAs successfully avoided the underutilization of capacitive nanomaterials and allowed the electrolyte to be fully accessed, which manifested full charge storage capabilities under the miniaturizing. It was demonstrated that Ni/NiO-CBNTAs can serve as miniaturized electrodes with an improved specific capacitance of 1125 F/g ≅ 3 A/g, which is comparable to that obtained in a massive load electrode prepared by the conventional slurry-coating technique. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

30 pages, 10965 KB  
Review
Computational Modeling of Properties of Quantum Dots and Nanostructures: From First Principles to Artificial Intelligence (A Review)
by Grzegorz Matyszczak, Krzysztof Krawczyk and Albert Yedzikhanau
Nanomaterials 2025, 15(4), 272; https://doi.org/10.3390/nano15040272 - 11 Feb 2025
Cited by 2 | Viewed by 2235
Abstract
Nanomaterials, including quantum dots, have gained more and more attention in the past few decades due to their extraordinary properties that make them useful for many applications, ranging from catalysis, energy generation and storage, biotechnology, and medicine to quantum informatics. Mathematical descriptions of [...] Read more.
Nanomaterials, including quantum dots, have gained more and more attention in the past few decades due to their extraordinary properties that make them useful for many applications, ranging from catalysis, energy generation and storage, biotechnology, and medicine to quantum informatics. Mathematical descriptions of the phenomena in which nanostructures are involved are of great demand because they may be utilized for the purpose of controlling these phenomena (e.g., the growth of nanostructures with certain sizes, shapes, and other properties). Such models may be of distinct nature, including calculations from first principles, ordinary and partial differential equations, and machine learning models (including artificial intelligence) as well. The aim of this article is to review the most important and useful computational and mathematical approaches for the description and control of processes involving nanostructures. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

16 pages, 12347 KB  
Article
Nanoscale Titanium Oxide Memristive Structures for Neuromorphic Applications: Atomic Force Anodization Techniques, Modeling, Chemical Composition, and Resistive Switching Properties
by Vadim I. Avilov, Roman V. Tominov, Zakhar E. Vakulov, Daniel J. Rodriguez, Nikita V. Polupanov and Vladimir A. Smirnov
Nanomaterials 2025, 15(1), 75; https://doi.org/10.3390/nano15010075 - 6 Jan 2025
Cited by 1 | Viewed by 1395
Abstract
This paper presents the results of a study on the formation of nanostructures of electrochemical titanium oxide for neuromorphic applications. Three anodization synthesis techniques were considered to allow the formation of structures with different sizes and productivity: nanodot, lateral, and imprint. The mathematical [...] Read more.
This paper presents the results of a study on the formation of nanostructures of electrochemical titanium oxide for neuromorphic applications. Three anodization synthesis techniques were considered to allow the formation of structures with different sizes and productivity: nanodot, lateral, and imprint. The mathematical model allowed us to calculate the processes of oxygen ion transfer to the reaction zone; the growth of the nanostructure due to the oxidation of the titanium film; and the formation of TiO, Ti2O3, and TiO2 oxides in the volume of the growing nanostructure and the redistribution of oxygen vacancies and conduction channel. Modeling of the nanodot structure synthesis process showed that at the initial stages of growth, a conductivity channel was formed, connecting the top and bottom of the nanostructure, which became thinner over time; at approximately 640 ms, this channel broke into upper and lower nuclei, after which the upper part disappeared. Modeling of the lateral nanostructure synthesis process showed that at the initial stages of growth, a conductivity channel was also formed, which quickly disappeared and left a nucleus that moved after the moving AFM tip. The simulation of the imprint nanostructure synthesis process showed the formation of two conductivity channels at a distance corresponding to the dimensions of the template tip. After about 460 ms, both channels broke, leaving behind embryos. The nanodot, lateral, and imprint nanostructure XPS spectra confirmed the theoretical calculations presented earlier: in the near-surface layers, the TiO2 oxide was observed, with the subsequent titanium oxide nanostructure surface etching proportion of TiO2 decreasing, and proportions of Ti2O3 and TiO oxides increasing. All nanodot, lateral, and imprint nanostructures showed reproducible resistive switching over 1000 switching cycles and holding their state for 10,000 s at read operation. Full article
(This article belongs to the Special Issue Neuromorphic Devices: Materials, Structures and Bionic Applications)
Show Figures

Figure 1

18 pages, 9804 KB  
Article
Therapeutic Potential of Novel Silver Carbonate Nanostructures in Wound Healing and Antibacterial Activity Against Pseudomonas chengduensis and Staphylococcus aureus
by Tehmina Khan, Ali Umar, Zakia Subhan, Muhammad Saleem Khan, Hafeeza Zafar Ali, Hayat Ullah, Sabeen Sabri, Muhammad Wajid, Rashid Iqbal, Mashooq Ahmad Bhat and Hamid Ali
Pharmaceuticals 2024, 17(11), 1471; https://doi.org/10.3390/ph17111471 - 1 Nov 2024
Cited by 11 | Viewed by 1892
Abstract
Background/Objectives: Metallic NPs have been explored for various therapeutic uses owing to utilitarian physicochemical characteristics such as antibacterial, anti-inflammatory, and healing properties. The objective of this study is to evaluate the therapeutic potential of novel silver carbonate nanostructures in promoting wound healing [...] Read more.
Background/Objectives: Metallic NPs have been explored for various therapeutic uses owing to utilitarian physicochemical characteristics such as antibacterial, anti-inflammatory, and healing properties. The objective of this study is to evaluate the therapeutic potential of novel silver carbonate nanostructures in promoting wound healing and their antibacterial activity against Pseudomonas chengduensis and Staphylococcus aureus. Methods: In this work, we prepared Ag2CO3 nanoparticles through a two-step methodology that was expected to improve the material’s biomedical performance and biocompatibility. The characterization and assessment of synthesized NPs biocompatibility were conducted using hemolysis assays on the blood of a healthy male human. Further, we performed molecular docking analysis to confirm interactions of silver NPs with biological molecules. Results: In detail, the synthesized NPs showed <5% hemolysis activity at various concentrations, confirming their therapeutic applicability. Additionally, the NPs had good metabolic activities; they raised the T3/T4 hormone content and acted effectively on Insulin-like Growth Factor 1 (IGF-1) in diabetic models. They also facilitated the rate of repair by having the diabetic wounds reach 100% re-epithelialization by day 13, unlike the control group, which reached the same level only by day 16. The synthesized Ag2CO3 NPs exhibited high antimicrobial potential against both Pseudomonas chengduensis and Staphylococcus aureus, hence being a potential material that can be used for infection control in biomedical tissue engineering applications. Conclusions: These findings concluded that novel synthesis methods lead to the formation of NPs with higher therapeutic prospects; however, studies of their metaphysical and endocrinological effects are necessary. Full article
(This article belongs to the Special Issue Therapeutic Potential of Silver Nanoparticles (AgNPs))
Show Figures

Figure 1

11 pages, 1523 KB  
Article
Diffusion-Induced Ordered Nanowire Growth: Mask Patterning Insights
by Kamila R. Bikmeeva and Alexey D. Bolshakov
Nanomaterials 2024, 14(21), 1743; https://doi.org/10.3390/nano14211743 - 30 Oct 2024
Cited by 1 | Viewed by 972
Abstract
Innovative methods for substrate patterning provide intriguing possibilities for the development of devices based on ordered arrays of semiconductor nanowires. Control over the nanostructures’ morphology in situ can be obtained via extensive theoretical studies of their formation. In this paper, we carry out [...] Read more.
Innovative methods for substrate patterning provide intriguing possibilities for the development of devices based on ordered arrays of semiconductor nanowires. Control over the nanostructures’ morphology in situ can be obtained via extensive theoretical studies of their formation. In this paper, we carry out an investigation of the ordered nanowires’ formation kinetics depending on the growth mask geometry. Diffusion equations for the growth species on both substrate and nanowire sidewalls depending on the spacing arrangement of the nanostructures and deposition rate are considered. The value of the pitch corresponding to the maximum diffusion flux from the substrate is obtained. The latter is assumed to be the optimum in terms of the nanowire elongation rate. Further study of the adatom kinetics demonstrates that the temporal dependence of a nanowire’s length is strongly affected by the ratio of the adatom’s diffusion length on the substrate and sidewalls, providing insights into the proper choice of a growth wafer. The developed model allows for customization of the growth protocols and estimation of the important diffusion parameters of the growth species. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

25 pages, 9915 KB  
Article
Thermoelectric Materials: A Scientometric Analysis of Recent Advancements and Future Research Directions
by Sami M. Ibn Shamsah
Energies 2024, 17(19), 5002; https://doi.org/10.3390/en17195002 - 8 Oct 2024
Cited by 1 | Viewed by 4131
Abstract
This scientometric study looks at the current trend in thermoelectric materials research and explores the evolving domain of thermoelectric materials research using a combination of bibliometric and scientometric methodologies. The analysis examines global research trends from a dataset of over 37,739 research articles, [...] Read more.
This scientometric study looks at the current trend in thermoelectric materials research and explores the evolving domain of thermoelectric materials research using a combination of bibliometric and scientometric methodologies. The analysis examines global research trends from a dataset of over 37,739 research articles, focusing on thematic evolution, annual growth rates, and significant contributions. Six principal research clusters were identified, encompassing energy conversion, material synthesis and nanostructures (the most prominent cluster), computational modeling and material properties, measurement and characterization, material performance enhancement, and material processing and microstructure. Each cluster highlights a critical aspect of the field, reflecting its broad scope and depth. The key findings reveal a marked annual increase in research output, highlighting the growing global importance of thermoelectric materials in sustainable energy solutions. This is especially evident in the significant contributions from China and the USA, emphasizing their leadership in the field. The study also highlights the collaborative nature of thermoelectric research, showing the impact of global partnerships and the synergistic effects of international collaboration in advancing the field. Overall, this analysis provides a comprehensive overview of the thermoelectric materials research landscape over the past decade, offering insights into trends, geographic contributions, collaborative networks, and research growth. The findings underscore thermoelectric materials’ vital role in addressing global energy challenges, highlighting recent advancements and industrial applications for energy efficiency and sustainability. Full article
(This article belongs to the Special Issue Recent Advances in Thermoelectric Energy Conversion)
Show Figures

Figure 1

25 pages, 2762 KB  
Article
Impact of Acoustic and Optical Phonons on the Anisotropic Heat Conduction in Novel C-Based Superlattices
by Devki N. Talwar and Piotr Becla
Materials 2024, 17(19), 4894; https://doi.org/10.3390/ma17194894 - 5 Oct 2024
Viewed by 1883
Abstract
C-based XC binary materials and their (XC)m/(YC)n (X, Y ≡ Si, Ge and Sn) superlattices (SLs) have recently gained considerable interest as valuable alternatives to Si for designing and/or exploiting nanostructured electronic devices (NEDs) in the growing high-power application needs. [...] Read more.
C-based XC binary materials and their (XC)m/(YC)n (X, Y ≡ Si, Ge and Sn) superlattices (SLs) have recently gained considerable interest as valuable alternatives to Si for designing and/or exploiting nanostructured electronic devices (NEDs) in the growing high-power application needs. In commercial NEDs, heat dissipation and thermal management have been and still are crucial issues. The concept of phonon engineering is important for manipulating thermal transport in low-dimensional heterostructures to study their lattice dynamical features. By adopting a realistic rigid-ion-model, we reported results of phonon dispersions ωjSLk of novel shortperiod XCm/(YC)n001 SLs, for m, n = 2, 3, 4 by varying phonon wavevectors kSL along the growth k|| ([001]), and in-plane k ([100], [010]) directions. The SL phonon dispersions displayed flattening of modes, especially at high-symmetry critical points Γ, Z and M. Miniband formation and anti-crossings in ωjSLk lead to the reduction in phonon conductivity κz along the growth direction by an order of magnitude relative to the bulk materials. Due to zone-folding effects, the in-plane phonons in SLs exhibited a strong mixture of XC-like and YC-like low-energy ωTA, ωLA modes with the emergence of stop bands at certain kSL. For thermal transport applications, the results demonstrate modifications in thermal conductivities via changes in group velocities, specific heat, and density of states. Full article
Show Figures

Figure 1

10 pages, 3234 KB  
Article
Ab Initio Modelling of g-ZnO Deposition on the Si (111) Surface
by Aliya Alzhanova, Yuri Mastrikov and Darkhan Yerezhep
J. Compos. Sci. 2024, 8(7), 281; https://doi.org/10.3390/jcs8070281 - 20 Jul 2024
Viewed by 1357
Abstract
Recent studies show that zinc oxide (ZnO) nanostructures have promising potential as an absorbing material. In order to improve the optoelectronic properties of the initial system, this paper considers the process of adsorbing multilayer graphene-like ZnO onto a Si (111) surface. The density [...] Read more.
Recent studies show that zinc oxide (ZnO) nanostructures have promising potential as an absorbing material. In order to improve the optoelectronic properties of the initial system, this paper considers the process of adsorbing multilayer graphene-like ZnO onto a Si (111) surface. The density of electron states for two- and three-layer graphene-like zinc oxide on the Si (111) surface was obtained using the Vienna ab-initio simulation package by the DFT method. A computer model of graphene-like Zinc oxide on a Si (111)-surface was created using the DFT+U approach. One-, two- and three-plane-thick graphene-zinc oxide were deposited on the substrate. An isolated cluster of Zn3O3 was also considered. The compatibility of g-ZnO with the S (100) substrate was tested, and the energetics of deposition were calculated. This study demonstrates that, regardless of the possible configuration of the adsorbing layers, the Si/ZnO structure remains stable at the interface. Calculations indicate that, in combination with lower formation energies, wurtzite-type structures turn out to be more stable and, compared to sphalerite-type structures, wurtzite-type structures form longer interlayers and shorter interplanar distances. It has been shown that during the deposition of the third layer, the growth of a wurtzite-type structure becomes exothermic. Thus, these findings suggest a predictable relationship between the application method and the number of layers, implying that the synthesis process can be modified. Consequently, we believe that such interfaces can be obtained through experimental synthesis. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

14 pages, 2422 KB  
Article
Antimicrobial Activity of Essential-Oil-Based Nanostructured Lipid Carriers against Campylobacter Spp. Isolated from Chicken Carcasses
by Henrique Machado Pires, Luciana Machado Bastos, Elenice Francisco da Silva, Belchiolina Beatriz Fonseca, Simone Sommerfeld, Robson José de Oliveira Junior and Lígia Nunes de Morais Ribeiro
Pharmaceutics 2024, 16(7), 922; https://doi.org/10.3390/pharmaceutics16070922 - 11 Jul 2024
Cited by 5 | Viewed by 2424
Abstract
Campylobacter is a virulent Gram-negative bacterial genus mainly found in the intestines of poultry. The indiscriminate use of traditional antibiotics has led to drug resistance in these pathogens, necessitating the development of more efficient and less toxic therapies. Despite their complex biologically active [...] Read more.
Campylobacter is a virulent Gram-negative bacterial genus mainly found in the intestines of poultry. The indiscriminate use of traditional antibiotics has led to drug resistance in these pathogens, necessitating the development of more efficient and less toxic therapies. Despite their complex biologically active structures, the clinical applications of essential oils (EOs) remain limited. Therefore, this study aimed to increase the bioavailability, stability, and biocompatibility and decrease the photodegradation and toxicity of EO using nanotechnology. The diffusion disk test revealed the potent anti-Campylobacter activity of cinnamon, lemongrass, clove, geranium, and oregano EOs (>50 mm). These were subsequently used to prepare nanostructured lipid carriers (NLCs). Formulations containing these EOs inhibited Campylobacter spp. growth at low concentrations (0.2 mg/mL). The particle size, polydispersity index, and zeta potential of these systems were monitored, confirming its physicochemical stability for 210 days at 25 °C. FTIR-ATR and DSC analyses confirmed excellent miscibility among the excipients, and FE-SEM elucidated a spherical shape with well-delimited contours of nanoparticles. The best NLCs were tested regarding nanotoxicity in a chicken embryo model. These results indicate that the NLC-based geranium EO is the most promising and safe system for the control and treatment of multidrug-resistant strains of Campylobacter spp. Full article
Show Figures

Figure 1

18 pages, 19112 KB  
Article
Revealing the Mechanical Impact of Biomimetic Nanostructures on Bacterial Behavior
by Xin Wu, Xianrui Zou, Donghui Wang, Mingjun Li, Bo Zhao, Yi Xia, Hongshui Wang and Chunyong Liang
Coatings 2024, 14(7), 860; https://doi.org/10.3390/coatings14070860 - 9 Jul 2024
Cited by 1 | Viewed by 1959
Abstract
Naturally inspired nanostructured surfaces, by mechanically inhibiting bacterial adhesion or killing bacteria, effectively prevent the emergence of antibiotic resistance, making them a promising strategy against healthcare-associated infections. However, the current mechanical antibacterial mechanism of nanostructures is not clear, thus limiting their potential application [...] Read more.
Naturally inspired nanostructured surfaces, by mechanically inhibiting bacterial adhesion or killing bacteria, effectively prevent the emergence of antibiotic resistance, making them a promising strategy against healthcare-associated infections. However, the current mechanical antibacterial mechanism of nanostructures is not clear, thus limiting their potential application in medical devices. This work mainly investigates the mechanical influence mechanism of biomimetic nanostructure parameters on bacterial adhesion and growth status. The results of 12 h bacterial culture showed that compared to flat surfaces, nanostructures reduced the adhesion of both E. coli and S. aureus bacteria by 49%~82%. The bactericidal efficiency against E. coli increased by 5.5%~31%, depending on the shape of the nanostructures. Nanostructures with smaller tip diameters exhibited the best anti-bacterial adhesion effects. Nanostructures with sharp tips and larger interspaces showed greater bactericidal effects against E. coli. Surfaces with larger tip diameters had the poorest antibacterial effects. Subsequently, a finite element model was established to quantitatively analyze the mechanical interactions between bacteria and nanostructures. It was found that different nanostructures affect bacterial adhesion and growth by altering the contact area with bacteria and inducing stress and deformation on the cell wall. Nanostructures with smaller tip diameters reduced the attachment area to bacteria, thereby reducing bacterial adhesion strength. Nanostructures with larger interspaces induced greater stress and deformation on the cell wall, thereby enhancing bactericidal efficiency. Finally, experimental verification with L929 cells confirmed that nanostructures do not cause mechanical damage to the cells. These studies deepen our understanding of the antibacterial mechanism of biomimetic nanostructures and provide new insights for the design of optimal nanostructures. Full article
Show Figures

Figure 1

Back to TopTop