Thermoelectric Materials: A Scientometric Analysis of Recent Advancements and Future Research Directions
Abstract
:1. Introduction
2. Working Principle of Thermoelectric Materials
2.1. Recent Trends in Thermoelectric Materials Research
2.2. Industrial Applications of Thermoelectric Materials: Bridging Research and Practice
2.3. Technological Limitations of Thermoelectric Materials
- Interdependent Material Properties: The efficiency of thermoelectric materials is governed by the dimensionless figure of merit (ZT), which is highly dependent on the Seebeck coefficient, electrical conductivity, and thermal conductivity. However, these parameters are interdependent: improving one often negatively influences another. For instance, enhancing electrical conductivity can inadvertently increase thermal conductivity, thereby reducing overall efficiency [52]. Developing high-performance materials that balance these properties remains a major challenge.
- Limited Temperature Range: Thermoelectric materials perform optimally in specific temperature ranges, which limits their practical application. High-efficiency thermoelectric materials, such as bismuth telluride, are effective only at low temperatures, while materials designed for higher temperatures, such as half-Heusler alloys, face performance degradation and instability over time. This narrow operating temperature range poses a significant barrier to the implementation of thermoelectric materials in industrial settings [53,54].
- Thermal Conductivity Control: One of the most critical aspects of improving thermoelectric efficiency is reducing thermal conductivity without adversely affecting electrical conductivity. Recent advancements, such as nanostructuring and low-dimensional systems, have significantly reduced lattice thermal conductivity, but achieving consistent and scalable production remains a challenge [54]. Moreover, controlling thermal conductivity on a large scale without compromising mechanical stability remains difficult.
- Environmental and Resource Concerns: Many high-performance thermoelectric materials, including those based on tellurium, bismuth, and lead, pose environmental and resource sustainability issues. These materials are often rare, expensive, or toxic, raising concerns about their long-term feasibility for large-scale industrial use. Consequently, there is a growing demand for earth-abundant, non-toxic materials, though their performance still lags behind the best conventional thermoelectric materials [55].
- High Production Costs: The complex fabrication processes required for high-performance thermoelectric materials contribute to their high costs, making them economically unfeasible for widespread use. Techniques such as nanostructuring and advanced doping strategies are difficult to scale, leading to increased manufacturing costs. Furthermore, these materials often require rare or expensive elements, further limiting their commercial potential [56].
- Mechanical and Chemical Stability: Thermoelectric materials, especially nanostructured and low-dimensional materials, often face challenges related to long-term mechanical and chemical stability. Under prolonged use, these materials can degrade due to thermal cycling, leading to a reduction in their efficiency and lifespan [57].
3. Methodology
4. Results and Discussion
4.1. Yearly Publications and Citations Trends
4.2. Document Type
4.3. Top Leading Journals in Thermoelectric Materials Research
4.4. Top Leading Authors
4.5. Top Leading Organizations
4.6. Top Leading Countries
4.7. Country Collaboration Map
4.8. Top Leading Research Area
4.9. Top Leading Research Area and Funding Agencies
4.10. Most Cited Publications
4.11. Analysis of All Keywords
Overall Implications and Trends
4.12. Analysis of Author Keywords
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elsheikh, M.H.; Shnawah, D.A.; Sabri, M.F.M.; Said, S.B.M.; Hassan, M.H.; Bashir, M.B.A.; Mohamad, M. A review on thermoelectric renewable energy: Principle parameters that affect their performance. Renew. Sustain. Energy Rev. 2014, 30, 337–355. [Google Scholar] [CrossRef]
- Sootsman, J.R.; Chung, D.Y.; Kanatzidis, M.G. New and Old Concepts in Thermoelectric Materials. Angew. Chem. Int. Ed. 2009, 48, 8616–8639. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lin, S.; Hua, T.; Huang, B.; Liu, S.; Tao, X. Fiber-Based Thermoelectric Generators: Materials, Device Structures, Fabrication, Characterization, and Applications. Adv. Energy Mater. 2018, 8, 1700524. [Google Scholar] [CrossRef]
- Radousky, H.B.; Liang, H. Energy harvesting: An integrated view of materials, devices and applications. Nanotechnology 2012, 23, 502001. [Google Scholar] [CrossRef]
- Tee, S.Y.; Ponsford, D.; Lay, C.L.; Wang, X.; Wang, X.; Neo, D.C.J.; Wu, T.; Thitsartarn, W.; Yeo, J.C.C.; Guan, G.; et al. Thermoelectric Silver-Based Chalcogenides. Adv. Sci. 2022, 9, 36. [Google Scholar] [CrossRef]
- Zhang, M.; Tian, Y.; Xie, H.; Wu, Z.; Wang, Y. Influence of Thomson effect on the thermoelectric generator. Int. J. Heat Mass Transf. 2019, 137, 1183–1190. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef]
- Sharma, S.; Dwivedi, V.K.; Pandit, S.N. A Review of Thermoelectric Devices for Cooling Applications. Int. J. Green Energy 2014, 11, 899–909. [Google Scholar] [CrossRef]
- Han, M.-K.; Yu, B.-G.; Jin, Y.; Kim, S.-J. A synergistic effect of metal iodide doping on the thermoelectric properties of Bi2Te. Inorg. Chem. Front. 2017, 4, 881–888. [Google Scholar] [CrossRef]
- Guo, Q.; Assoud, A.; Kleinke, H. Improved Bulk Materials with Thermoelectric Figure-of-Merit Greater than 1: Tl10–xSnxTe6 and Tl10–xPbxTe6. Adv. Energy Mater. 2014, 4, 1400348. [Google Scholar] [CrossRef]
- Wei, T.; Qiu, P.; Zhao, K.; Shi, X.; Chen, L. Ag2Q-Based (Q = S, Se, Te) Silver Chalcogenide Thermoelectric Materials. Adv. Mater. 2023, 35, 2110236. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Liu, K.; Yue, Z.; Wang, Y.; Song, Q.; Li, J.; Guan, M.; Xu, Q.; Qiu, P.; Zhu, H.; et al. Are Cu2Te-Based Compounds Excellent Thermoelectric Materials? Adv. Mater. 2019, 31, 1903480. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, L.; Ma, D.; Jiang, Y.; Guo, K.; Luo, J. Recent advances in atomic layer deposition-based interface modification engineering in thermoelectric materials. Mater. Today Phys. 2023, 39, 101287. [Google Scholar] [CrossRef]
- Al-Kuhaili, M.F.; Alade, I.O.; Durrani, S.M.A. Optical constants of hydrogenated zinc oxide thin films. Opt. Mater. Express 2014, 4, 2323–2331. [Google Scholar] [CrossRef]
- Luo, Z.Z.; Cai, S.; Hao, S.; Bailey, T.P.; Xie, H.; Slade, T.J.; Liu, Y.; Luo, Y.; Chen, Z.; Xu, J.; et al. Valence Disproportionation of GeS in the PbS Matrix Forms Pb5Ge5S12Inclusions with Conduction Band Alignment Leading to High n-Type Thermoelectric Performance. J. Am. Chem. Soc. 2022, 144, 7402–7413. [Google Scholar] [CrossRef]
- Li, K.; Sun, L.; Bai, W.; Ma, N.; Zhao, C.; Zhao, J.; Xiao, C.; Xie, Y. High-Entropy Strategy to Achieve Electronic Band Convergence for High-Performance Thermoelectrics. J. Am. Chem. Soc. 2024, 146, 14318–14327. [Google Scholar] [CrossRef]
- Chen, Z.; Cui, H.-H.; Hao, S.; Liu, Y.; Liu, H.; Zhou, J.; Yu, Y.; Yan, Q.; Wolverton, C.; Dravid, V.P.; et al. GaSb doping facilitates conduction band convergence and improves thermoelectric performance in n-type PbS. Energy Environ. Sci. 2023, 16, 1676–1684. [Google Scholar] [CrossRef]
- Xu, X.; Cui, J.; Fu, L.; Huang, Y.; Yu, Y.; Zhou, Y.; Wu, D.; He, J. Enhanced Thermoelectric Performance Achieved in SnTe via the Synergy of Valence Band Regulation and Fermi Level Modulation. ACS Appl. Mater. Interfaces 2021, 13, 50037–50045. [Google Scholar] [CrossRef]
- Wang, H.; Hu, H.; Man, N.; Xiong, C.; Xiao, Y.; Tan, X.; Liu, G.; Jiang, J. Band flattening and phonon-defect scattering in cubic SnSe–AgSbTe2 alloy for thermoelectric enhancement. Mater. Today Phys. 2021, 16, 100298. [Google Scholar] [CrossRef]
- Sarkar, D.; Samanta, M.; Ghosh, T.; Dolui, K.; Das, S.; Saurabh, K.; Sanyal, D.; Biswas, K. All-scale hierarchical nanostructures and superior valence band convergence lead to ultra-high thermoelectric performance in cubic GeTe. Energy Environ. Sci. 2022, 15, 4625–4635. [Google Scholar] [CrossRef]
- Ibn Shamsah, S.M. Modeling Temperature-Dependent Thermoelectric Performance of Magnesium-Based Compounds for Energy Conversion Efficiency Enhancement Using Intelligent Computational Methods. Inorganics 2024, 12, 85. [Google Scholar] [CrossRef]
- Owolabi, T.O.; Alharbi, F.S.; Ibn Shamsah, S.M.; Taura, U.; Alshaheen, A.M.; Tomiwa, A.C. Modeling thermoelectric performance of doped BiCuSeO oxychalcogenide ceramics using genetically hybridized support vector regression computational method. Mater. Today Sustain. 2024, 27, 100924. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Chen, G.; Tang, M.Y.; Yang, R.G.; Lee, H.; Wang, D.Z.; Ren, Z.F.; Fleurial, J.; Gogna, P. New Directions for Low-Dimensional Thermoelectric Materials. Adv. Mater. 2007, 19, 1043–1053. [Google Scholar] [CrossRef]
- Liu, W.; Hu, J.; Zhang, S.; Deng, M.; Han, C.-G.; Liu, Y. New trends, strategies and opportunities in thermoelectric materials: A perspective. Mater. Today Phys. 2017, 1, 50–60. [Google Scholar] [CrossRef]
- Bao, Y.; Sun, Y.; Jiao, F.; Hu, W. Recent Advances in Multicomponent Organic Composite Thermoelectric Materials. Adv. Electron. Mater. 2023, 9, 2201310. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, D.; Li, C.; Wang, J.; Wang, G.; Zhao, L.-D. Improving the thermoelectric performance of p-type PbSe via synergistically enhancing the Seebeck coefficient and reducing electronic thermal conductivity. J. Mater. Chem. A 2020, 8, 4931–4937. [Google Scholar] [CrossRef]
- Isotta, E.; Mukherjee, B.; Fanciulli, C.; Ataollahi, N.; Sergueev, I.; Stankov, S.; Edla, R.; Pugno, N.M.; Scardi, P. Origin of a Simultaneous Suppression of Thermal Conductivity and Increase of Electrical Conductivity and Seebeck Coefficient in Disordered Cubic Cu2ZnSnS4. Phys. Rev. Appl. 2020, 14, 064073. [Google Scholar] [CrossRef]
- Caballero-Calero, O.; Ares, J.R.; Martín-González, M. Environmentally Friendly Thermoelectric Materials: High Performance from Inorganic Components with Low Toxicity and Abundance in the Earth. Adv. Sustain. Syst. 2021, 5, 2100095. [Google Scholar] [CrossRef]
- Li, J.; Tan, Q.; Li, J.-F. Synthesis and property evaluation of CuFeS2−x as earth-abundant and environmentally-friendly thermoelectric materials. J. Alloys Compd. 2013, 551, 143–149. [Google Scholar] [CrossRef]
- Jaldurgam, F.F.; Ahmad, Z.; Touati, F. Low-Toxic, Earth-Abundant Nanostructured Materials for Thermoelectric Applications. Nanomaterials 2021, 11, 895. [Google Scholar] [CrossRef]
- Lrhoul, H.; El Assaoui, N.; Turki, H. Mapping of water research in Morocco: A scientometric analysis. Mater. Today: Proc. 2021, 45, 7321–7328. [Google Scholar] [CrossRef]
- Ghaleb, H.; Alhajlah, H.H.; Bin Abdullah, A.A.; Kassem, M.A.; Al-Sharafi, M.A. A Scientometric Analysis and Systematic Literature Review for Construction Project Complexity. Buildings 2022, 12, 482. [Google Scholar] [CrossRef]
- Hosseini, M.R.; Martek, I.; Zavadskas, E.K.; Aibinu, A.A.; Arashpour, M.; Chileshe, N. Critical evaluation of off-site construction research: A Scientometric analysis. Autom. Constr. 2018, 87, 235–247. [Google Scholar] [CrossRef]
- Jouhara, H.; Żabnieńska-Góra, A.; Khordehgah, N.; Doraghi, Q.; Ahmad, L.; Norman, L.; Axcell, B.; Wrobel, L.; Dai, S. Thermoelectric generator (TEG) technologies and applications. Int. J. Thermofluids 2021, 9, 100063. [Google Scholar] [CrossRef]
- Shilpa, M.K.; Raheman, A.; Aabid, A.; Baig, M.; Veeresha, R.K.; Kudva, N.; Raheman, A. A Systematic Review of Thermoelectric Peltier Devices: Applications and Limitations. Fluid Dyn. Mater. Process. 2023, 19, 187–206. [Google Scholar] [CrossRef]
- Najafi, H.; Woodbury, K.A. Optimization of a cooling system based on Peltier effect for photovoltaic cells. Sol. Energy 2013, 91, 152–160. [Google Scholar] [CrossRef]
- Dehkordi, A.M.; Zebarjadi, M.; He, J.; Tritt, T.M. Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials. Mater. Sci. Eng. R Rep. 2015, 97, 1–22. [Google Scholar] [CrossRef]
- Pourkiaei, S.M.; Ahmadi, M.H.; Sadeghzadeh, M.; Moosavi, S.; Pourfayaz, F.; Chen, L.; Pour Yazdi, M.A.; Kumar, R. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials. Energy 2019, 186, 115849. [Google Scholar] [CrossRef]
- Bisht, N.; More, P.; Khanna, P.K.; Abolhassani, R.; Mishra, Y.K.; Madsen, M. Progress of hybrid nanocomposite materials for thermoelectric applications. Mater. Adv. 2021, 2, 1927–1956. [Google Scholar] [CrossRef]
- Ghannam, R.; Moll, A.; Bérardan, D.; Coulomb, L.; Vieira-E-Silva, A.; Villeroy, B.; Viennois, R.; Beaudhuin, M. Impact of the nanostructuring on the thermal and thermoelectric properties of α-SrSi2. J. Alloys Compd. 2023, 968, 171876. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Shiojiri, D.; Iida, T.; Hirayama, N.; Imai, Y. First-principles study of the structural and thermoelectric properties of Y-doped α-SrSi2. Jpn. J. Appl. Phys. 2022, 61, 031002. [Google Scholar] [CrossRef]
- Zhou, X.; Yan, Y.; Lu, X.; Zhu, H.; Han, X.; Chen, G.; Ren, Z. Routes for high-performance thermoelectric materials. Materials Today 2018, 21, 974–988. [Google Scholar] [CrossRef]
- Ren, P.; Liu, Y.; He, J.; Lv, T.; Gao, J.; Xu, G. Recent advances in inorganic material thermoelectrics. Inorg. Chem. Front. 2018, 5, 2380–2398. [Google Scholar] [CrossRef]
- Zhu, T.; Zhao, L.; Fu, C. Thermoelectric Materials. Ann. Phys. 2020, 532, 2000435. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, C.; Snoussi, H.; Zhang, G. Machine Learning Approaches for Thermoelectric Materials Research. Adv. Funct. Mater. 2019, 30, 1906041. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Z.; Dargusch, M.S.; Zou, J. High Performance Thermoelectric Materials: Progress and Their Applications. Adv. Energy Mater. 2017, 8, 1701797. [Google Scholar] [CrossRef]
- Hewawasam, L.; Jayasena, A.; Afnan, M.; Ranasinghe, R.; Wijewardane, M. Waste heat recovery from thermo-electric generators (TEGs). Energy Rep. 2020, 6, 474–479. [Google Scholar] [CrossRef]
- Bhakta, S.; Kundu, B. A Review of Thermoelectric Generators in Automobile Waste Heat Recovery Systems for Improving Energy Utilization. Energies 2024, 17, 1016. [Google Scholar] [CrossRef]
- Santos, R.; Yamini, S.A.; Dou, S.X. Recent progress in magnesium-based thermoelectric materials. J. Mater. Chem. A 2018, 6, 3328–3341. [Google Scholar] [CrossRef]
- Ying, P.; Villoro, R.B.; Bahrami, A.; Wilkens, L.; Reith, H.; Mattlat, D.A.; Pacheco, V.; Scheu, C.; Zhang, S.; Nielsch, K.; et al. Performance Degradation and Protective Effects of Atomic Layer Deposition for Mg-based Thermoelectric Modules. Adv. Funct. Mater. 2024, 2406473. [Google Scholar] [CrossRef]
- Baskaran, P.; Rajasekar, M. Recent trends and future perspectives of thermoelectric materials and their applications. RSC Adv. 2024, 14, 21706–21744. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhao, L.-D. Seeking new, highly effective thermoelectrics. Science 2020, 367, 1196–1197. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Zhang, H.; Zheng, H.; Xu, Z.; Xu, H.; Guo, H.; Li, P.; Tong, Y.; Hu, B.; Chen, L. Recent Advances and Prospects of Small Molecular Organic Thermoelectric Materials. Small 2022, 18, e2200679. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Zou, J.; Chen, Z.-G. Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev. 2020, 120, 7399–7515. [Google Scholar] [CrossRef]
- Massetti, M.; Jiao, F.; Ferguson, A.J.; Zhao, D.; Wijeratne, K.; Würger, A.; Blackburn, J.L.; Crispin, X.; Fabiano, S. Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. Chem. Rev. 2021, 121, 12465–12547. [Google Scholar] [CrossRef]
- Spooner, K.B.; Ganose, A.M.; Scanlon, D.O. Assessing the limitations of transparent conducting oxides as thermoelectrics. J. Mater. Chem. A 2020, 8, 11948–11957. [Google Scholar] [CrossRef]
- Jia, N.; Cao, J.; Tan, X.Y.; Dong, J.; Liu, H.; Tan, C.K.I.; Xu, J.; Yan, Q.; Loh, X.J.; Suwardi, A. Thermoelectric materials and transport physics. Mater. Today Phys. 2021, 21, 100519. [Google Scholar] [CrossRef]
- Alade, I.O.; Rahaman, S.; Qahtan, T.F. A Comprehensive Review of Superconductivity Research Productivity. J. Supercond. Nov. Magn. 2022, 35, 2621–2637. [Google Scholar] [CrossRef]
- Singh, R.; Sibi, P.S.; Bashir, A. The Journal of Convention and Event Tourism: A retrospective analysis using bibliometrics. J. Conv. Event Tour. 2022, 24, 87–108. [Google Scholar] [CrossRef]
- Cai, Y.; Jin, F.; Liu, J.; Zhou, L.; Tao, Z. A survey of collaborative decision-making: Bibliometrics, preliminaries, methodologies, applications and future directions. Eng. Appl. Artif. Intell. 2023, 122, 106064. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Qahtan, T.F.; Alade, I.O.; Rahaman, S.; Saleh, T.A. Mapping the research landscape of hydrogen production through electrocatalysis: A decade of progress and key trends. Renew. Sustain. Energy Rev. 2023, 184, 113490. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Khan, Y.; Ostfeld, A.E.; Lochner, C.M.; Pierre, A.; Arias, A.C. Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Adv. Mater. 2016, 28, 4373–4395. [Google Scholar] [CrossRef] [PubMed]
- Perianes-Rodriguez, A.; Waltman, L.; van Eck, N.J. Constructing bibliometric networks: A comparison between full and fractional counting. J. Inf. 2016, 10, 1178–1195. [Google Scholar] [CrossRef]
- Neugebauer, J.; Hickel, T. Density functional theory in materials science. WIREs Comput. Mol. Sci. 2013, 3, 438–448. [Google Scholar] [CrossRef]
- Kumar, A.; Bano, S.; Govind, B.; Bhardwaj, A.; Bhatt, K.; Misra, D.K. A Review on Fundamentals, Design and Optimization to High ZT of Thermoelectric Materials for Application to Thermoelectric Technology. J. Electron. Mater. 2021, 50, 6037–6059. [Google Scholar] [CrossRef]
- Giri, J.M.; Nain, P.K.S. Review of Recent Progresses in Thermoelectric Materials. In Lecture Notes in Mechanical Engineering; Springer: Berlin/Heidelberg, Germany, 2021; pp. 269–280. [Google Scholar] [CrossRef]
- Hao, S.; Dravid, V.P.; Kanatzidis, M.G.; Wolverton, C. Computational strategies for design and discovery of nanostructured thermoelectrics. NPJ Comput. Mater. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- Ivanov, A.A.; Kaplar, E.P.; Prilepo, Y.P.; Murav’ev, V.V.; Ustinov, V.S. Progress in the Research on Promising High-Performance Thermoelectric Materials. Nanobiotechnology Rep. 2021, 16, 268–281. [Google Scholar] [CrossRef]
- He, S.; Lehmann, S.; Bahrami, A.; Nielsch, K. Current State-of-the-Art in the Interface/Surface Modification of Thermoelectric Materials. Adv. Energy Mater. 2021, 11, 2101877. [Google Scholar] [CrossRef]
- Zheng, Z.-H.; Shi, X.-L.; Ao, D.-W.; Liu, W.-D.; Li, M.; Kou, L.-Z.; Chen, Y.-X.; Li, F.; Wei, M.; Liang, G.-X.; et al. Harvesting waste heat with flexible Bi2Te3 thermoelectric thin film. Nat. Sustain. 2022, 6, 180–191. [Google Scholar] [CrossRef]
- Moshtaghi, F.; Yousefpour, M.; Habibolahzadeh, A. Electrodeposition and characterization of poly-aniline-Bi-Te-Se-Sb thin films with thermoelectric properties. Mater. Sci. Eng. B 2023, 296, 116712. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, C.; Shao, T.; Fan, Y.; Chen, R.; Pan, X. Enhanced thermoelectric performance of Bi2Te3 by carbon nanotubes and silicate aerogel co-doping toward ocean energy harvesting. Mater. Today Sustain. 2023, 23, 100476. [Google Scholar] [CrossRef]
- Ojha, A.; Sabat, R.K.; Bathula, S. Advancement in half-Heusler thermoelectric materials and strategies to enhance the thermoelectric performance. Mater. Sci. Semicond. Process. 2024, 171, 107996. [Google Scholar] [CrossRef]
- Liu, Y.; Riba, J.-R.; Moreno-Eguilaz, M.; Sanllehí, J. Application of Thermoelectric Generators for Low-Temperature-Gradient Energy Harvesting. Appl. Sci. 2023, 13, 2603. [Google Scholar] [CrossRef]
- Singh, B.S.B. Thermoelectric Generators: Design, Operation, and Applications. In New Materials and Devices for Thermoelectric Power Generation; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar] [CrossRef]
- de Veigh, J.O.; Glynatsis, N.; Gurung, P.; Wang, C. A comparative analysis of waste heat recovery systems in vehicles and their viability in real-world applications. PAM Rev. Energy Sci. Technol. 2019, 6, 88–109. [Google Scholar] [CrossRef]
- Twaha, S.; Zhu, J.; Yan, Y.; Li, B. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renew. Sustain. Energy Rev. 2016, 65, 698–726. [Google Scholar] [CrossRef]
- Petermann, N.; Stein, N.; Schierning, G.; Theissmann, R.; Stoib, B.; Brandt, M.S.; Hecht, C.; Schulz, C.; Wiggers, H. Plasma synthesis of nanostructures for improved thermoelectric properties. J. Phys. D Appl. Phys. 2011, 44, 174034. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Wang, S. Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci. Rep. 2013, 3, 3448. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, M.; Ji, A.; Yang, F.; Wang, X. Measuring methods for thermoelectric properties of one-dimensional nanostructural materials. RSC Adv. 2016, 6, 48933–48961. [Google Scholar] [CrossRef]
- Tian, Z.; Lee, S.; Chen, G. Heat Transfer in Thermoelectric Materials and Devices. J. Heat Transf. 2013, 135, 061605. [Google Scholar] [CrossRef]
- Tian, T.; Cheng, L.; Xing, J.; Zheng, L.; Man, Z.; Hu, D.; Bernik, S.; Zeng, J.; Yang, J.; Liu, Y.; et al. Effects of sintering on the microstructure and electrical properties of ZnO-based thermoelectric materials. Mater. Des. 2017, 132, 479–485. [Google Scholar] [CrossRef]
- Kim, K.H.; Shim, S.H.; Shim, K.B.; Niihara, K.; Hojo, J. Microstructural and Thermoelectric Characteristics of Zinc Oxide-Based Thermoelectric Materials Fabricated Using a Spark Plasma Sintering Process. J. Am. Ceram. Soc. 2005, 88, 628–632. [Google Scholar] [CrossRef]
- Gothard, N.; Wilks, G.; Tritt, T.M.; Spowart, J.E. Effect of Processing Route on the Microstructure and Thermoelectric Properties of Bismuth Telluride-Based Alloys. J. Electron. Mater. 2010, 39, 1909–1913. [Google Scholar] [CrossRef]
Rank | Publication Titles | Record Count | % of 37,739 | Total Citation (TC) | Total Citation/ Total Paper (TC/TP) | Journal Impact Factor | Country |
---|---|---|---|---|---|---|---|
1 | Journal of Alloys and Compounds | 1216 | 3.222 | 16,812 | 13.83 | 6.20 | Switzerland |
2 | Journal of Electronic Materials | 1147 | 3.039 | 11,173 | 9.74 | 2.10 | USA |
3 | Physical Review B | 939 | 2.488 | 20,766 | 22.12 | 3.70 | USA |
4 | ACS Applied Materials Interfaces | 728 | 1.929 | 16,669 | 22.90 | 9.50 | USA |
5 | Journal of Applied Physics | 680 | 1.802 | 9440 | 13.88 | 3.20 | USA |
6 | Applied Physics Letters | 613 | 1.624 | 10,707 | 17.47 | 4.00 | USA |
7 | Journal of Materials Chemistry A | 597 | 1.582 | 21,048 | 35.26 | 11.90 | England |
8 | Energy Conversion and Management | 444 | 1.177 | 15,661 | 35.27 | 10.40 | England |
9 | Physical Chemistry Chemical Physics | 444 | 1.177 | 9233 | 20.80 | 3.30 | England |
10 | Journal OF Materials Chemistry C | 409 | 1.084 | 11,735 | 28.69 | 6.40 | England |
11 | RSC Advances | 409 | 1.084 | 8551 | 20.91 | 3.90 | England |
12 | Ceramics International | 399 | 1.057 | 4087 | 10.24 | 5.20 | England |
13 | Energy | 392 | 1.039 | 10,608 | 27.06 | 8.90 | England |
14 | Applied Thermal Engineering | 387 | 1.025 | 8305 | 21.46 | 6.40 | England |
15 | Chemistry of Materials | 366 | 0.97 | 13,371 | 36.53 | 8.60 | USA |
16 | Scientific Reports | 360 | 0.954 | 10,015 | 27.82 | 4.60 | England |
17 | ACS Applied Energy Materials | 356 | 0.943 | 4309 | 12.10 | 6.40 | England |
18 | Nano Energy | 327 | 0.866 | 14,230 | 43.52 | 17.60 | USA |
19 | Journal of Materials Science Materials in Electronics | 315 | 0.835 | 2101 | 6.67 | 2.80 | USA |
20 | AIP Conference Proceedings | 299 | 0.792 | 513 | 1.72 | 0.41 | USA |
Rank | Authors | Affiliations | Country | Record Count | % of 37,739 | Total Citations (TC) | Total Citations/Total Papers (TC/TP) |
---|---|---|---|---|---|---|---|
1 | Snyder GJ | Northwestern University | USA | 342 | 0.906 | 26,115 | 76.36 |
2 | Wang J | Yangzhou University | China | 301 | 0.798 | 5822 | 19.34 |
3 | Liu Y | Hefei University | China | 291 | 0.771 | 6228 | 21.40 |
4 | Zhang Q | Chinese Academy of Sciences | China | 283 | 0.75 | 8189 | 28.94 |
5 | Chen LD | Shanghai Institute of Ceramics | China | 272 | 0.721 | 15,704 | 57.74 |
6 | Wang Y | University of Queensland | Australia | 252 | 0.668 | 7250 | 28.77 |
7 | Li J | Tsinghua University | China | 245 | 0.649 | 6475 | 26.43 |
8 | Kim J | Chung-Ang University | South Korea | 240 | 0.636 | 5954 | 24.81 |
9 | Li Y | Shenzhen University | China | 240 | 0.636 | 3446 | 14.36 |
10 | Zhang J | Chinese Academy of Sciences | China | 232 | 0.615 | 6158 | 26.54 |
11 | Zhang Y | National University of Singapore | Singapore | 230 | 0.609 | 5960 | 25.91 |
12 | Zhao LD | Beihang University | China | 224 | 0.594 | 21,749 | 97.09 |
13 | Li X | Shanghai Jiao Tong University | China | 219 | 0.58 | 4836 | 22.08 |
14 | Mori T | National Institute for Materials Science | Japan | 219 | 0.58 | 5289 | 24.15 |
15 | Tang XF | Wuhan University of Technology | China | 218 | 0.578 | 6963 | 31.94 |
16 | Wang L | Shenzhen University | China | 217 | 0.575 | 3831 | 17.65 |
17 | Zhang H | Tianjin University | China | 203 | 0.538 | 4908 | 24.18 |
18 | Shi X | Shanghai Institute of Ceramics, | China | 197 | 0.522 | 10,482 | 53.21 |
19 | Liu J | University of Groningen | Netherlands | 196 | 0.519 | 4611 | 23.53 |
20 | Yang J | Shanghai University | China | 192 | 0.509 | 6001 | 31.26 |
From | To | Frequency |
---|---|---|
China | USA | 1491 |
Saudi Arabia | Pakistan | 468 |
China | Australia | 449 |
USA | Germany | 368 |
China | Japan | 359 |
China | Singapore | 350 |
China | Germany | 345 |
China | United Kingdom | 320 |
USA | Korea | 266 |
Saudi Arabia | Egypt | 240 |
China | India | 190 |
USA | United Kingdom | 186 |
India | Saudi Arabia | 178 |
China | Korea | 177 |
USA | France | 172 |
China | Saudi Arabia | 170 |
China | France | 169 |
USA | India | 155 |
China | Pakistan | 154 |
USA | Japan | 151 |
Germany | France | 144 |
India | Japan | 129 |
France | Spain | 121 |
Korea | Saudi Arabia | 111 |
Japan | France | 99 |
Rank | Authors | Article Title | Source Title | Total Citation (TC) |
---|---|---|---|---|
1 | Anasori, B et al. | 2D metal carbides and nitrides (MXenes) for energy storage | Nature Reviews Materials | 4649 |
2 | Zhao, LD et al. | Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals | Nature | 3668 |
3 | He, J and Tritt, TM | Advances in thermoelectric materials research: Looking back and moving forward | Science | 1577 |
4 | Zhao, LD et al. | Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe | Science | 1509 |
5 | Tan, GJ et al. | Rationally Designing High-Performance Bulk Thermoelectric Materials | Chemical Reviews | 1451 |
6 | Kim, SI et al. | Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics | Science | 1400 |
7 | Zhu, FF et al. | Epitaxial growth of two-dimensional stanene | Nature Materials | 1362 |
8 | Cahill, DG et al. | Nanoscale thermal transport. II. 2003–2012 | Applied Physics Reviews | 1241 |
9 | Kim, HS et al. | Characterization of Lorenz number with Seebeck coefficient measurement | APL Materials | 1167 |
10 | Zeier, WG et al. | Engineering half-Heusler thermoelectric materials using Zintl chemistry | Nature Reviews Materials | 983 |
11 | Shi, XL; Zou, J and Chen, ZG | Advanced Thermoelectric Design: From Materials and Structures to Devices | Chemical Reviews | 961 |
12 | Kovalenko, MV et al. | Prospects of Nanoscience with Nanocrystals | ACS Nano | 928 |
13 | Khan, Y et al. | Monitoring of Vital Signs with Flexible and Wearable Medical Devices | Advanced Materials | 899 |
14 | Zhu, TJ et al. | Compromise and Synergy in High-Efficiency Thermoelectric Materials | Advanced Materials | 892 |
15 | Fu, CG et al. | Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials | Nature Communications | 873 |
16 | Russ, B et al. | Organic thermoelectric materials for energy harvesting and temperature control | Nature Reviews Materials | 847 |
17 | Guillon, O et al. | Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments | Advanced Engineering Materials | 834 |
18 | Zhao, LD; Dravid, VP and Kanatzidis, MG | The panoscopic approach to high performance thermoelectrics | Energy & Environmental Science | 797 |
19 | Vasala, S and Karppinen, M | A2B′BO6 perovskites: A review | Progress in Solid State Chemistry | 792 |
20 | Shi, H et al. | Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review | Advanced Electronic Materials | 791 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibn Shamsah, S.M. Thermoelectric Materials: A Scientometric Analysis of Recent Advancements and Future Research Directions. Energies 2024, 17, 5002. https://doi.org/10.3390/en17195002
Ibn Shamsah SM. Thermoelectric Materials: A Scientometric Analysis of Recent Advancements and Future Research Directions. Energies. 2024; 17(19):5002. https://doi.org/10.3390/en17195002
Chicago/Turabian StyleIbn Shamsah, Sami M. 2024. "Thermoelectric Materials: A Scientometric Analysis of Recent Advancements and Future Research Directions" Energies 17, no. 19: 5002. https://doi.org/10.3390/en17195002
APA StyleIbn Shamsah, S. M. (2024). Thermoelectric Materials: A Scientometric Analysis of Recent Advancements and Future Research Directions. Energies, 17(19), 5002. https://doi.org/10.3390/en17195002