Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = nanomechanical sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 10888 KB  
Review
Central Nervous System-Derived Extracellular Vesicles as Biomarkers in Alzheimer’s Disease
by Yiru Yu, Zhen Wang, Zhen Chai, Shuyu Ma, Ang Li and Ye Li
Int. J. Mol. Sci. 2025, 26(17), 8272; https://doi.org/10.3390/ijms26178272 - 26 Aug 2025
Viewed by 406
Abstract
Alzheimer’s disease (AD) has emerged as a global health threat that demands early detection to seize the optimal intervention opportunity. Central nervous system (CNS)-derived extracellular vesicles (EVs), lipid-bilayer nanoparticles released by CNS cells, carry key biomolecules involved in AD pathology, positioning them as [...] Read more.
Alzheimer’s disease (AD) has emerged as a global health threat that demands early detection to seize the optimal intervention opportunity. Central nervous system (CNS)-derived extracellular vesicles (EVs), lipid-bilayer nanoparticles released by CNS cells, carry key biomolecules involved in AD pathology, positioning them as a promising source of biomarkers for early detection. Current breakthroughs in EV-based isolation and detection technologies have opened up the possibility of early, accurate AD diagnosis. This review summarizes their multifaceted roles in AD pathogenesis, including amyloid-β (Aβ) aggregation, tau propagation, neuroinflammation, and synaptic dysfunction, and highlights neuron- and glia-derived EV biomarkers with translational potential. We further outline recent advances in EV isolation techniques—including density-, size-, charge/dielectric-, immunoaffinity-, and acoustics-based approaches—and emerging detection platforms such as fluorescence, surface plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), electrochemical, and nanomechanical sensors for sensitive, multiplex AD diagnostics. Finally, we discuss key challenges, including standardization, sensitivity, and high-throughput adaptation, and explore future directions such as automated microfluidics and single-vesicle analysis. CNS-derived EVs hold significant promise as minimally invasive, next-generation tools for early AD detection and precision medicine. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

20 pages, 16333 KB  
Review
The Burgeoning Importance of Nanomotion Sensors in Microbiology and Biology
by Marco Girasole and Giovanni Longo
Biosensors 2025, 15(7), 455; https://doi.org/10.3390/bios15070455 - 15 Jul 2025
Viewed by 557
Abstract
Nanomotion sensors have emerged as a pivotal technology in microbiology and biology, leveraging advances in nanotechnology, microelectronics, and optics to provide a highly sensitive, label-free detection of biological activity and interactions. These sensors were first limited to nanomechanical oscillators like atomic force microscopy [...] Read more.
Nanomotion sensors have emerged as a pivotal technology in microbiology and biology, leveraging advances in nanotechnology, microelectronics, and optics to provide a highly sensitive, label-free detection of biological activity and interactions. These sensors were first limited to nanomechanical oscillators like atomic force microscopy cantilevers, but now they are expanding into new, more intriguing setups. The idea is to convert the inherent nanoscale movements of living organisms—a direct manifestation of their metabolic activity—into measurable signals. This review highlights the evolution and diverse applications of nanomotion sensing. Key methodologies include Atomic Force Microscopy-based sensors, optical nanomotion detection, graphene drum sensors, and optical fiber-based sensors, each offering unique advantages in sensitivity, cost, and applicability. The analysis of complex nanomotion data is increasingly supported by advanced modeling and the integration of artificial intelligence and machine learning, enhancing pattern recognition and automation. The versatility and real-time, label-free nature of nanomotion sensing position it as a transformative tool that could revolutionize diagnostics, therapeutics, and fundamental biological research. Full article
Show Figures

Figure 1

16 pages, 3491 KB  
Article
Enhancing Sensitivity of Double-Walled Carbon Nanotubes with Longitudinal Magnetic Field
by Hamid Reza Ahmadi, Zaher Rahimi and Wojciech Sumelka
Appl. Sci. 2024, 14(7), 3010; https://doi.org/10.3390/app14073010 - 3 Apr 2024
Cited by 2 | Viewed by 3803
Abstract
In this study, the behavior of double-walled carbon nanotubes (DWCNTs) used as mass sensors is explored under various boundary conditions; particular attention is paid to the crucial topic of resonant nanomechanical mass sensors. In the presented approach, nanotubes are subjected to a distributed [...] Read more.
In this study, the behavior of double-walled carbon nanotubes (DWCNTs) used as mass sensors is explored under various boundary conditions; particular attention is paid to the crucial topic of resonant nanomechanical mass sensors. In the presented approach, nanotubes are subjected to a distributed transverse magnetic force and supported by an elastic foundation. The impacts of the longitudinal magnetic field, elastic medium, and diverse physical parameters on the responsiveness of the sensors are assessed. Using the energy method, governing equations are formulated to determine the frequency shifts of the mass nanosensors. Our findings reveal significant variations in the frequency shifts due to a longitudinal magnetic field, which depends on the applied boundary conditions. This research holds significance in the design of resonant nanomechanical mass sensors and provides valuable insights into the interplay of factors affecting their performance. Through exploring the intricate dynamics of DWCNTs used as mass sensors and thus contributing to the broader understanding of nanoscale systems, the implications for advancements in sensor design are offered and applications are introduced. Full article
(This article belongs to the Special Issue Computer Methods in Mechanical, Civil and Biomedical Engineering)
Show Figures

Figure 1

17 pages, 774 KB  
Review
The Revolution in Breast Cancer Diagnostics: From Visual Inspection of Histopathology Slides to Using Desktop Tissue Analysers for Automated Nanomechanical Profiling of Tumours
by Martin Stolz
Bioengineering 2024, 11(3), 237; https://doi.org/10.3390/bioengineering11030237 - 28 Feb 2024
Cited by 2 | Viewed by 2845
Abstract
We aim to develop new portable desktop tissue analysers (DTAs) to provide fast, low-cost, and precise test results for fast nanomechanical profiling of tumours. This paper will explain the reasoning for choosing indentation-type atomic force microscopy (IT-AFM) to reveal the functional details of [...] Read more.
We aim to develop new portable desktop tissue analysers (DTAs) to provide fast, low-cost, and precise test results for fast nanomechanical profiling of tumours. This paper will explain the reasoning for choosing indentation-type atomic force microscopy (IT-AFM) to reveal the functional details of cancer. Determining the subtype, cancer stage, and prognosis will be possible, which aids in choosing the best treatment. DTAs are based on fast IT-AFM at the size of a small box that can be made for a low budget compared to other clinical imaging tools. The DTAs can work in remote areas and all parts of the world. There are a number of direct benefits: First, it is no longer needed to wait a week for the pathology report as the test will only take 10 min. Second, it avoids the complicated steps of making histopathology slides and saves costs of labour. Third, computers and robots are more consistent, more reliable, and more economical than human workers which may result in fewer diagnostic errors. Fourth, the IT-AFM analysis is capable of distinguishing between various cancer subtypes. Fifth, the IT-AFM analysis could reveal new insights about why immunotherapy fails. Sixth, IT-AFM may provide new insights into the neoadjuvant treatment response. Seventh, the healthcare system saves money by reducing diagnostic backlogs. Eighth, the results are stored on a central server and can be accessed to develop strategies to prevent cancer. To bring the IT-AFM technology from the bench to the operation theatre, a fast IT-AFM sensor needs to be developed and integrated into the DTAs. Full article
(This article belongs to the Topic Machine Learning and Biomedical Sensors)
Show Figures

Figure 1

17 pages, 19240 KB  
Article
Influence of the Tensile Strain on Electron Transport of Ultra-Thin SiC Nanowires
by Qin Tan, Jie Li, Kun Liu, Rukai Liu and Vladimir Skuratov
Molecules 2024, 29(3), 723; https://doi.org/10.3390/molecules29030723 - 4 Feb 2024
Cited by 1 | Viewed by 1538
Abstract
The influence of nanomechanical tensile behavior on electron transport is especially interesting for ultra-thin SiC nanowires (NWs) with different diameters. Our studies theoretically show that these NWs can hold stable electron transmission in some strain ranges and that stretching can enhance the electron [...] Read more.
The influence of nanomechanical tensile behavior on electron transport is especially interesting for ultra-thin SiC nanowires (NWs) with different diameters. Our studies theoretically show that these NWs can hold stable electron transmission in some strain ranges and that stretching can enhance the electron transmission around the Fermi level (EF) at the strains over 0.5 without fracture for a single-atom SiC chain and at the strains not over 0.5 for thicker SiC NWs. For each size of SiC NW, the tensile strain has a tiny effect on the number of device density of states (DDOSs) peaks but can increase the values. Freshly broken SiC NWs also show certain values of DDOSs around EF. The maximum DDOS increases significantly with the diameter, but interestingly, the DDOS at EF shows little difference among the three sizes of devices in the late stage of the stretching. Essentially, high electron transmission is influenced by high DDOSs and delocalized electronic states. Analysis of electron localization functions (ELFs) indicates that appropriate tensile stress can promote continuous electronic distributions to contribute electron transport, while excessively large stretching deformation of SiC NWs would split electronic distributions and consequently hinder the movement of electrons. These results provide strong theoretical support for the use of ultra-thin SiC NWs in nano-sensors for functional and controllable electronic devices. Full article
Show Figures

Figure 1

12 pages, 1458 KB  
Article
Metal-Multilayered Nanomechanical Cantilever Sensor for Detection of Molecular Adsorption
by Masaya Toda, Takahito Ono and Jun Okubo
Biosensors 2023, 13(6), 573; https://doi.org/10.3390/bios13060573 - 23 May 2023
Cited by 2 | Viewed by 1780
Abstract
A metal-multilayered nanomechanical cantilever sensor was proposed to reduce the temperature effect for highly sensitive gas molecular detection. The multilayer structure of the sensor reduces the bimetallic effect, allowing for the detection of differences in molecular adsorption properties on various metal surfaces with [...] Read more.
A metal-multilayered nanomechanical cantilever sensor was proposed to reduce the temperature effect for highly sensitive gas molecular detection. The multilayer structure of the sensor reduces the bimetallic effect, allowing for the detection of differences in molecular adsorption properties on various metal surfaces with higher sensitivity. Our results indicate that the sensor exhibits higher sensitivity to molecules with greater polarity under mixed conditions with nitrogen gas. We demonstrate that stress changes caused by differences in molecular adsorption on different metal surfaces can be detected and that this approach could be used to develop a gas sensor with selectivity for specific gas species. Full article
(This article belongs to the Special Issue Nanomechanical Sensors for Gas Detection)
Show Figures

Figure 1

17 pages, 4582 KB  
Article
Atomic Force Microscopy Probing and Analysis of Polyimide Supramolecular Systems for Sensor Devices
by Iuliana Stoica, Andreea Irina Barzic, Cristian Ursu, George Stoian, Elena Gabriela Hitruc and Ion Sava
Sensors 2023, 23(9), 4489; https://doi.org/10.3390/s23094489 - 5 May 2023
Cited by 2 | Viewed by 2509
Abstract
A series of polyimide supramolecular systems containing different amounts of azochromophore were tested as flexible supports that can be used in the fabrication of certain devices, such as sensors for monitoring the temperature changes, by coating them with conductive metals. That is why [...] Read more.
A series of polyimide supramolecular systems containing different amounts of azochromophore were tested as flexible supports that can be used in the fabrication of certain devices, such as sensors for monitoring the temperature changes, by coating them with conductive metals. That is why it is required to have good interfacial compatibility between the flexible substrate and the inorganic layer. The interface of the sensor elements must be designed in such a way as to improve the sensitivity, accuracy, and response time of the device. Laser irradiation is one of the commonly employed techniques used for surface adaptation by patterning polyimides to increase contact and enhance device reliability and signal transmission. In this context, this work highlights unreported aspects arising from the azo-polyimide morphology, local nanomechanical properties and wettability, which are impacting the compatibility with silver. The texture parameters indicate an improvement of the modulations’ quality arising after laser irradiation through the phase mask, increasing the bearing capacity, fluid retention, and surface anisotropy when the amount of the azochromophore increases. The force curve spectroscopy and wettability studies indicated that the modification of the polymer morphology and surface chemistry lead to a better interfacial interaction with the metal lines when the azo component and the polyamidic acid are in equimolar quantities. Full article
(This article belongs to the Special Issue Atomic Force Microscope (AFM) for Sensing, Imaging, and Measurement)
Show Figures

Figure 1

13 pages, 3788 KB  
Article
Polymer Ring–Flexure–Membrane Suspended Gate FET Gas Sensor: Design, Modelling and Simulation
by Joel Zacharias, Pramod Martha and V. Seena
Micromachines 2023, 14(5), 944; https://doi.org/10.3390/mi14050944 - 26 Apr 2023
Cited by 1 | Viewed by 2763
Abstract
This work reports the design, modelling, and simulation of a novel polymer MEMS gas sensor platform called a ring–flexure–membrane (RFM) suspended gate field effect transistor (SGFET). The sensor consists of a suspended polymer (SU-8) MEMS based RFM structure holding the gate of the [...] Read more.
This work reports the design, modelling, and simulation of a novel polymer MEMS gas sensor platform called a ring–flexure–membrane (RFM) suspended gate field effect transistor (SGFET). The sensor consists of a suspended polymer (SU-8) MEMS based RFM structure holding the gate of the SGFET with the gas sensing layer on top of the outer ring. During gas adsorption, the polymer ring–flexure–membrane architecture ensures a constant gate capacitance change throughout the gate area of the SGFET. This leads to efficient transduction of the gas adsorption-induced nanomechanical motion input to the change in the output current of the SGFET, thus improving the sensitivity. The sensor performance has been evaluated for sensing hydrogen gas using the finite element method (FEM) and TCAD simulation tools. The MEMS design and simulation of the RFM structure is carried out using CoventorWare 10.3, and the design, modelling, and simulation of the SGFET array is carried out using the Synopsis Sentaurus TCAD. A differential amplifier circuit using RFM-SGFET is designed and simulated in Cadence Virtuoso using the lookup table (LUT) of the RFM-SGFET. The differential amplifier exhibits a sensitivity of 2.8 mV/MPa for a gate bias of 3 V and a maximum detection range of up to 1% hydrogen gas concentration. This work also presents a detailed fabrication process integration plan to realize the RFM-SGFET sensor using a tailored self-aligned CMOS process adopting the surface micromachining process. Full article
(This article belongs to the Special Issue MEMS/NEMS Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

13 pages, 3478 KB  
Article
Measurement of Volatile Fatty Acids in Silage through Odors with Nanomechanical Sensors
by Kosuke Minami, Hisami Kobayashi, Masaaki Matoba, Yuko Kamiya, Subrata Maji, Takahiro Nemoto, Masanori Tohno, Ryoh Nakakubo and Genki Yoshikawa
Biosensors 2023, 13(2), 152; https://doi.org/10.3390/bios13020152 - 18 Jan 2023
Cited by 13 | Viewed by 4272
Abstract
The measurement of volatile fatty acids (VFAs) is of great importance in the fields of food and agriculture. There are various methods to measure VFAs, but most methods require specific equipment, making on-site measurements difficult. In this work, we demonstrate the measurements of [...] Read more.
The measurement of volatile fatty acids (VFAs) is of great importance in the fields of food and agriculture. There are various methods to measure VFAs, but most methods require specific equipment, making on-site measurements difficult. In this work, we demonstrate the measurements of VFAs in a model sample, silage, through its vapor using an array of nanomechanical sensors—Membrane-type Surface stress Sensors (MSS). Focusing on relatively slow desorption behaviors of VFAs predicted with the sorption kinetics of nanomechanical sensing and the dissociation nature of VFAs, the VFAs can be efficiently measured by using features extracted from the decay curves of the sensing response, resulting in sufficient discrimination of the silage samples. Since the present sensing system does not require expensive, bulky setup and pre-treatment of samples, it has a great potential for practical applications including on-site measurements. Full article
(This article belongs to the Special Issue Nanomechanical Sensors for Gas Detection)
Show Figures

Figure 1

11 pages, 1673 KB  
Article
Detection of Trace Amounts of Water in Organic Solvents by DNA-Based Nanomechanical Sensors
by Tomohiro Murata, Kosuke Minami, Tomohiko Yamazaki, Genki Yoshikawa and Katsuhiko Ariga
Biosensors 2022, 12(12), 1103; https://doi.org/10.3390/bios12121103 - 1 Dec 2022
Cited by 4 | Viewed by 3683
Abstract
The detection of trace amounts of water in organic solvents is of great importance in the field of chemistry and in the industry. Karl Fischer titration is known as a classic method and is widely used for detecting trace amounts of water; however, [...] Read more.
The detection of trace amounts of water in organic solvents is of great importance in the field of chemistry and in the industry. Karl Fischer titration is known as a classic method and is widely used for detecting trace amounts of water; however, it has some limitations in terms of rapid and direct detection because of its time-consuming sample preparation and specific equipment requirements. Here, we found that a DNA-based nanomechanical sensor exhibits high sensitivity and selectivity to water vapor, leading to the detection and quantification of trace amounts of water in organic solvents as low as 12 ppm in THF, with a ppb level of LoD through their vapors. Since the present method is simple and rapid, it can be an alternative technique to the conventional Karl Fischer titration. Full article
(This article belongs to the Special Issue Nanomechanical Sensors for Gas Detection)
Show Figures

Figure 1

11 pages, 2657 KB  
Article
Rapid Bacteria Detection from Patients’ Blood Bypassing Classical Bacterial Culturing
by François Huber, Hans Peter Lang, Stefanie Heller, Julia Anna Bielicki, Christoph Gerber, Ernst Meyer and Adrian Egli
Biosensors 2022, 12(11), 994; https://doi.org/10.3390/bios12110994 - 9 Nov 2022
Cited by 9 | Viewed by 4948
Abstract
Sepsis is a life-threatening condition mostly caused by a bacterial infection resulting in inflammatory reaction and organ dysfunction if not treated effectively. Rapid identification of the causing bacterial pathogen already in the early stage of bacteremia is therefore vital. Current technologies still rely [...] Read more.
Sepsis is a life-threatening condition mostly caused by a bacterial infection resulting in inflammatory reaction and organ dysfunction if not treated effectively. Rapid identification of the causing bacterial pathogen already in the early stage of bacteremia is therefore vital. Current technologies still rely on time-consuming procedures including bacterial culturing up to 72 h. Our approach is based on ultra-rapid and highly sensitive nanomechanical sensor arrays. In measurements we observe two clearly distinguishable distributions consisting of samples with bacteria and without bacteria respectively. Compressive surface stress indicates the presence of bacteria. For this proof-of-concept, we extracted total RNA from EDTA whole blood samples from patients with blood-culture-confirmed bacteremia, which is the reference standard in diagnostics. We determined the presence or absence of bacterial RNA in the sample through 16S-rRNA hybridization and species-specific probes using nanomechanical sensor arrays. Via both probes, we identified two clinically highly-relevant bacterial species i.e., Escherichia coli and Staphylococcus aureus down to an equivalent of 20 CFU per milliliter EDTA whole blood. The dynamic range of three orders of magnitude covers most clinical cases. We correctly identified all patient samples regarding the presence or absence of bacteria. We envision our technology as an important contribution to early and sensitive sepsis diagnosis directly from blood without requirement for cultivation. This would be a game changer in diagnostics, as no commercial PCR or POCT device currently exists who can do this. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Graphical abstract

17 pages, 4434 KB  
Article
Thermal Buckling and Postbuckling Behaviors of Couple Stress and Surface Energy-Enriched FG-CNTR Nanobeams
by Liulin Kong, Bo Zhang and Cheng Li
Symmetry 2022, 14(11), 2228; https://doi.org/10.3390/sym14112228 - 23 Oct 2022
Cited by 8 | Viewed by 1855
Abstract
Small-sized structural elements such as beams, plates, and shells are usually used as nanomechanical resonators, nanoscale mass sensors, nanoelectromechanical actuators, and nanoenergy harvesters. At the nanoscale, the structures usually possess a high surface area-to-bulk volume ratio, leading to the free energy related to [...] Read more.
Small-sized structural elements such as beams, plates, and shells are usually used as nanomechanical resonators, nanoscale mass sensors, nanoelectromechanical actuators, and nanoenergy harvesters. At the nanoscale, the structures usually possess a high surface area-to-bulk volume ratio, leading to the free energy related to surface atoms becoming considerable compared to that of the bulk part. Earlier reports indicated several physical reasons for size-dependent phenomena, e.g., nonlocal stress, surface energy, and couple stress. To provide an in-depth insight into the mechanical behavior of small-scale structures, size-dependent continuum models including two or more physical factors have attracted the attention of the academic community. This research analyzes the thermal buckling and postbuckling characteristics of functionally graded carbon nanotube-reinforced (FG-CNTR) nanobeams with a tri-parameter, nonlinear elastic foundation and subjected to a uniform temperature rise. Chen-Yao’s surface energy theory and Yang’s symmetrical couple stress theory are combined to capture two types of size effects in nanobeams. The postbuckling model is formulated based on the Euler–Bernoulli deformation hypothesis and Euler–Lagrange equation. Using a two-step perturbation technique, the related postbuckling equilibrium path is determined. In numerical analysis, the impacts of surface energy, couple stress, elastic foundation, boundary conditions, geometric factor, layout type, and volume fraction of CNTs on the thermal buckling and postbuckling behaviors of nanobeams are revealed. It is indicated that considering couple stress or surface energy can lead to a significant increase in the postbuckling stability of nanobeams compared to the case in which it is not considered. In addition, there is a reverse competition between couple stress or surface energy effects on the thermal buckling responses of nanobeams. As the temperature rise will cause the material elastic moduli softening, the thermal buckling load–deflection curves of nanobeams with the temperature-independent case are much higher than those with the temperature-dependent cases. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

34 pages, 7448 KB  
Review
Recent Advances in Nanomechanical Membrane-Type Surface Stress Sensors towards Artificial Olfaction
by Kosuke Minami, Gaku Imamura, Ryo Tamura, Kota Shiba and Genki Yoshikawa
Biosensors 2022, 12(9), 762; https://doi.org/10.3390/bios12090762 - 16 Sep 2022
Cited by 22 | Viewed by 4800
Abstract
Nanomechanical sensors have gained significant attention as powerful tools for detecting, distinguishing, and identifying target analytes, especially odors that are composed of a complex mixture of gaseous molecules. Nanomechanical sensors and their arrays are a promising platform for artificial olfaction in combination with [...] Read more.
Nanomechanical sensors have gained significant attention as powerful tools for detecting, distinguishing, and identifying target analytes, especially odors that are composed of a complex mixture of gaseous molecules. Nanomechanical sensors and their arrays are a promising platform for artificial olfaction in combination with data processing technologies, including machine learning techniques. This paper reviews the background of nanomechanical sensors, especially conventional cantilever-type sensors. Then, we focus on one of the optimized structures for static mode operation, a nanomechanical Membrane-type Surface stress Sensor (MSS), and discuss recent advances in MSS and their applications towards artificial olfaction. Full article
(This article belongs to the Special Issue Nanomechanical Sensors for Gas Detection)
Show Figures

Figure 1

2 pages, 159 KB  
Editorial
Nanomechanical Sensors for Gas Detection towards Artificial Olfaction
by Kosuke Minami
Biosensors 2022, 12(4), 256; https://doi.org/10.3390/bios12040256 - 18 Apr 2022
Cited by 2 | Viewed by 3285
Abstract
Humans, as well as other organisms, tend to recognize their surroundings by smells/odors [...] Full article
(This article belongs to the Special Issue Nanomechanical Sensors for Gas Detection)
12 pages, 3494 KB  
Article
A High-Sensitivity Resonant Magnetic Sensor Based on Graphene Nanomechanical Resonator
by Wenyao Liu, Wei Li, Chenxi Liu, Enbo Xing, Yanru Zhou, Lai Liu and Jun Tang
Micromachines 2022, 13(4), 628; https://doi.org/10.3390/mi13040628 - 16 Apr 2022
Viewed by 2555
Abstract
This paper presents a novel resonant magnetic sensor consisting of a graphene nanomechanical oscillator and magnetostrictive stress coupling structure, using Si/SiO2 substrate and Fe–Ga alloy, respectively. In this device, the deformation of the Fe–Ga alloy resulting from the external magnetic field changed [...] Read more.
This paper presents a novel resonant magnetic sensor consisting of a graphene nanomechanical oscillator and magnetostrictive stress coupling structure, using Si/SiO2 substrate and Fe–Ga alloy, respectively. In this device, the deformation of the Fe–Ga alloy resulting from the external magnetic field changed the surface tension of the graphene, resulting in a significant change in the resonance frequency of graphene. Using the finite element analysis, it could be found that the response of the resonance frequency revealed a good linear relationship with the external magnetic field (along the x-axis) in the range of the 1 to 1.6 mT. By optimizing the sizes of each component of the magnetic sensor, such as the thickness of the Si/SiO2 substrate and the Fe–Ga alloy, and the length of the graphene, the sensitivity could even reach 834 kHz/mT, which is three orders of magnitude higher than conventional resonant magnetic devices. This provides a new method for highly sensitive and miniaturized magnetic sensors. Full article
(This article belongs to the Special Issue MEMS Inertial Sensors)
Show Figures

Figure 1

Back to TopTop