Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = nanoparticulate drug-carriers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 2561 KiB  
Review
Lipid-Based Nanotechnologies for Delivery of Green Tea Catechins: Advances, Challenges, and Therapeutic Potential
by Stanila Stoeva-Grigorova, Nadezhda Ivanova, Yoana Sotirova, Maya Radeva-Ilieva, Nadezhda Hvarchanova and Kaloyan Georgiev
Pharmaceutics 2025, 17(8), 985; https://doi.org/10.3390/pharmaceutics17080985 - 30 Jul 2025
Viewed by 196
Abstract
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs [...] Read more.
Knowing the superior biochemical defense mechanisms of sessile organisms, it is not hard to believe the cure for any human sickness might be hidden in nature—we “just” have to identify it and make it safely available in the right dose to our organs and cells that are in need. For decades, green tea catechins (GTCs) have been a case in point. Because of their low redox potential and favorable positioning of hydroxyl groups, these flavonoid representatives (namely, catechin—C, epicatechin—EC, epicatechin gallate—ECG, epigallocatechin—EGC, epigallocatechin gallate—EGCG) are among the most potent plant-derived (and not only) antioxidants. The proven anti-inflammatory, neuroprotective, antimicrobial, and anticarcinogenic properties of these phytochemicals further contribute to their favorable pharmacological profile. Doubtlessly, GTCs hold the potential to “cope” with the majority of today‘s socially significant diseases, yet their mass use in clinical practice is still limited. Several factors related to the compounds’ membrane penetrability, chemical stability, and solubility overall determine their low bioavailability. Moreover, the antioxidant-to-pro-oxidant transitioning behavior of GTCs is highly conditional and, to a certain degree, unpredictable. The nanoparticulate delivery systems represent a logical approach to overcoming one or more of these therapeutic challenges. This review particularly focuses on the lipid-based nanotechnologies known to be a leading choice when it comes to drug permeation enhancement and not drug release modification nor drug stabilization solely. It is our goal to present the privileges of encapsulating green tea catechins in either vesicular or particulate lipid carriers with respect to the increasingly popular trends of advanced phytotherapy and functional nutrition. Full article
Show Figures

Graphical abstract

20 pages, 4926 KiB  
Article
Tailored Iron Oxide Nanoparticles as Potential Cannabinoid Carriers for Anti-Cancer Treatment
by Jan Taudul, Joanna Celej, Kinga Żelechowska-Matysiak, Daria Kępińska, Agnieszka Majkowska-Pilip, Marcin Strawski, Paweł Krysiński and Dorota Nieciecka
Biomolecules 2025, 15(2), 230; https://doi.org/10.3390/biom15020230 - 5 Feb 2025
Viewed by 989
Abstract
We present a novel, multicomponent nanoparticulate carrier system based on superparamagnetic iron oxide nanoparticles with a designed hydrophilic/hydrophobic balance based on oleic acid and TWEEN 80 to incorporate hydrophobic cannabinoids—cannabigerol and cannabidiol—as well as the hydrophilic anthracycline drug epirubicin, forming a conjugate anticancer [...] Read more.
We present a novel, multicomponent nanoparticulate carrier system based on superparamagnetic iron oxide nanoparticles with a designed hydrophilic/hydrophobic balance based on oleic acid and TWEEN 80 to incorporate hydrophobic cannabinoids—cannabigerol and cannabidiol—as well as the hydrophilic anthracycline drug epirubicin, forming a conjugate anticancer system. Additionally, the superparamagnetic iron oxide-based nanoparticles formed the core of the system, thus providing it with magnetic hyperthermia capabilities with a specific absorption rate comparable to the corresponding systems in the literature. The interaction of the conjugate with the cell membrane was studied using the Langmuir monolayers at the air/water interface formed of selected lipids modeling the healthy and cancerous cell membranes. Finally, cytotoxicity tests were carried out against the SKOV-3 cell line in vitro. A synergistic effect was observed when both the cannabinoid and epirubicin were present in the conjugate, as compared to the cannabinoid or epirubicin alone, making our system advantageous for further development for tentative therapeutic use. Full article
(This article belongs to the Special Issue Nanomaterials and Their Applications in Biomedicine)
Show Figures

Figure 1

24 pages, 1584 KiB  
Review
Nanocarriers-Assisted Nose-to-Brain Delivery of Levodopa: Current Progress and Prospects
by Mariya Dangova, Nadezhda Ivanova and Velichka Andonova
Appl. Sci. 2025, 15(1), 331; https://doi.org/10.3390/app15010331 - 31 Dec 2024
Cited by 2 | Viewed by 1661
Abstract
A challenge to contemporary medicine is still the discovery of an effective and safe therapy for symptomatic control, if not cure, of Parkinson’s disease. While the potential century’s break-through is sought and foreseen by many scientists in gene therapy, immunotherapy, new drug combinations, [...] Read more.
A challenge to contemporary medicine is still the discovery of an effective and safe therapy for symptomatic control, if not cure, of Parkinson’s disease. While the potential century’s break-through is sought and foreseen by many scientists in gene therapy, immunotherapy, new drug combinations, and neurosurgical approaches, the not-yet-conventional intranasal administration of “classic” levodopa (L-DOPA) also stands out as a perspective from which Parkinson’s patients may benefit in the short term. With the main drawbacks of the standard oral L-DOPA treatment being the extremely low systemic and cerebral bioavailability, it is widely recognized that the nasal route may turn out to be the better administration site, for it offers the alternative of direct brain delivery via the olfactory bulb (the so-called nose-to-brain axis). However, such advancement would be unthinkable without the current progress in nano-scaled drug carriers which are needed to ensure drug stability, mucosal retention and permeation, olfactory uptake, and harmlessness to the sensory neurons and respiratory cilia. This study aims to review the most significant results and achievements in the field of nano-particulate nose-to-brain delivery of L-DOPA. Full article
Show Figures

Figure 1

18 pages, 5106 KiB  
Article
Fabrication of Mupirocin-Loaded PEGylated Chitosan Nanoparticulate Films for Enhanced Wound Healing
by Shajahan Azeez, Anbazhagan Sathiyaseelan, Kaviyarasan Venkatesan and Myeong-Hyeon Wang
Int. J. Mol. Sci. 2024, 25(17), 9188; https://doi.org/10.3390/ijms25179188 - 24 Aug 2024
Cited by 3 | Viewed by 1452
Abstract
Chitosan-based biomaterials are being investigated for their unique properties that support skin regeneration and wound healing. This study focused on the preparation and characterization of a mupirocin (Mup)-loaded PEGylated chitosan (CS-PEG) nanoparticulate film (NF) [CBNF]. The CBNF was characterized using FTIR spectroscopy and [...] Read more.
Chitosan-based biomaterials are being investigated for their unique properties that support skin regeneration and wound healing. This study focused on the preparation and characterization of a mupirocin (Mup)-loaded PEGylated chitosan (CS-PEG) nanoparticulate film (NF) [CBNF]. The CBNF was characterized using FTIR spectroscopy and SEM analysis. The results demonstrated that CBNF was successfully incorporated into the composites, as shown by functional group modification through FTIR analysis. Additionally, the SEM micrograph revealed the deposition of nanoparticles (<200 nm) on the surface of transparent CBNF. The film has higher water absorption (≥1700%) and moderate water retention ability within 6 h. Furthermore, histological findings showed significant development, with re-epithelialization and granulation of tissues after 19 days, indicating the healing efficiency of CNBF. These results suggest that drug-loaded films could be an effective carrier and delivery agent for Mup-like anti-inflammatory drugs. Full article
(This article belongs to the Special Issue Biopolymers as Nanoparticles Carriers, 2nd Edition)
Show Figures

Figure 1

15 pages, 6889 KiB  
Article
The Controlled Preparation of a Carrier-Free Nanoparticulate Formulation Composed of Curcumin and Piperine Using High-Gravity Technology
by Ning Han, Yue Liu, Xin Liu, Pengyue Li, Yang Lu, Shouying Du and Kai Wu
Pharmaceutics 2024, 16(6), 808; https://doi.org/10.3390/pharmaceutics16060808 - 14 Jun 2024
Cited by 3 | Viewed by 1625
Abstract
Carrier-free nanoparticulate formulations are an advantageous platform for the oral administration of insoluble drugs with the expectation of improving their bioavailability. However, the key limitation of exploiting carrier-free nanoparticulate formulations is the controlled preparation of drug nanoparticles on the basis of rational prescription [...] Read more.
Carrier-free nanoparticulate formulations are an advantageous platform for the oral administration of insoluble drugs with the expectation of improving their bioavailability. However, the key limitation of exploiting carrier-free nanoparticulate formulations is the controlled preparation of drug nanoparticles on the basis of rational prescription design. In the following study, we used curcumin (Cur) and piperine (Pip) as model water-insoluble drugs and developed a new method for the controlled preparation of carrier-free drug nanoparticles via multidrug co-assembly in a high-gravity environment. Encouraged by the controlled regulation of the nucleation and crystal growth rate of high-gravity technology accomplished by a rotating packed bed, co-amorphous Cur-Pip co-assembled multidrug nanoparticles with a uniform particle size of 130 nm were successfully prepared, exhibiting significantly enhanced dissolution performance and in vitro cytotoxicity. Moreover, the hydrogen bonding interactions between Cur and Pip in nanoparticles provide them with excellent re-dispersibility and storage stability. Moreover, the oral bioavailability of Cur was dramatically enhanced as a result of the smaller particle size of the co-assembled nanoparticles and the effective metabolic inhibitory effect of Pip. The present study provides a controlled approach to preparing a carrier-free nanoparticulate formulation through a multidrug co-assembly process in the high-gravity field to improve the oral bioavailability of insoluble drugs. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

34 pages, 498 KiB  
Review
Leading Paediatric Infectious Diseases—Current Trends, Gaps, and Future Prospects in Oral Pharmacotherapeutic Interventions
by Penelope N. Rampedi, Modupe O. Ogunrombi and Oluwatoyin A. Adeleke
Pharmaceutics 2024, 16(6), 712; https://doi.org/10.3390/pharmaceutics16060712 - 26 May 2024
Cited by 7 | Viewed by 2934
Abstract
Paediatric infectious diseases contribute significantly to global health challenges. Conventional therapeutic interventions are not always suitable for children, as they are regularly accompanied with long-standing disadvantages that negatively impact efficacy, thus necessitating the need for effective and child-friendly pharmacotherapeutic interventions. Recent advancements in [...] Read more.
Paediatric infectious diseases contribute significantly to global health challenges. Conventional therapeutic interventions are not always suitable for children, as they are regularly accompanied with long-standing disadvantages that negatively impact efficacy, thus necessitating the need for effective and child-friendly pharmacotherapeutic interventions. Recent advancements in drug delivery technologies, particularly oral formulations, have shown tremendous progress in enhancing the effectiveness of paediatric medicines. Generally, these delivery methods target, and address challenges associated with palatability, dosing accuracy, stability, bioavailability, patient compliance, and caregiver convenience, which are important factors that can influence successful treatment outcomes in children. Some of the emerging trends include moving away from creating liquid delivery systems to developing oral solid formulations, with the most explored being orodispersible tablets, multiparticulate dosage forms using film-coating technologies, and chewable drug products. Other ongoing innovations include gastro-retentive, 3D-printed, nipple-shield, milk-based, and nanoparticulate (e.g., lipid-, polymeric-based templates) drug delivery systems, possessing the potential to improve therapeutic effectiveness, age appropriateness, pharmacokinetics, and safety profiles as they relate to the paediatric population. This manuscript therefore highlights the evolving landscape of oral pharmacotherapeutic interventions for leading paediatric infectious diseases, crediting the role of innovative drug delivery technologies. By focusing on the current trends, pointing out gaps, and identifying future possibilities, this review aims to contribute towards ongoing efforts directed at improving paediatric health outcomes associated with the management of these infectious ailments through accessible and efficacious drug treatments. Full article
14 pages, 1821 KiB  
Article
Inflammatory-Targeted Lipid Carrier as a New Nanomaterial to Formulate an Inhaled Drug Delivery System
by Eleonora Maretti, Federica Gioia, Cecilia Rustichelli, Susanna Molinari and Eliana Leo
Molecules 2024, 29(7), 1616; https://doi.org/10.3390/molecules29071616 - 3 Apr 2024
Cited by 2 | Viewed by 2286
Abstract
There is a pressing need for efficacious therapies in the field of respiratory diseases and infections. Lipid nanocarriers, administered through aerosols, represent a promising tool for maximizing therapeutic concentration in targeted cells and minimizing systemic exposure. However, this approach requires the application of [...] Read more.
There is a pressing need for efficacious therapies in the field of respiratory diseases and infections. Lipid nanocarriers, administered through aerosols, represent a promising tool for maximizing therapeutic concentration in targeted cells and minimizing systemic exposure. However, this approach requires the application of efficient and safe nanomaterials. Palmitoylethanolamide (PEA), an endocannabinoid-like endogenous lipid, plays a crucial role in providing protective mechanisms during inflammation, making it an interesting material for preparing inhalable lipid nanoparticles (LNPs). This report aims to preliminarily explore the in vitro behavior of LNPs prepared with PEA (PEA-LNPs), a new inhalable inflammatory-targeted nanoparticulate drug carrier. PEA-LNPs exhibited a size of about 250 nm, a rounded shape, and an marked improvement in PEA solubility in comparison to naked PEA, indicative of easily disassembled nanoparticles. A twin glass impinger instrument was used to screen the aerosol performance of PEA-LNP powders, obtained via freeze-drying in the presence of two quantities of mannose as a cryoprotectant. Results indicated that a higher amount of mannose improved the emitted dose (ED), and in particular, the fine particle fraction (FPF). A cytotoxicity assay was performed and indicated that PEA-LNPs are not toxic towards the MH-S alveolar macrophage cell line up to concentrations of 0.64 mg/mL, and using coumarin-6 labelled particles, a rapid internalization into the macrophage was confirmed. This study demonstrates that PEA could represent a suitable material for preparing inhalable lipid nanocarrier-based dry powders, which signify a promising tool for the transport of drugs employed to treat respiratory diseases and infections. Full article
(This article belongs to the Special Issue New Nanomaterials for Diagnostic and Drug Delivery)
Show Figures

Graphical abstract

46 pages, 4899 KiB  
Review
Lipid Nanocarriers-Enabled Delivery of Antibiotics and Antimicrobial Adjuvants to Overcome Bacterial Biofilms
by Anam Ahsan, Nicky Thomas, Timothy J. Barnes, Santhni Subramaniam, Thou Chen Loh, Paul Joyce and Clive A. Prestidge
Pharmaceutics 2024, 16(3), 396; https://doi.org/10.3390/pharmaceutics16030396 - 14 Mar 2024
Cited by 23 | Viewed by 4566
Abstract
The opportunistic bacteria growing in biofilms play a decisive role in the pathogenesis of chronic infectious diseases. Biofilm-dwelling bacteria behave differently than planktonic bacteria and are likely to increase resistance and tolerance to antimicrobial therapeutics. Antimicrobial adjuvants have emerged as a promising strategy [...] Read more.
The opportunistic bacteria growing in biofilms play a decisive role in the pathogenesis of chronic infectious diseases. Biofilm-dwelling bacteria behave differently than planktonic bacteria and are likely to increase resistance and tolerance to antimicrobial therapeutics. Antimicrobial adjuvants have emerged as a promising strategy to combat antimicrobial resistance (AMR) and restore the efficacy of existing antibiotics. A combination of antibiotics and potential antimicrobial adjuvants, (e.g., extracellular polymeric substance (EPS)-degrading enzymes and quorum sensing inhibitors (QSI) can improve the effects of antibiotics and potentially reduce bacterial resistance). In addition, encapsulation of antimicrobials within nanoparticulate systems can improve their stability and their delivery into biofilms. Lipid nanocarriers (LNCs) have been established as having the potential to improve the efficacy of existing antibiotics in combination with antimicrobial adjuvants. Among them, liquid crystal nanoparticles (LCNPs), liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs) are promising due to their superior properties compared to traditional formulations, including their greater biocompatibility, higher drug loading capacity, drug protection from chemical or enzymatic degradation, controlled drug release, targeted delivery, ease of preparation, and scale-up feasibility. This article reviews the recent advances in developing various LNCs to co-deliver some well-studied antimicrobial adjuvants combined with antibiotics from different classes. The efficacy of various combination treatments is compared against bacterial biofilms, and synergistic therapeutics that deserve further investigation are also highlighted. This review identifies promising LNCs for the delivery of combination therapies that are in recent development. It discusses how LNC-enabled co-delivery of antibiotics and adjuvants can advance current clinical antimicrobial treatments, leading to innovative products, enabling the reuse of antibiotics, and providing opportunities for saving millions of lives from bacterial infections. Full article
Show Figures

Graphical abstract

31 pages, 1516 KiB  
Review
State-of-the-Art Review on Inhalable Lipid and Polymer Nanocarriers: Design and Development Perspectives
by Gabriella Costabile, Gemma Conte, Susy Brusco, Pouria Savadi, Agnese Miro, Fabiana Quaglia, Ivana d’Angelo and Francesca Ungaro
Pharmaceutics 2024, 16(3), 347; https://doi.org/10.3390/pharmaceutics16030347 - 1 Mar 2024
Cited by 10 | Viewed by 3186
Abstract
Nowadays, the interest in research towards the local administration of drugs via the inhalation route is growing as it enables the direct targeting of the lung tissue, at the same time reducing systemic side effects. This is of great significance in the era [...] Read more.
Nowadays, the interest in research towards the local administration of drugs via the inhalation route is growing as it enables the direct targeting of the lung tissue, at the same time reducing systemic side effects. This is of great significance in the era of nucleic acid therapeutics and personalized medicine for the local treatment of severe lung diseases. However, the success of any inhalation therapy is driven by a delicate interplay of factors, such as the physiochemical profile of the payload, formulation, inhalation device, aerodynamic properties, and interaction with the lung fluids. The development of drug delivery systems tailored to the needs of this administration route is central to its success and to revolutionize the treatment of respiratory diseases. With this review, we aim to provide an up-to-date overview of advances in the development of nanoparticulate carriers for drug delivery to the lung tissue, with special regard concerning lipid and polymer-based nanocarriers (NCs). Starting from the biological barriers that the anatomical structure of the lung imposes, and that need to be overcome, the current strategies to achieve efficient lung delivery and the best support for the success of NCs for inhalation are highlighted. Full article
(This article belongs to the Special Issue Application of Nanomaterials in Pulmonary Drug Delivery)
Show Figures

Figure 1

13 pages, 2659 KiB  
Article
Intracellular Drug Delivery Process of Am80-Encapsulated Lipid Nanoparticles Aiming for Alveolar Regeneration
by Tomomi Akita, Kazuaki Oda, Satoru Narukawa, Yuki Morita, Kota Tange, Yuta Nakai and Chikamasa Yamashita
Pharmaceuticals 2023, 16(6), 838; https://doi.org/10.3390/ph16060838 - 4 Jun 2023
Cited by 2 | Viewed by 2384
Abstract
Chronic obstructive pulmonary disease (COPD) results in obstructive ventilatory impairment caused by emphysema, and current treatment is limited to symptomatic therapy or lung transplantation. Therefore, the development of new treatments to repair alveolar destruction is especially urgent. Our previous study revealed that 1.0 [...] Read more.
Chronic obstructive pulmonary disease (COPD) results in obstructive ventilatory impairment caused by emphysema, and current treatment is limited to symptomatic therapy or lung transplantation. Therefore, the development of new treatments to repair alveolar destruction is especially urgent. Our previous study revealed that 1.0 mg/kg of synthetic retinoid Am80 had a repair effect on collapsed alveoli in a mouse model of elastase-induced emphysema. From these results, however, the clinical dose calculated in accordance with FDA guidance is estimated to be 5.0 mg/60 kg, and it is desirable to further reduce the dose to allow the formulation of a powder inhaler for clinical application. To efficiently deliver Am80 to the retinoic acid receptor in the cell nucleus, which is the site of action, we focused on SS-cleavable proton-activated lipid-like material O-Phentyl-P4C2COATSOME®SS-OP, hereinafter referred to as “SS-OP”). In this study, we investigated the cellular uptake and intracellular drug delivery process of Am80-encapsulated SS-OP nanoparticles to elucidate the mechanism of Am80 by nanoparticulation. Am80-encapsulated SS-OP nanoparticles were taken up into the cells via ApoE, and then Am80 was efficiently delivered into the nucleus via RARα. These results indicated the usefulness of SS-OP nanoparticles as drug delivery system carriers of Am80 for COPD treatment. Full article
(This article belongs to the Special Issue Biodegradable Polymeric Nanosystems for Drug Delivery)
Show Figures

Figure 1

56 pages, 12276 KiB  
Review
Advances in Antiviral Delivery Systems and Chitosan-Based Polymeric and Nanoparticulate Antivirals and Antiviral Carriers
by Dominika Žigrayová, Veronika Mikušová and Peter Mikuš
Viruses 2023, 15(3), 647; https://doi.org/10.3390/v15030647 - 28 Feb 2023
Cited by 32 | Viewed by 5730
Abstract
Current antiviral therapy research is focused on developing dosage forms that enable highly effective drug delivery, providing a selective effect in the organism, lower risk of adverse effects, a lower dose of active pharmaceutical ingredients, and minimal toxicity. In this article, antiviral drugs [...] Read more.
Current antiviral therapy research is focused on developing dosage forms that enable highly effective drug delivery, providing a selective effect in the organism, lower risk of adverse effects, a lower dose of active pharmaceutical ingredients, and minimal toxicity. In this article, antiviral drugs and the mechanisms of their action are summarized at the beginning as a prerequisite background to develop relevant drug delivery/carrier systems for them, classified and briefly discussed subsequently. Many of the recent studies aim at different types of synthetic, semisynthetic, and natural polymers serving as a favorable matrix for the antiviral drug carrier. Besides a wider view of different antiviral delivery systems, this review focuses on advances in antiviral drug delivery systems based on chitosan (CS) and derivatized CS carriers. CS and its derivatives are evaluated concerning methods of their preparation, their basic characteristics and properties, approaches to the incorporation of an antiviral drug in the CS polymer as well as CS nanoparticulate systems, and their recent biomedical applications in the context of actual antiviral therapy. The degree of development (i.e., research study, in vitro/ex vivo/in vivo preclinical testing), as well as benefits and limitations of CS polymer and CS nanoparticulate drug delivery systems, are reported for particular viral diseases and corresponding antivirotics. Full article
(This article belongs to the Special Issue Nanotechnological Applications in Virology 2023)
Show Figures

Graphical abstract

54 pages, 8011 KiB  
Review
Natural Gums in Drug-Loaded Micro- and Nanogels
by Anna Froelich, Emilia Jakubowska, Barbara Jadach, Piotr Gadziński and Tomasz Osmałek
Pharmaceutics 2023, 15(3), 759; https://doi.org/10.3390/pharmaceutics15030759 - 24 Feb 2023
Cited by 29 | Viewed by 4743
Abstract
Gums are polysaccharide compounds obtained from natural sources, such as plants, algae and bacteria. Because of their excellent biocompatibility and biodegradability, as well as their ability to swell and their sensitivity to degradation by the colon microbiome, they are regarded as interesting potential [...] Read more.
Gums are polysaccharide compounds obtained from natural sources, such as plants, algae and bacteria. Because of their excellent biocompatibility and biodegradability, as well as their ability to swell and their sensitivity to degradation by the colon microbiome, they are regarded as interesting potential drug carriers. In order to obtain properties differing from the original compounds, blends with other polymers and chemical modifications are usually applied. Gums and gum-derived compounds can be applied in the form of macroscopic hydrogels or can be formulated into particulate systems that can deliver the drugs via different administration routes. In this review, we present and summarize the most recent studies regarding micro- and nanoparticles obtained with the use of gums extensively investigated in pharmaceutical technology, their derivatives and blends with other polymers. This review focuses on the most important aspects of micro- and nanoparticulate systems formulation and their application as drug carriers, as well as the challenges related to these formulations. Full article
Show Figures

Graphical abstract

25 pages, 982 KiB  
Review
Bioactive Glasses as Carriers of Cancer-Targeted Drugs: Challenges and Opportunities in Bone Cancer Treatment
by Roger Borges, Agatha Maria Pelosine, Ana Carolina Santos de Souza, Joel Machado, Giselle Zenker Justo, Lionel Fernel Gamarra and Juliana Marchi
Materials 2022, 15(24), 9082; https://doi.org/10.3390/ma15249082 - 19 Dec 2022
Cited by 14 | Viewed by 3355
Abstract
The treatment of bone cancer involves tumor resection followed by bone reconstruction of the defect caused by the tumor using biomaterials. Additionally, post-surgery protocols cover chemotherapy, radiotherapy, or drug administration, which are employed as adjuvant treatments to prevent tumor recurrence. In this work, [...] Read more.
The treatment of bone cancer involves tumor resection followed by bone reconstruction of the defect caused by the tumor using biomaterials. Additionally, post-surgery protocols cover chemotherapy, radiotherapy, or drug administration, which are employed as adjuvant treatments to prevent tumor recurrence. In this work, we reviewed new strategies for bone cancer treatment based on bioactive glasses as carriers of cancer-targeted and other drugs that are intended for bone regeneration in conjunction with adjuvant treatments. Drugs used in combination with bioactive glasses can be classified into cancer-target, osteoclast-target, and new therapies (such as gene delivery and bioinorganic). Microparticulated, nanoparticulated, or mesoporous bioactive glasses have been used as drug-delivery systems. Additionally, surface modification through functionalization or the production of composites based on polymers and hydrogels has been employed to improve drug-release kinetics. Overall, although different drugs and drug delivery systems have been developed, there is still room for new studies involving kinase inhibitors or antibody-conjugated drugs, as these drugs have been poorly explored in combination with bioactive glasses. Full article
(This article belongs to the Special Issue Advanced Ceramics Applied in Healthcare)
Show Figures

Figure 1

37 pages, 1760 KiB  
Review
Boron Vehiculating Nanosystems for Neutron Capture Therapy in Cancer Treatment
by Giorgia Ailuno, Alice Balboni, Gabriele Caviglioli, Francesco Lai, Federica Barbieri, Irene Dellacasagrande, Tullio Florio and Sara Baldassari
Cells 2022, 11(24), 4029; https://doi.org/10.3390/cells11244029 - 13 Dec 2022
Cited by 28 | Viewed by 4059
Abstract
Boron neutron capture therapy is a low-invasive cancer therapy based on the neutron fission process that occurs upon thermal neutron irradiation of 10B-containing compounds; this process causes the release of alpha particles that selectively damage cancer cells. Although several clinical studies involving [...] Read more.
Boron neutron capture therapy is a low-invasive cancer therapy based on the neutron fission process that occurs upon thermal neutron irradiation of 10B-containing compounds; this process causes the release of alpha particles that selectively damage cancer cells. Although several clinical studies involving mercaptoundecahydro-closo-dodecaborate and the boronophenylalanine–fructose complex are currently ongoing, the success of this promising anticancer therapy is hampered by the lack of appropriate drug delivery systems to selectively carry therapeutic concentrations of boron atoms to cancer tissues, allowing prolonged boron retention therein and avoiding the damage of healthy tissues. To achieve these goals, numerous research groups have explored the possibility to formulate nanoparticulate systems for boron delivery. In this review. we report the newest developments on boron vehiculating drug delivery systems based on nanoparticles, distinguished on the basis of the type of carrier used, with a specific focus on the formulation aspects. Full article
Show Figures

Graphical abstract

21 pages, 1499 KiB  
Review
A Current Overview of Cyclodextrin-Based Nanocarriers for Enhanced Antifungal Delivery
by Hay Man Saung Hnin Soe, Phyo Darli Maw, Thorsteinn Loftsson and Phatsawee Jansook
Pharmaceuticals 2022, 15(12), 1447; https://doi.org/10.3390/ph15121447 - 22 Nov 2022
Cited by 18 | Viewed by 4533
Abstract
Fungal infections are an extremely serious health problem, particularly in patients with compromised immune systems. Most antifungal agents have low aqueous solubility, which may hamper their bioavailability. Their complexation with cyclodextrins (CDs) could increase the solubility of antifungals, facilitating their antifungal efficacy. Nanoparticulate [...] Read more.
Fungal infections are an extremely serious health problem, particularly in patients with compromised immune systems. Most antifungal agents have low aqueous solubility, which may hamper their bioavailability. Their complexation with cyclodextrins (CDs) could increase the solubility of antifungals, facilitating their antifungal efficacy. Nanoparticulate systems are promising carriers for antifungal delivery due to their ability to overcome the drawbacks of conventional dosage forms. CD-based nanocarriers could form beneficial combinations of CDs and nanoparticulate platforms. These systems have synergistic or additive effects regarding improved drug loading, enhanced chemical stability, and enhanced drug permeation through membranes, thereby increasing the bioavailability of drugs. Here, an application of CD in antifungal drug formulations is reviewed. CD-based nanocarriers, such as nanoparticles, liposomes, nanoemulsions, nanofibers, and in situ gels, enhancing antifungal activity in a controlled-release manner and possessing good toxicological profiles, are described. Additionally, the examples of current, updated CD-based nanocarriers loaded with antifungal drugs for delivery by various routes of administration are discussed and summarized. Full article
Show Figures

Figure 1

Back to TopTop