Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = nanobrachytherapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4196 KB  
Article
Lignin-Based Nanocarrier for Simultaneous Delivery of 131I and SN-38 in the Combined Treatment of Solid Tumors by a Nanobrachytherapy Approach
by Aleksandar Vukadinović, Miloš Ognjanović, Milica Mijović, Bryce Warren, Slavica Erić and Željko Prijović
Pharmaceuticals 2025, 18(2), 177; https://doi.org/10.3390/ph18020177 - 27 Jan 2025
Cited by 1 | Viewed by 1583
Abstract
Background: The rapid rise in cancer incidence significantly augments efforts to improve cancer treatments. A multimodal approach in the nanobrachytherapy of solid tumors is one of the promising methods under investigation. This study presents a novel biocompatible lignin-based nanomaterial, loaded with cytostatic agent [...] Read more.
Background: The rapid rise in cancer incidence significantly augments efforts to improve cancer treatments. A multimodal approach in the nanobrachytherapy of solid tumors is one of the promising methods under investigation. This study presents a novel biocompatible lignin-based nanomaterial, loaded with cytostatic agent SN-38 and radionuclide 131I, for simultaneous radiation and chemotherapy of solid tumors by a nanobrachytherapy approach. Method: Nanoparticles of ~100 nm in size, composed of lignin alone or loaded with 10% (m/m) of SN-38 (SN-38@lignin), were synthesized using a bottom-up approach and characterized. Subsequent radiolabeling of the nanoparticles by 131I produced 131I-lignin and 131I-SN-38@lignin. Their antitumor efficiency was tested against luciferase-expressing 4T1 mouse breast cancer xenografts of ~100 mm3 size on Balb/c mice. Results: An intratumoral injection of 1.85 MBq of 131I-lignin was retained within the tumor and achieved a moderate twofold decrease in tumor size compared to the control group. Injecting SN-38@lignin containing 25 µg of SN-38 decreased tumor size 3.5-fold. The therapy using the same doses of 131I-SN-38@lignin produced the most potent antitumor effect, with tumors being 6-fold smaller and having extensive intratumoral necrosis, all of it without signs of systemic toxicity. Conclusions: These results support the intratumoral delivery of lignin-based nanomaterial carrying radioisotopes and camptothecins for effective multimodal anticancer therapy. Full article
(This article belongs to the Section Radiopharmaceutical Sciences)
Show Figures

Figure 1

17 pages, 2656 KB  
Article
161Terbium-Labeled Gold Nanoparticles as Nanoscale Brachytherapy Agents Against Breast Cancer
by Evangelia-Alexandra Salvanou, Adamantia Apostolopoulou, Stavros Xanthopoulos, Stuart Koelewijn, Philippe van Overeem, Gautier Laurent, Rana Bazzi, Franck Denat, Stéphane Roux and Penelope Bouziotis
Materials 2025, 18(2), 248; https://doi.org/10.3390/ma18020248 - 8 Jan 2025
Viewed by 2181
Abstract
Due to their intriguing emission profile, Terbium-161 (161Tb) radiopharmaceuticals seem to bring significant advancement in theranostic applications to cancer treatment. The combination of 161Tb with nanoscale brachytherapy as an approach for cancer treatment is particularly advantageous and promising. Herein, we [...] Read more.
Due to their intriguing emission profile, Terbium-161 (161Tb) radiopharmaceuticals seem to bring significant advancement in theranostic applications to cancer treatment. The combination of 161Tb with nanoscale brachytherapy as an approach for cancer treatment is particularly advantageous and promising. Herein, we propose the application of a hybrid nanosystem comprising gold decorated (Au@TADOTAGA) iron oxide nanoflowers as a form of injectable nanobrachytherapy for the local treatment of breast cancer. More specifically, Au@TADOTAGA and NFAu@TADOTAGA NPs were efficiently radiolabeled with 161Tb, and their in vitro stability was assessed up to 21 d post-radiolabeling. Furthermore, their cytotoxic profile against 4T1 breast cancer cells was evaluated, and their ex vivo biodistribution characteristics were revealed after intratumoral injection in the same animal model. The enhanced retention at the tumor site urged us to evaluate the therapeutic effect of the [161Tb]Tb-NFAu@TADOTAGA nanosystem after intratumoral administration to 4T1-tumor-bearing mice, over a period of 24 days. Three different therapeutic protocols were performed in order to identify which therapeutic approach would offer the optimum results and identify the proposed nanosystem as a promising nanoscale brachytherapy agent. Full article
(This article belongs to the Special Issue Νanoparticles for Biomedical Applications)
Show Figures

Figure 1

37 pages, 9132 KB  
Article
177Lu-Labeled Iron Oxide Nanoparticles Functionalized with Doxorubicin and Bevacizumab as Nanobrachytherapy Agents against Breast Cancer
by Evangelia-Alexandra Salvanou, Argiris Kolokithas-Ntoukas, Danai Prokopiou, Maria Theodosiou, Eleni Efthimiadou, Przemysław Koźmiński, Stavros Xanthopoulos, Konstantinos Avgoustakis and Penelope Bouziotis
Molecules 2024, 29(5), 1030; https://doi.org/10.3390/molecules29051030 - 27 Feb 2024
Cited by 11 | Viewed by 3121
Abstract
The use of conventional methods for the treatment of cancer, such as chemotherapy or radiotherapy, and approaches such as brachytherapy in conjunction with the unique properties of nanoparticles could enable the development of novel theranostic agents. The aim of our current study was [...] Read more.
The use of conventional methods for the treatment of cancer, such as chemotherapy or radiotherapy, and approaches such as brachytherapy in conjunction with the unique properties of nanoparticles could enable the development of novel theranostic agents. The aim of our current study was to evaluate the potential of iron oxide nanoparticles, coated with alginic acid and polyethylene glycol, functionalized with the chemotherapeutic agent doxorubicin and the monoclonal antibody bevacizumab, to serve as a nanoradiopharmaceutical agent against breast cancer. Direct radiolabeling with the therapeutic isotope Lutetium-177 (177Lu) resulted in an additional therapeutic effect. Functionalization was accomplished at high percentages and radiolabeling was robust. The high cytotoxic effect of our radiolabeled and non-radiolabeled nanostructures was proven in vitro against five different breast cancer cell lines. The ex vivo biodistribution in tumor-bearing mice was investigated with three different ways of administration. The intratumoral administration of our functionalized radionanoconjugates showed high tumor accumulation and retention at the tumor site. Finally, our therapeutic efficacy study performed over a 50-day period against an aggressive triple-negative breast cancer cell line (4T1) demonstrated enhanced tumor growth retention, thus identifying the developed nanoparticles as a promising nanobrachytherapy agent against breast cancer. Full article
(This article belongs to the Special Issue Novel Targeted Radiopharmaceuticals for Diagnosis and Therapy)
Show Figures

Graphical abstract

17 pages, 10055 KB  
Article
Synthesis, Characterization, and Therapeutic Efficacy of 177Lu-DMSA@SPIONs in Nanobrachytherapy of Solid Tumors
by Dragana Stanković, Magdalena Radović, Aljoša Stanković, Marija Mirković, Aleksandar Vukadinović, Milica Mijović, Zorana Milanović, Miloš Ognjanović, Drina Janković, Bratislav Antić, Sanja Vranješ-Đurić, Miroslav Savić and Željko Prijović
Pharmaceutics 2023, 15(7), 1943; https://doi.org/10.3390/pharmaceutics15071943 - 13 Jul 2023
Cited by 9 | Viewed by 3018
Abstract
As an alternative to classical brachytherapy, intratumoral injection of radionuclide-labeled nanoparticles (nanobrachytherapy, NBT) has been investigated as a superior delivery method over an intravenous route for radionuclide therapy of solid tumors. We created superparamagnetic iron oxide nanoparticles (SPIONs) coated with meso-1,2-dimercaptosuccinic acid (DMSA) [...] Read more.
As an alternative to classical brachytherapy, intratumoral injection of radionuclide-labeled nanoparticles (nanobrachytherapy, NBT) has been investigated as a superior delivery method over an intravenous route for radionuclide therapy of solid tumors. We created superparamagnetic iron oxide nanoparticles (SPIONs) coated with meso-1,2-dimercaptosuccinic acid (DMSA) and radiolabeled with Lutetium-177 (177Lu), generating 177Lu-DMSA@SPIONs as a potential antitumor agent for nanobrachytherapy. Efficient radiolabeling of DMSA@SPIONS by 177Lu resulted in a stable bond with minimal leakage in vitro. After an intratumoral injection to mouse colorectal CT-26 or breast 4T1 subcutaneous tumors, the nanoparticles remained well localized at the injection site for weeks, with limited leakage. The dose of 3.70 MBq/100 µg/50 µL of 177Lu-DMSA@SPIONs applied intratumorally resulted in a high therapeutic efficacy, without signs of general toxicity. A decreased dose of 1.85 MBq/100 µg/50 µL still retained therapeutic efficacy, while an increased dose of 9.25 MBq/100 µg/50 µL did not significantly benefit the therapy. Histopathology analysis revealed that the 177Lu-DMSA@SPIONs act within a limited range around the injection site, which explains the good therapeutic efficacy achieved by a single administration of a relatively low dose without the need for increased or repeated dosing. Overall, 177Lu-DMSA@SPIONs are safe and potent agents suitable for intra-tumoral administration for localized tumor radionuclide therapy. Full article
(This article belongs to the Topic Innovative Radiation Therapies)
Show Figures

Figure 1

13 pages, 2719 KB  
Article
Synthesis, In Vitro Testing, and Biodistribution of Surfactant-Free Radioactive Nanoparticles for Cancer Treatment
by Carla Daruich de Souza, Angelica Bueno Barbezan, Wilmmer Alexander Arcos Rosero, Sofia Nascimento dos Santos, Diego Vergaças de Sousa Carvalho, Carlos Alberto Zeituni, Emerson Soares Bernardes, Daniel Perez Vieira, Patrick Jack Spencer, Martha Simões Ribeiro and Maria Elisa Chuery Martins Rostelato
Nanomaterials 2022, 12(2), 187; https://doi.org/10.3390/nano12020187 - 6 Jan 2022
Cited by 6 | Viewed by 2552
Abstract
New forms of cancer treatment, which are effective, have simple manufacturing processes, and easily transportable, are of the utmost necessity. In this work, a methodology for the synthesis of radioactive Gold-198 nanoparticles without the use of surfactants was described. The nuclear activated Gold-198 [...] Read more.
New forms of cancer treatment, which are effective, have simple manufacturing processes, and easily transportable, are of the utmost necessity. In this work, a methodology for the synthesis of radioactive Gold-198 nanoparticles without the use of surfactants was described. The nuclear activated Gold-198 foils were transformed into H198AuCl4 by dissolution using aqua regia, following a set of steps in a specially designed leak-tight setup. Gold-198 nanoparticles were synthesized using a citrate reduction stabilized with PEG. In addition, TEM results for the non-radioactive product presented an average size of 11.0 nm. The DLS and results for the radioactive 198AuNPs presented an average size of 8.7 nm. Moreover, the DLS results for the PEG-198AuNPs presented a 32.6 nm average size. Cell line tests showed no cytotoxic effect in any period and the concentrations were evaluated. Furthermore, in vivo testing showed a high biological uptake in the tumor and a cancer growth arrest. Full article
(This article belongs to the Special Issue Surfactant-Free Syntheses of Precious Metal Nanoparticles)
Show Figures

Graphical abstract

15 pages, 1341 KB  
Article
Trastuzumab-Modified Gold Nanoparticles Labeled with 211At as a Prospective Tool for Local Treatment of HER2-Positive Breast Cancer
by Łucja Dziawer, Agnieszka Majkowska-Pilip, Damian Gaweł, Marlena Godlewska, Marek Pruszyński, Jerzy Jastrzębski, Bogdan Wąs and Aleksander Bilewicz
Nanomaterials 2019, 9(4), 632; https://doi.org/10.3390/nano9040632 - 18 Apr 2019
Cited by 90 | Viewed by 8458
Abstract
Highly localized radiotherapy with radionuclides is a commonly used treatment modality for patients with unresectable solid tumors. Herein, we propose a novel α-nanobrachytherapy approach for selective therapy of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. This uses local intratumoral injection of [...] Read more.
Highly localized radiotherapy with radionuclides is a commonly used treatment modality for patients with unresectable solid tumors. Herein, we propose a novel α-nanobrachytherapy approach for selective therapy of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. This uses local intratumoral injection of 5-nm-diameter gold nanoparticles (AuNPs) labeled with an α-emitter (211At), modified with polyethylene glycol (PEG) chains and attached to HER2-specific monoclonal antibody (trastuzumab). The size, shape, morphology, and zeta potential of the 5 nm synthesized AuNPs were characterized by TEM (Transmission Electron Microscopy) and DLS (Dynamic Light Scattering) techniques. The gold nanoparticle surface was modified by PEG and subsequently used for antibody immobilization. Utilizing the high affinity of gold for heavy halogens, the bioconjugate was labelled with 211At obtained by α irradiation of the bismuth target. The labeling yield of 211At was greater than 99%. 211At bioconjugates were stable in human serum. Additionally, in vitro biological studies indicated that 211At-AuNP-PEG-trastuzumab exhibited higher affinity and cytotoxicity towards the HER2-overexpressing human ovarian SKOV-3 cell line than unmodified nanoparticles. Confocal and dark field microscopy studies revealed that 211At-AuNP-PEG-trastuzumab was effectively internalized and deposited near the nucleus. These findings show promising potential for the 211At-AuNP-PEG-trastuzumab radiobioconjugate as a perspective therapeutic agent in the treatment of unresectable solid cancers expressing HER2 receptors. Full article
(This article belongs to the Special Issue Nanocarriers and Targeted Drug Delivery)
Show Figures

Graphical abstract

Back to TopTop