Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = nanocrystalline alloy absorbents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 11357 KiB  
Article
Enhancement of Fracture Toughness of NiTi Alloy by Controlling Grain Size Gradient
by Kai Huang, Zhongzheng Deng and Hao Yin
Nanomaterials 2025, 15(2), 125; https://doi.org/10.3390/nano15020125 - 16 Jan 2025
Viewed by 977
Abstract
Fracture toughness is a critical indicator for the application of NiTi alloys in medical fields. We propose to enhance the fracture toughness of NiTi alloys by controlling the spatial grain size (GS) gradient. Utilizing rolling processes and heat treatment technology, three categories of [...] Read more.
Fracture toughness is a critical indicator for the application of NiTi alloys in medical fields. We propose to enhance the fracture toughness of NiTi alloys by controlling the spatial grain size (GS) gradient. Utilizing rolling processes and heat treatment technology, three categories of NiTi alloys with distinct spatial GS distributions were fabricated and subsequently examined through multi-field synchronous fracture tests. It is found that the one with a locally ultra-high GS gradient (20 nm−3.4 μm) has significantly enhanced fracture toughness, which is as high as 412% of that of the normally distributed nano-grains with an average GS of 8 nm and 178% of that of the coarse-grains with an average GS of 100 nm. Theoretical analysis reveals that in such a gradient structure, phase transition in the coarse-grained matrix greatly absorbs the surface energy of subcritical and stable propagation. Meanwhile, the locally non-uniform GS distribution leads to deviation and tortuosity of the crack path, increasing the critical fracture stress. Furthermore, the nanocrystalline clusters distributed in the form of network nodes reduce the stress intensity factor due to their higher elastic modulus compared to the coarse-grained matrix. This work provides guidance for developing new gradient nanostructured NiTi alloys with high fracture toughness. Full article
(This article belongs to the Special Issue Mechanical Properties and Applications for Nanostructured Alloys)
Show Figures

Figure 1

18 pages, 21002 KiB  
Article
Structure of Eutectic Al-Si Alloy Subjected to Compression Plasma Flow Impact
by Natallia Bibik, Alexander Metel, Nikolai Cherenda, Catherine Sotova, Valiantsin Astashynski, Anton Kuzmitski, Yury Melnik and Alexey Vereschaka
Metals 2024, 14(12), 1415; https://doi.org/10.3390/met14121415 - 10 Dec 2024
Viewed by 1147
Abstract
The structure and phase composition of a eutectic silumin surface layer modified by compression plasma flow impact were investigated in this work. Plasma flows were generated by a magnetoplasma compressor of a compact geometry in a nitrogen atmosphere. The energy density absorbed by [...] Read more.
The structure and phase composition of a eutectic silumin surface layer modified by compression plasma flow impact were investigated in this work. Plasma flows were generated by a magnetoplasma compressor of a compact geometry in a nitrogen atmosphere. The energy density absorbed by the surface layer was varied in the range of 10–35 J/cm2. X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy and X-ray microanalysis were used as investigation techniques. It was found that the plasma impact led to the formation of a molten layer with a thickness of up to 50 μm. The layer thickness increased with the growth of the absorbed energy density. Dissolution of the intermetallic compounds and primary silicon crystals occurred as a result. The modified surface layer contained grains of a supersaturated solid silicon solution in aluminum. Grains with sizes of 100–500 nm were separated by interlayers of hypereutectic silumin containing nanocrystalline silicon precipitates. The doping elements of the alloy were concentrated mainly in these interlayers. The plasma impact resulted in a 1.5-fold microhardness increase. Full article
Show Figures

Figure 1

12 pages, 3328 KiB  
Article
Enhanced Thermal Stability of Carbonyl Iron Nanocrystalline Microwave Absorbents by Pinning Grain Boundaries with SiBaFe Alloy Nanoparticles
by Yifan Xu, Zhihong Chen, Ziwen Fu, Yuchen Hu, Yunhao Luo, Wei Li and Jianguo Guan
Nanomaterials 2024, 14(10), 869; https://doi.org/10.3390/nano14100869 - 16 May 2024
Cited by 1 | Viewed by 1555
Abstract
Nanocrystalline carbonyl iron (CI) particles are promising microwave absorbents at elevated temperature, whereas their excessive grain boundary energy leads to the growth of nanograins and a deterioration in permeability. In this work, we report a strategy to enhance the thermal stability of the [...] Read more.
Nanocrystalline carbonyl iron (CI) particles are promising microwave absorbents at elevated temperature, whereas their excessive grain boundary energy leads to the growth of nanograins and a deterioration in permeability. In this work, we report a strategy to enhance the thermal stability of the grains and microwave absorption of CI particles by doping a SiBaFe alloy. Grain growth was effectively inhibited by the pinning effect of SiBaFe alloy nanoparticles at the grain boundaries. After heat treatment at 600 °C, the grain size of CI particles increased from ~10 nm to 85.1 nm, while that of CI/SiBaFe particles was only 32.0 nm; with the temperature rising to 700 °C, the grain size of CI particles sharply increased to 158.1 nm, while that of CI/SiBaFe particles was only 40.8 nm. Excellent stability in saturation magnetization and microwave absorption was also achieved in CI/SiBaFe particles. After heat treatment at 600 °C, the flaky CI/SiBaFe particles exhibited reflection loss below −10 dB over 7.01~10.11 GHz and a minimum of −14.92 dB when the thickness of their paraffin-based composite was 1.5 mm. We provided a low-cost and efficient kinetic strategy to stabilize the grain size in nanoscale and microwave absorption for nanocrystalline magnetic absorbents working at elevated temperature. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Nanomaterials: 2nd Edition)
Show Figures

Figure 1

17 pages, 2412 KiB  
Article
Synergetic Effect of FeTi in Enhancing the Hydrogen-Storage Kinetics of Nanocrystalline MgH2
by Roman Paramonov, Tony Spassov, Péter Nagy and Ádám Révész
Energies 2024, 17(4), 794; https://doi.org/10.3390/en17040794 - 7 Feb 2024
Cited by 4 | Viewed by 1808
Abstract
High-energy ball milling was applied to produce nanocrystalline MgH2-FeTi powder composites. In order to achieve a remarkable synergetic effect between the two materials, the amount of the FeTi catalyst was chosen to be 40 wt.%, 50 wt.% and 60 wt.%. The [...] Read more.
High-energy ball milling was applied to produce nanocrystalline MgH2-FeTi powder composites. In order to achieve a remarkable synergetic effect between the two materials, the amount of the FeTi catalyst was chosen to be 40 wt.%, 50 wt.% and 60 wt.%. The morphology and microstructure of the as-milled powders were characterized by scanning electron microscopy and X-ray diffraction, respectively. The evaluation of the diffraction profiles by the Convolutional Multiple Whole Profile fitting algorithm provided a detailed microstructural characterization of the coherently scattering α-MgH2 crystallites. Differential scanning calorimetry experiments revealed two overlapping endotherms corresponding to the dehydrogenation of metastable γ-MgH2 and stable α-MgH2 hydrides. Isothermal hydrogen-sorption experiments were carried out in a Sieverts-type apparatus. It was established that the MgH2-40 wt.% FeTi powder is capable of absorbing 5.8 wt.% hydrogen, while extraordinary absorption kinetics were observed for the MgH2-50 wt.% FeTi alloy, i.e., 3.3 wt.% H2 is absorbed after 100 s. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

12 pages, 2509 KiB  
Article
Deformation-Thermal Co-Induced Ferromagnetism of Austenite Nanocrystalline FeCoCr Powders for Strong Microwave Absorption
by Ziwen Fu, Zhihong Chen, Rui Wang, Hanyan Xiao, Jun Wang, Hao Yang, Yueting Shi, Wei Li and Jianguo Guan
Nanomaterials 2022, 12(13), 2263; https://doi.org/10.3390/nano12132263 - 30 Jun 2022
Cited by 5 | Viewed by 2220
Abstract
Nanocrystalline soft magnetic alloy powders are promising microwave absorbents since they can work at diverse frequencies and are stable in harsh environments. However, when the alloy powders are in austenite phase, they are out of the screen for microwave absorbents due to their [...] Read more.
Nanocrystalline soft magnetic alloy powders are promising microwave absorbents since they can work at diverse frequencies and are stable in harsh environments. However, when the alloy powders are in austenite phase, they are out of the screen for microwave absorbents due to their paramagnetic nature. In this work, we reported a strategy to enable strong microwave absorption in nanocrystalline austenite FeCoCr powders by deformation-thermal co-induced ferromagnetism via attritor ball milling and subsequent heat treatment. Results showed that significant austenite-to-martensite transformation in the FeCoCr powders was achieved during ball milling, along with the increase in shape anisotropy from spherical to flaky. The saturation magnetization followed parabolic kinetics during ball milling and rose from 1.43 to 109.92 emu/g after milling for 4 h, while it exhibited a rapid increase to 181.58 emu/g after subsequent heat treatment at 500 °C. A considerable increase in complex permeability and hence magnetic loss capability was obtained. With appropriate modulation of complex permittivity, the resultant absorbents showed a reflection loss of below −6 dB over 8~18 GHz at thickness of 1 mm and superior stability at 300 °C. Our strategy can broaden the material selection for microwave absorbents by involving Fe-based austenite alloys and simply recover the ferromagnetism of industrial products made without proper control of the crystalline phase. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Nanomaterials)
Show Figures

Figure 1

12 pages, 6729 KiB  
Article
Preparation and Electromagnetic Absorption Properties of Fe73.2Si16.2B6.6Nb3Cu1 Nanocrystalline Powder
by Bingwen Zhou, Mengnan Lv, Jiali Wu, Bin Ya, Linggang Meng, Lanqing Jianglin and Xingguo Zhang
Materials 2022, 15(7), 2558; https://doi.org/10.3390/ma15072558 - 31 Mar 2022
Cited by 11 | Viewed by 1971
Abstract
In order to decrease and control electromagnetic pollution, absorbing materials with better electromagnetic wave absorption properties should be developed. In this paper, a nanocrystalline alloy ribbon with the composition of Fe73.2Si16.2B6.6Nb3Cu1 was designed and [...] Read more.
In order to decrease and control electromagnetic pollution, absorbing materials with better electromagnetic wave absorption properties should be developed. In this paper, a nanocrystalline alloy ribbon with the composition of Fe73.2Si16.2B6.6Nb3Cu1 was designed and prepared. Nanocrystalline alloy powder was obtained by high-energy ball milling treatment. The effects of ball milling time on the soft magnetic properties, microstructure, morphology, and electromagnetic wave absorption properties of alloy powder were investigated. The results showed that, as time increased, α-(Fe, Si) gradually transformed into the amorphous phase, and the maximum saturation magnetization (Ms) reached 135.25 emu/g. The nanocrystalline alloy powder was flakelike, and the minimum average particle size of the powder reached 6.87 μm. The alloy powder obtained by ball milling for 12 h had the best electromagnetic absorption performance, and the minimum reflection loss RLmin at the frequency of 6.52 GHz reached −46.15 dB (matched thickness was 3.5 mm). As time increased, the best matched frequency moved to the high-frequency direction, and the best matched thickness decreased, while the maximum effective absorption bandwidth ΔfRL<−10 dB was 7.22 GHz (10.78–18 GHz). Full article
(This article belongs to the Special Issue Alloys and Composites: Structural and Functional Applications)
Show Figures

Figure 1

46 pages, 14707 KiB  
Review
Cluster-Related Phenomena in the Properties and Transformations of Transition Metal-Based Glassy Alloys
by Antal Lovas, Parthiban Ramasamy, Attila Szabó, Jozef Kováč, Ladislav Novák and Jürgen Eckert
Metals 2020, 10(8), 1025; https://doi.org/10.3390/met10081025 - 31 Jul 2020
Cited by 1 | Viewed by 4011
Abstract
A survey of the cluster formation tendency and mechanism in transition metal-based glassy alloys is made with an emphasis on their manifestation in various physical properties. The cluster formation is partially inherited from the supercooling of the melt. However, it also develops due [...] Read more.
A survey of the cluster formation tendency and mechanism in transition metal-based glassy alloys is made with an emphasis on their manifestation in various physical properties. The cluster formation is partially inherited from the supercooling of the melt. However, it also develops due to the interaction between dissolved hydrogen and the frozen glassy structure. The glassy state as “cluster assembly” is regarded as a structural background for the interpretation of several anomalous concentration dependences of thermal and magnetic properties in these glasses. We will focus on the manifestation of alloying effects, the relation between irreversible and reversible structural relaxations both in the high, and low temperature range (observed near to the glass transition or after low temperature storage). The development of the cluster assembly is the consequence of the co-existence of various bonding types between the alloy components. These are brought together in the melt, ensuring sufficient glass-forming ability. The nucleation mechanism of the amorphous-nanocrystalline transformation is also explained as a cluster phenomenon, which significantly contributes to the evolution of magnetic ultra-softness in FINEMET-type alloys. Finally, the role of the quenched-in cluster structure in the mechanism of reversible and irreversible H-absorption is discussed. Irreversible H-induced structural rearrangements can appear as microphase separation in multicomponent systems, governed by the affinity difference between the metallic components and the absorbed hydrogen. This kind of H-induced reordering is responsible for the “volume activation” of amorphous H-storage alloys and it also causes the gradual breakdown of storage capacity during cyclic absorption–desorption steps. This article mainly focuses on the cluster phenomena in Fe-based glasses because of its unique combination of high mechanical strength, strong corrosion resistance, good thermal stability and excellent magnetic properties. Full article
(This article belongs to the Special Issue Heterogeneities in Metallic Glasses)
Show Figures

Figure 1

Back to TopTop