Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = nanoplastic internalization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3506 KiB  
Article
Biological Impact of True-to-Life PET and Titanium-Doped PET Nanoplastics on Human-Derived Monocyte (THP-1) Cells
by Aliro Villacorta, Michelle Morataya-Reyes, Lourdes Vela, Jéssica Arribas Arranz, Joan Martín-Perez, Irene Barguilla, Ricard Marcos and Alba Hernández
Nanomaterials 2025, 15(13), 1040; https://doi.org/10.3390/nano15131040 - 4 Jul 2025
Viewed by 331
Abstract
In the environment, plastic waste degrades into small particles known as microplastics and nanoplastics (MNPLs), depending on their size. Given the potential harmful effects associated with MNPL exposure, it is crucial to develop environmentally representative particles for hazard assessment. These so-called true-to-life MNPLs [...] Read more.
In the environment, plastic waste degrades into small particles known as microplastics and nanoplastics (MNPLs), depending on their size. Given the potential harmful effects associated with MNPL exposure, it is crucial to develop environmentally representative particles for hazard assessment. These so-called true-to-life MNPLs are generated through in-house degradation of real-world plastic products. In this study, we produced titanium-doped nanoplastics (NPLs) from opaque polyethylene terephthalate (PET) milk bottles, which contain titanium dioxide as a filler. The resulting PET(Ti)-NPLs were thoroughly characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), mass spectrometry (MS), dynamic light scattering (DLS), ζ-potential measurements, transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR) spectroscopy. Human-derived THP-1 monocytes were employed to investigate particle uptake kinetics, dosimetry, and genotoxicity. A combination of flow cytometry and inductively coupled plasma mass spectrometry (ICP-MS) enabled the quantification of internalized particles, while the comet assay assessed DNA damage. The results revealed dose- and time-dependent effects of PET(Ti)-NPLs on THP-1 cells, particularly in terms of internalization. Titanium doping facilitated detection and influenced genotoxic outcomes. This study demonstrates the relevance of using environmentally representative nanoplastic models for evaluating human health risks and underscores the importance of further mechanistic research. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

20 pages, 1118 KiB  
Review
Atmospheric Microplastics: Inputs and Outputs
by Christine C. Gaylarde, José Antônio Baptista Neto and Estefan M. da Fonseca
Micro 2025, 5(2), 27; https://doi.org/10.3390/micro5020027 - 30 May 2025
Viewed by 1342
Abstract
The dynamic relationship between microplastics (MPs) in the air and on the Earth’s surface involves both natural and anthropogenic forces. MPs are transported from the ocean to the air by bubble scavenging and sea spray formation and are released from land sources by [...] Read more.
The dynamic relationship between microplastics (MPs) in the air and on the Earth’s surface involves both natural and anthropogenic forces. MPs are transported from the ocean to the air by bubble scavenging and sea spray formation and are released from land sources by air movements and human activities. Up to 8.6 megatons of MPs per year have been estimated to be in air above the oceans. They are distributed by wind, water and fomites and returned to the Earth’s surface via rainfall and passive deposition, but can escape to the stratosphere, where they may exist for months. Anthropogenic sprays, such as paints, agrochemicals, personal care and cosmetic products, and domestic and industrial procedures (e.g., air conditioning, vacuuming and washing, waste disposal, manufacture of plastic-containing objects) add directly to the airborne MP load, which is higher in internal than external air. Atmospheric MPs are less researched than those on land and in water, but, in spite of the major problem of a lack of standard methods for determining MP levels, the clothing industry is commonly considered the main contributor to the external air pool, while furnishing fabrics, artificial ventilation devices and the presence and movement of human beings are the main source of indoor MPs. The majority of airborne plastic particles are fibers and fragments; air currents enable them to reach remote environments, potentially traveling thousands of kilometers through the air, before being deposited in various forms of precipitation (rain, snow or “dust”). The increasing preoccupation of the populace and greater attention being paid to industrial ecology may help to reduce the concentration and spread of MPs and nanoparticles (plastic particles of less than 100 nm) from domestic and industrial activities in the future. Full article
Show Figures

Figure 1

17 pages, 744 KiB  
Article
Quantitative Detection of Micro- and Nanoplastics (≥300 nm) in Human Urine Using Double-Shot Py-GC/MS with Internal Standard Calibration
by Shanshan Ji, Wei Wang, Yong Wang, Hexiang Bai, Zhuo Li, Zongli Huo and Kai Luo
Toxics 2025, 13(6), 452; https://doi.org/10.3390/toxics13060452 - 29 May 2025
Viewed by 949
Abstract
The rapid increase in plastic production and consumption has intensified research into human exposure to micro- and nanoplastics (MNPs) and their health effects. This study quantitatively assessed MNP internal exposure levels in non-invasive human samples, focusing on the four most common types of [...] Read more.
The rapid increase in plastic production and consumption has intensified research into human exposure to micro- and nanoplastics (MNPs) and their health effects. This study quantitatively assessed MNP internal exposure levels in non-invasive human samples, focusing on the four most common types of MNPs (≥300 nm): polyethylene terephthalate (PET), polypropylene (PP), low-density polyethylene (LDPE), and polystyrene (PS). Urine samples from 18 volunteers (4 males, 14 females) were analyzed using pyrolysis–gas chromatography–mass spectrometry (Py-GC/MS) with P(E-13C2) as an internal standard. The study developed a straightforward yet effective analytical approach for quantifying MNPs in biological fluids. MNPs were detected in all urine samples, with concentrations ranging from 0.098 to 0.986 μg/mL and an average concentration of 0.268 ± 0.235 μg/mL. LDPE, 0.074 μg/mL (interquartile range: 0.030–0.243 μg/mL), was the most abundant polymer, accounting for 67.72% of the total MNPs, followed by PS at 21.17%, while PP and PET accounted for 7.06% and 4.05%, respectively. The results also suggest that drinking water type may serve as a distinct source of MNPs in urine. This study provides novel evidence on MNP (≥300 nm) internal exposure in humans and the influence of drinking habits, highlighting the application prospects of this method in assessing the potential health risks of MNPs. Full article
(This article belongs to the Special Issue Biomonitoring of Toxic Elements and Emerging Pollutants)
Show Figures

Graphical abstract

25 pages, 2932 KiB  
Systematic Review
Assessing the Impact of Nanoplastics in Biological Systems: Systematic Review of In Vitro Animal Studies
by Maria Viana, Fernanda S. Tonin and Carina Ladeira
J. Xenobiot. 2025, 15(3), 75; https://doi.org/10.3390/jox15030075 - 17 May 2025
Cited by 1 | Viewed by 3429
Abstract
Nanoplastic (NP) pollution has emerged as a growing concern due to its potential impact on human health, although its adverse effects on different organ systems are not yet fully understood. This systematic scoping review, conducted in accordance with international guidelines, aimed to map [...] Read more.
Nanoplastic (NP) pollution has emerged as a growing concern due to its potential impact on human health, although its adverse effects on different organ systems are not yet fully understood. This systematic scoping review, conducted in accordance with international guidelines, aimed to map the current evidence on the biological effects of NPs. In vitro animal studies assessing cellular damage caused by exposure to any type of NP were searched on PubMed, Web of Science, and Scopus. Data on primary outcomes related to genotoxicity and cytotoxicity (cell viability, oxidative stress, inflammation, DNA and cytoplasmic damage, apoptosis) were extracted from the included studies, and overall reporting quality was assessed. A total of 108 articles published between 2018 and 2024, mostly by China (54%), Spain (14%), and Italy (9%), were included. Polystyrene (PS) was the most frequently studied polymer (85%). NP sizes in solution ranged from 15 to 531 nm, with a higher prevalence in the 40–100 nm range (38%). The overall quality of studies was rated as moderate (60%), with many lacking essential details about cell culture conditions (e.g., pH of the medium, passage number, substances used). A higher frequency of negative effects from NP exposure was observed in respiratory cell lines, while immune, digestive, and hepatic cell lines showed greater resistance. Nervous, urinary, and connective tissue systems were impacted by NPs. Positively charged and smaller PS particles were consistently associated with higher toxicity across all systems. In summary, this review highlights the multifactorial nature of NP toxicity, influenced by size, surface charge, and polymer type. It also reveals a significant knowledge gap, stemming from the predominant use of immortalized monocultures exposed to commercially available PS NPs, the limited use of environmentally relevant particles, and the underutilization of advanced experimental models (e.g., organ-on-chip systems) that better mimic physiological conditions. Full article
(This article belongs to the Section Nanotoxicology and Nanopharmacology)
Show Figures

Graphical abstract

18 pages, 1594 KiB  
Article
Uptake and Toxicity of Polystyrene NPs in Three Human Cell Lines
by Sylwia Męczyńska-Wielgosz, Katarzyna Sikorska, Malwina Czerwińska, Lucyna Kapka-Skrzypczak and Marcin Kruszewski
Int. J. Mol. Sci. 2025, 26(10), 4783; https://doi.org/10.3390/ijms26104783 - 16 May 2025
Viewed by 366
Abstract
Internalization of nanoparticles (NPs), including nanoplastic, is one of the key factors determining their toxicity. In this work, we studied the toxicity and mechanisms of the uptake of model fluorescent polystyrene NPs (PS NPs) of three different sizes (30, 50, and 100 nm) [...] Read more.
Internalization of nanoparticles (NPs), including nanoplastic, is one of the key factors determining their toxicity. In this work, we studied the toxicity and mechanisms of the uptake of model fluorescent polystyrene NPs (PS NPs) of three different sizes (30, 50, and 100 nm) in three human cancer cells lines; two originated from gut tissue (HT-29 and Caco-2) and one originated from liver tissue (Hep G2). Toxicity was measured by Neutral Red Assay (NRU), whereas mechanisms of uptake were studied using flow cytometry and different uptake inhibitors. The toxicity of the studied NPs followed a general rule observed for NPs—the smaller ones were more toxic than the larger ones. This relationship was dose dependent; however, the overall toxicity of the studied NPs was very low, despite the significant uptake of PS NPs. Although clathrin- and caveolin-dependent uptake is generally accepted as a major route of NP uptake, the inhibition of both mechanisms did not affect PS NP uptake in the cell lines studied in this work. Further experiments revealed that the major route of PS NP uptake in these cells is a scavenger receptor-mediated uptake. Full article
(This article belongs to the Special Issue Toxicity of Nanoparticles: Second Edition)
Show Figures

Graphical abstract

21 pages, 3638 KiB  
Review
Potential Biological Impacts of Microplastics and Nanoplastics on Farm Animals: Global Perspectives with Insights from Bangladesh
by FNU Nahiduzzaman, Md Zaminur Rahman, Mst. Arjina Jannat Akhi, Mohammed Manik, Mst Minara Khatun, Md. Ariful Islam, Mohammad Nurul Matin and Md Azizul Haque
Animals 2025, 15(10), 1394; https://doi.org/10.3390/ani15101394 - 12 May 2025
Cited by 3 | Viewed by 1913
Abstract
Microplastics (MPs) and nanoplastics (NPs), formed through the degradation of larger plastic materials, are emerging pollutants of significant concern. While their impact on aquatic ecosystems is well documented, their effects on terrestrial, especially farm animals remain underexplored. This review assesses the potential threats [...] Read more.
Microplastics (MPs) and nanoplastics (NPs), formed through the degradation of larger plastic materials, are emerging pollutants of significant concern. While their impact on aquatic ecosystems is well documented, their effects on terrestrial, especially farm animals remain underexplored. This review assesses the potential threats of MPs and NPs to Bangladesh’s livestock sector by analyzing the results of experimental models and environmental studies. In Bangladesh, MPs and NPs have been detected in agricultural soils, air, water bodies, and aquatic organisms, indicating possible entry into animal systems through contaminated feed, water, and inhalation. Once internalized, these particles may trigger oxidative stress, inflammation, and tissue damage, impairing vital biological systems. Documented health consequences include reduced fertility, hematotoxicity, gut microbiota imbalance, gut–brain axis disruption, skeletal disorders, and metabolic dysfunction. Additionally, MPs and NPs can induce genomic changes, including altered gene expression and DNA hypomethylation, intensifying physiological damage and reducing productivity. Therefore, managing plastic contamination is vital in protecting animal health, ensuring food safety, and preserving human well-being around the globe, especially in vulnerable regions like Bangladesh. Given the critical role of livestock and poultry in ensuring food security and public health, the findings highlight an urgent need for comprehensive research and mitigation strategies. Full article
Show Figures

Figure 1

25 pages, 2840 KiB  
Review
Birds as Bioindicators: Revealing the Widespread Impact of Microplastics
by Lara Carrasco, Eva Jiménez-Mora, Maria J. Utrilla, Inés Téllez Pizarro, Marina M. Reglero, Laura Rico-San Román and Barbara Martin-Maldonado
Birds 2025, 6(1), 10; https://doi.org/10.3390/birds6010010 - 11 Feb 2025
Cited by 3 | Viewed by 4704
Abstract
The global crisis of plastic pollution, particularly involving microplastics (MPs) and nanoplastics (NPs), has profound ecological implications. Birds, serving as bioindicators, are especially susceptible to these pollutants. This systematic review synthesizes the current research on the presence, distribution, and impact of MPs and [...] Read more.
The global crisis of plastic pollution, particularly involving microplastics (MPs) and nanoplastics (NPs), has profound ecological implications. Birds, serving as bioindicators, are especially susceptible to these pollutants. This systematic review synthesizes the current research on the presence, distribution, and impact of MPs and NPs on avian species, alongside advancements in detection methodologies. MPs and NPs have been identified in over 200 bird species across 46 families, encompassing several ecosystems, from Antarctica to Labrador, including Australia, China, and South Europe. Seabirds such as penguins, gulls, and shearwaters exhibit a high burden of MPs in tissues and feces due to fishing debris, while terrestrial species face contamination from urban and agricultural sources. Depending on their composition, MPs can cause gastrointestinal damage, oxidative stress, and bioaccumulation of toxic chemicals, particularly polyethylene and polypropylene. However, challenges in detection persist due to methodological inconsistencies, though advances in spectroscopy and flow cytometry offer improved accuracy. Addressing this pollution is vital for bird conservation and ecosystem health, requiring international collaboration and standardized research protocols. Full article
Show Figures

Figure 1

16 pages, 2665 KiB  
Article
Polystyrene Nanoplastics Elicit Multiple Responses in Immune Cells of the Eisenia fetida (Savigny, 1826)
by Huijian Shi, Yaoyue Wang, Xiangxiang Li, Xiaoyang Wang, Yuntao Qi, Shaoyang Hu and Rutao Liu
Toxics 2025, 13(1), 18; https://doi.org/10.3390/toxics13010018 - 26 Dec 2024
Cited by 1 | Viewed by 1049
Abstract
The improper disposal of plastic products/wastes can lead to the release of nanoplastics (NPs) into environmental media, especially soil. Nevertheless, their toxicity mechanisms in soil invertebrates remain unclear. This study investigated the impact of polystyrene NPs on Eisenia fetida (Savigny, 1826) [...] Read more.
The improper disposal of plastic products/wastes can lead to the release of nanoplastics (NPs) into environmental media, especially soil. Nevertheless, their toxicity mechanisms in soil invertebrates remain unclear. This study investigated the impact of polystyrene NPs on Eisenia fetida (Savigny, 1826) immune cells, focusing on oxidative stress, immune responses, apoptosis, and necrosis. Results showed that 100 nm NPs were internalized into the cells, causing cytotoxicity. NPs were observed to inhibit cell viability by increasing reactive oxygen species, decreasing the levels of antioxidants (e.g., superoxide dismutase, catalase, and glutathione), and inducing lipid peroxidation and DNA oxidation. Additionally, assays on neutral red retention time, lysozyme activity, and Ca2⁺ levels demonstrated that NPs resulted in a loss of lysosomal membrane stability and a reduction in immune resistance. The depolarization of the mitochondrial membrane potential and the results of the apoptosis assays confirmed that the NPs induced the onset of early apoptosis. The difficulty of the NP in causing cell death by disrupting the plasma membrane was demonstrated by the results of the lactate dehydrogenase release assays in relation to cell necrosis. This research provides cellular-level insights into the ecological risks of NP exposure on soil fauna. Full article
Show Figures

Graphical abstract

15 pages, 14997 KiB  
Article
Size-Dependent Internalization of Microplastics and Nanoplastics Using In Vitro Model of the Human Intestine—Contribution of Each Cell in the Tri-Culture Models
by Hyunjin Choi, Shohei Kaneko, Yusei Suzuki, Kosuke Inamura, Masaki Nishikawa and Yasuyuki Sakai
Nanomaterials 2024, 14(17), 1435; https://doi.org/10.3390/nano14171435 - 2 Sep 2024
Cited by 4 | Viewed by 2796
Abstract
Pollution by microplastics and nanoplastics (MNPs) raises concerns, not only regarding their environmental effects, but also their potential impact on human health by internalization via the small intestine. However, the detailed pathways of MNP internalization and their toxicities to the human intestine have [...] Read more.
Pollution by microplastics and nanoplastics (MNPs) raises concerns, not only regarding their environmental effects, but also their potential impact on human health by internalization via the small intestine. However, the detailed pathways of MNP internalization and their toxicities to the human intestine have not sufficiently been understood, thus, further investigations are required. This work aimed to understand the behavior of MNPs, using in vitro human intestine models, tri-culture models composed of enterocyte Caco-2 cells, goblet-like HT29-MTX-E12 cells, and microfold cells (M cells) induced by the lymphoblast cell line Raji B. Three sizes (50, 100, and 500 nm) of polystyrene (PS) particles were exposed as MNPs on the culture model, and size-dependent translocation of the MNPs and the contributions of each cell were clarified, emphasizing the significance of the tri-culture model. In addition, potential concerns of MNPs were suggested when they invaded the circulatory system of the human body. Full article
Show Figures

Figure 1

21 pages, 724 KiB  
Review
Bridging the Gaps between Microplastics and Human Health
by Stephanie Damaj, Farah Trad, Dennis Goevert and Jeff Wilkesmann
Microplastics 2024, 3(1), 46-66; https://doi.org/10.3390/microplastics3010004 - 11 Jan 2024
Cited by 16 | Viewed by 10645
Abstract
Given the broad and intense use of plastic, society is being increasingly affected by its degradation and by-products, particularly by microplastics (MPs), fragments smaller than 5 mm in size, and nanoplastics (NPs), with sizes less than 1 µm. MPs and NPs may enter [...] Read more.
Given the broad and intense use of plastic, society is being increasingly affected by its degradation and by-products, particularly by microplastics (MPs), fragments smaller than 5 mm in size, and nanoplastics (NPs), with sizes less than 1 µm. MPs and NPs may enter the body primarily through inhalation, consumption, and skin contact. Once ingested, MPs can penetrate tissues, deviating to other parts of the body and potentially affecting important cellular pathways such as nonconforming chemokine receptors that control the communication between the fetus and the mother. Consequently, the potential health harm induced via MP internalization is a major issue, evidenced by multiple studies demonstrating harmful consequences in diverse animal models and human cells. Here, an overview of the various modes of exposure to MPs and NPs is presented, including inhalation, placental transfer, ingestion, breastmilk consumption, and skin absorption, as well as placental and fetal toxicity due to plastic particles based on animal and in vitro studies. Though MPs in our environment are becoming more recognized, their developmental toxicity is still scarcely known. Besides negatively affecting pregnancy, MPs and NPs have been shown to potentially harm the developing fetus, given their ability to cross the placental barrier. Still, considerable gaps remain in our understanding of the dispersion and toxicity of these particles in the environment and the precise types of NPs and MPs bearing the greatest dangers. As a result, we advocate for larger-scale epidemiological investigations, the development of novel approaches for measuring NP and MP exposures, and the necessity of understanding the toxicity of various kinds of NPs to guide future research efforts. Full article
Show Figures

Figure 1

23 pages, 1829 KiB  
Review
Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity
by Edith Dube and Grace Emily Okuthe
Int. J. Environ. Res. Public Health 2023, 20(17), 6667; https://doi.org/10.3390/ijerph20176667 - 28 Aug 2023
Cited by 50 | Viewed by 6044
Abstract
Plastics, due to their varied properties, find use in different sectors such as agriculture, packaging, pharmaceuticals, textiles, and construction, to mention a few. Excessive use of plastics results in a lot of plastic waste buildup. Poorly managed plastic waste (as shown by heaps [...] Read more.
Plastics, due to their varied properties, find use in different sectors such as agriculture, packaging, pharmaceuticals, textiles, and construction, to mention a few. Excessive use of plastics results in a lot of plastic waste buildup. Poorly managed plastic waste (as shown by heaps of plastic waste on dumpsites, in free spaces, along roads, and in marine systems) and the plastic in landfills, are just a fraction of the plastic waste in the environment. A complete picture should include the micro and nano-plastics (MNPs) in the hydrosphere, biosphere, lithosphere, and atmosphere, as the current extreme weather conditions (which are effects of climate change), wear and tear, and other factors promote MNP formation. MNPs pose a threat to the environment more than their pristine counterparts. This review highlights the entry and occurrence of primary and secondary MNPs in the soil, water and air, together with their aging. Furthermore, the uptake and internalization, by plants, animals, and humans are discussed, together with their toxicity effects. Finally, the future perspective and conclusion are given. The material utilized in this work was acquired from published articles and the internet using keywords such as plastic waste, degradation, microplastic, aging, internalization, and toxicity. Full article
(This article belongs to the Section Toxicology and Public Health)
Show Figures

Figure 1

14 pages, 4761 KiB  
Article
Experimental Evaluation of the Process Performance of MF and UF Membranes for the Removal of Nanoplastics
by Serena Molina, Helena Ocaña-Biedma, Laura Rodríguez-Sáez and Junkal Landaburu-Aguirre
Membranes 2023, 13(7), 683; https://doi.org/10.3390/membranes13070683 - 21 Jul 2023
Cited by 11 | Viewed by 2452
Abstract
Despite the high removal ability of the wastewater treatment technologies, research efforts have been limited to the relatively large-sized microplastics, leaving nanoplastics outside the studied size spectrum. This study aims to evaluate the process performance of MF and UF membranes for the removal [...] Read more.
Despite the high removal ability of the wastewater treatment technologies, research efforts have been limited to the relatively large-sized microplastics, leaving nanoplastics outside the studied size spectrum. This study aims to evaluate the process performance of MF and UF membranes for the removal of single and mixed solutions of polystyrene nanospheres (120 and 500 nm) and BSA. The process performance was evaluated in terms of the rejection coefficient, the normalized flux, and the permeability recovery. The fouling mechanism of these pollutants was studied, evaluating the effect of different membrane materials, membrane pore sizes, and nanoplastic sizes, as well as the synergetic effect of the mixture of foulants. This study was complemented by surface membrane characterization. Polystyrene nanospheres were successfully removed with all the membranes studied, except for the MF membrane that obtained PS 120 nm rejection coefficients of 26%. Single nanoplastic particles were deposited in UF membranes creating a pore blocking and cake layer formation, whilst the nanoplastics of 120 nm were accumulated inside the MF membrane creating an internal pore blocking. In mixed solutions, the BSA acted in two different ways: (i) as a stabilizer, hindering the deposition of nanoplastics and (ii) as a main foulant that caused a substantial flux reduction. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

13 pages, 3005 KiB  
Article
Evaluation of In Vitro Genotoxicity of Polystyrene Nanoparticles in Human Peripheral Blood Mononuclear Cells
by Milda Babonaitė, Matas Čepulis, Jūratė Kazlauskaitė and Juozas Rimantas Lazutka
Toxics 2023, 11(7), 627; https://doi.org/10.3390/toxics11070627 - 20 Jul 2023
Cited by 7 | Viewed by 3179
Abstract
According to the trade association PlasticEurope, global plastics production increased to 390.7 million tons in 2021. Unfortunately, the majority of produced plastics eventually end up as waste in the ocean or on land. Since synthetic plastics are not fully biodegradable, they tend to [...] Read more.
According to the trade association PlasticEurope, global plastics production increased to 390.7 million tons in 2021. Unfortunately, the majority of produced plastics eventually end up as waste in the ocean or on land. Since synthetic plastics are not fully biodegradable, they tend to persist in natural environments and transform into micro- and nanoplastic particles due to fragmentation. The presence of nanoplastics in air, water, and food causes ecotoxicological issues and leads to human exposure. One of the main concerns is their genotoxic potential. Therefore, this study aimed to evaluate the internalization rates, cytotoxicity, and genotoxicity of polystyrene nanoparticles (PS-NPs) in human peripheral blood mononuclear cells (PBMCs) in vitro. The uptake of PS-NPs was confirmed with flow cytometry light scattering analysis. None of the tested nanoparticle concentrations had a cytotoxic effect on human PBMCs, as evaluated by a dual ethidium bromide/acridine orange staining technique. However, an alkaline comet assay results revealed a significant increase in the levels of primary DNA damage after 24 h of exposure to PS-NPs in a dose-dependent manner. Moreover, all tested PS-NPs concentrations induced a significant amount of micronucleated cells, as well. The results of this study revealed the genotoxic potential of commercially manufactured polystyrene nanoparticles and highlighted the need for more studies with naturally occurring plastic NPs. Full article
(This article belongs to the Special Issue Toxics Young Investigators Contributions Collection in 2023)
Show Figures

Figure 1

14 pages, 4322 KiB  
Article
Uptake Routes and Biodistribution of Polystyrene Nanoplastics on Zebrafish Larvae and Toxic Effects on Development
by Martina Contino, Greta Ferruggia, Roberta Pecoraro, Elena Maria Scalisi, Gianfranco Cavallaro, Carmela Bonaccorso, Cosimo Gianluca Fortuna, Antonio Salvaggio, Fabiano Capparucci, Teresa Bottari and Maria Violetta Brundo
Fishes 2023, 8(3), 168; https://doi.org/10.3390/fishes8030168 - 20 Mar 2023
Cited by 14 | Viewed by 3014
Abstract
Polystyrene (PS) is the most widely used plastic polymer. It is mainly used to produce disposable products. Due to its resistance to degradation, PS can remain in the environment for a long time. Its mechanical, physical and biological actions determine the release of [...] Read more.
Polystyrene (PS) is the most widely used plastic polymer. It is mainly used to produce disposable products. Due to its resistance to degradation, PS can remain in the environment for a long time. Its mechanical, physical and biological actions determine the release of smaller fragments, which are able to penetrate organisms and accumulate in target organs. Fertilized Danio rerio eggs were exposed to concentrations of 10 and 20 mg/L of fluorescent, amino-modified polystyrene nanoplastics (nPS-NH2) with diameters of 100 and 50 nm for 96h, according to OECD guidelines (2013). Uptake, biodistribution, toxicity, oxidative stress and apoptosis were evaluated; moreover, we carried out a simulation to study the interactions between nPS-NH2 and defined regions of three receptors: STRA6, Adgrg6 and CNTN4/APLP2. We demonstrated that after being internalized, nPS-NH2 could reach the head and bioaccumulate, especially in the eyes. Moreover, they could lead to oxidative stress and apoptosis in the several regions where they bioaccumulated due to their interaction with receptors. This study confirmed the danger of nanoplastic wastes released in the environment. Full article
(This article belongs to the Special Issue Zebrafish Pathology and Contaminant Pathological Effects)
Show Figures

Graphical abstract

10 pages, 1550 KiB  
Article
An In Vitro Assay to Quantify Effects of Micro- and Nano-Plastics on Human Gene Transcription
by Antonio Pellegrino, Denise Danne, Christoph Weigel and Harald Seitz
Microplastics 2023, 2(1), 122-131; https://doi.org/10.3390/microplastics2010009 - 15 Feb 2023
Cited by 4 | Viewed by 3944
Abstract
In today’s age, plastic waste is a major problem for our environment. The decomposition of plastic waste causes widespread contamination in all types of ecosystems worldwide. Micro-plastics in the lower micrometer size range and especially nano-plastics can become internalized by cells and thus [...] Read more.
In today’s age, plastic waste is a major problem for our environment. The decomposition of plastic waste causes widespread contamination in all types of ecosystems worldwide. Micro-plastics in the lower micrometer size range and especially nano-plastics can become internalized by cells and thus become a threat to human health. To investigate the effects of internalized micro- and nano-plastics on human gene transcription, we used an in vitro assay to quantify CREB (cAMP response element binding protein) mediated transcription. Here we show that CREB mediated gene expression was mainly but not exclusively induced by phosphorylation. In addition, the amount of CREB affected transcription was also studied. We were also able to show that the strong CREB mediated stimulation of transcription was diminished by micro- and nano-plastics in any chosen setting. This indicates a threat to human health via the deregulation of transcription induced by internalized micro- and nano-plastics. However, this established quantifiable in vitro transcription test system could help to screen for toxic substances and non-toxic alternatives. Full article
Show Figures

Graphical abstract

Back to TopTop