Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = nano-spacer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3123 KB  
Article
Giant Chemo-Resistive Response of POSS Nano-Spacers in PS- and PMMA-Based Quantum Resistive Vapour Sensors (vQRS) Used for Cancer Biomarker Analysis
by Abhishek Sachan, Mickaël Castro, Veena Choudhary and Jean-François Feller
Chemosensors 2025, 13(7), 226; https://doi.org/10.3390/chemosensors13070226 - 21 Jun 2025
Viewed by 696
Abstract
The detection of volatile organic compound (VOC) biomarkers from the volatolome for the anticipated diagnosis of severe diseases such as cancers is made difficult due to the presence of high quantities of H2O in the collected samples. It has been shown [...] Read more.
The detection of volatile organic compound (VOC) biomarkers from the volatolome for the anticipated diagnosis of severe diseases such as cancers is made difficult due to the presence of high quantities of H2O in the collected samples. It has been shown that water molecules tend to compete or combine themselves with analytes, which requires either their removal or the development of more sensitive and discriminant sensors. In this later prospect, a positive effect of poly(hedral oligomeric silsesquioxanes) (POSS) is sought out to enhance the sensitivity of carbon nanotube-based quantum resistive vapour sensors (vQRS). POSS, once copolymerized with methyl methacrylate or styrene, can be used as nano-spacers amplifying the disconnection of the nano-junctions due to swelling of the polymer upon the diffusion of VOC. The amplitude of this phenomenon, which is at the origin of the chemo-resistive behaviour of vQRS, was compared with that of homologue transducers made of poly(styrene) (PS) and poly(methyl methacrylate) (PMMA)-coated carbon nanotube (CNT) random networks. The presence of POSS in PS-based sensors has enhanced their sensitivity by 213 times for toluene, by 268 times for acetone, by 4 times for ethanol, and by 187 times for cyclohexane. Similarly, the presence of POSS in PMMA chains increases the sensitivity of sensors to cyclohexane by 10 times, to ethanol by 45 times, to toluene by 244 times, and to acetone and butanone by 4 times. All transducers were made by spray layer by layer (sLbL) to obtain a hierarchically structured conducting architecture. The transducers’ surface was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) to observe the CNT coating and dispersion level in the matrix. All sensors were tested with twenty-one VOC part of lung and skin cancer biomarkers by using a dynamic vapour analysis (DVA). The vQRS based on POSS copolymers demonstrated much larger chemo-resistive responses (AR) than the sensors based only on pure polymers and were found to be very selective towards cyclohexane and hexene-1. The PMMA-co-POSS/CNT sensor was able to detect down to 12 ppm of VOC with a very high signal-to-noise ratio (SNR) and to discriminate six VOC among them all with a PCA (principal component analysis) projection. Full article
Show Figures

Figure 1

26 pages, 4909 KB  
Article
Ionic and Non-Ionic Counterparts Based on Bis(Uracilyl)Alkane Moiety with Highest Selectivity Towards Acetylcholinesterase for Protection Against Organophosphate Poisoning and Treating Alzheimer’s Disease
by Irina V. Zueva, Liliya F. Saifina, Liliya M. Gubaidullina, Marina M. Shulaeva, Alexandra D. Kharlamova, Oksana A. Lenina, Grigory P. Belyaev, Albina Y. Ziganshina, Shan Gao, Wenjian Tang, Vyacheslav E. Semenov and Konstantin A. Petrov
Int. J. Mol. Sci. 2025, 26(8), 3759; https://doi.org/10.3390/ijms26083759 - 16 Apr 2025
Viewed by 717
Abstract
A series of bisuracils, in which uracil and 3,6-dimethyluracil moieties were bridged with a polymethylene spacer, and the uracil moiety contained a pentamethylene radical with ionic and non-ionic aminobenzyl groups, were synthesised. These bisuracils have been identified as cholinesterase inhibitors with exceptional selectivity [...] Read more.
A series of bisuracils, in which uracil and 3,6-dimethyluracil moieties were bridged with a polymethylene spacer, and the uracil moiety contained a pentamethylene radical with ionic and non-ionic aminobenzyl groups, were synthesised. These bisuracils have been identified as cholinesterase inhibitors with exceptional selectivity for acetylcholinesterase (AChE) over butyrylcholinesterase (BuChE). These bisuracils, which have been identified as highly effective AChE inhibitors, demonstrated activity at nano- and sub-nanomolar concentrations, with exceptional selectivity for AChE over BuChE. In kinetic studies of lead bisuracils 2b and 3c, both compounds exhibited mixed-type inhibition against AChE and BuChE. Additionally, molecular dynamic simulations demonstrated robust and stable interactions of 2b and 3c with the binding sites of their target. Bisuracil 2b showed significant potential for protection of AChE from irreversible inhibition by paraoxon; the most effective dose of 0.01 mg/kg was shown to reduce mortality in paraoxon-poisoned mice. Bisuracil 3c effectively inhibited brain AChE activity, reversing scopolamine-induced amnesia in mice at a dose of 5 mg/kg, which indicates its potential for cognitive enhancement. These findings position ionic bisuracils as promising prophylactics against organophosphate poisoning and non-ionic bisuracils as viable candidates for Alzheimer’s disease therapeutics. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

15 pages, 3309 KB  
Article
Emission Enhancement of ZnO Thin Films in Ultraviolet Wavelength Region Using Au Nano-Hemisphere on Al Mirror Structures
by Shogo Tokimori, Kai Funato, Kenji Wada, Tetsuya Matsuyama and Koichi Okamoto
Nanomaterials 2025, 15(5), 400; https://doi.org/10.3390/nano15050400 - 6 Mar 2025
Cited by 2 | Viewed by 1138
Abstract
Using a heterogeneous metal Nano Hemisphere on Mirror (NHoM) structure, composed of an Al2O3 thin film and Au nano-hemispheres formed on a thick Al film, we successfully generated two distinct surface plasmon resonance (SPR) peaks: one in the ultraviolet (UV) [...] Read more.
Using a heterogeneous metal Nano Hemisphere on Mirror (NHoM) structure, composed of an Al2O3 thin film and Au nano-hemispheres formed on a thick Al film, we successfully generated two distinct surface plasmon resonance (SPR) peaks: one in the ultraviolet (UV) wavelength range below 400 nm and another in the visible range between 600 and 700 nm. This NHoM structure can be fabricated through a straightforward process involving deposition, sputtering, and annealing, enabling rapid, large-area formation. By adjusting the thickness of the Al2O3 spacer layer in the NHoM structure, we precisely controlled the localized surface plasmon resonance (LSPR) wavelength, spanning a wide range from the UV to the visible spectrum. Through this tuning, we enhanced the band-edge UV emission of the ZnO thin film by a factor of 35. Temperature-dependent measurements of emission intensity revealed that the NHoM structure increased the internal quantum efficiency (IQE) of the ZnO thin film from 8% to 19%. The heterometallic NHoM structure proposed in this study enables wide-ranging control of SPR wavelengths and demonstrates significant potential for applications in enhancing luminescence in the deep ultraviolet (DUV) region, where luminescence efficiency is typically low. Full article
Show Figures

Figure 1

15 pages, 3791 KB  
Article
Two-Dimensional Hydration and Triple-Interlayer Lattice Structures in Sulfate-Intercalated Graphene Oxide Nanosheets
by Hae Jun Ahn, Sun Jie Kim, Hyun Goo Kim, Youngho Jee and Seung Hun Huh
Minerals 2024, 14(10), 1030; https://doi.org/10.3390/min14101030 - 14 Oct 2024
Cited by 1 | Viewed by 1306
Abstract
Sulfate anions (SO42−) are pivotal in various scientific and industrial domains, including mineralogy, biology, and materials science. While extensive research has elucidated sulfate hydration in bulk solids, liquids, and gaseous clusters, a significant gap persists in understanding sulfate interactions within [...] Read more.
Sulfate anions (SO42−) are pivotal in various scientific and industrial domains, including mineralogy, biology, and materials science. While extensive research has elucidated sulfate hydration in bulk solids, liquids, and gaseous clusters, a significant gap persists in understanding sulfate interactions within two-dimensional materials, particularly graphene oxide (GO) nanosheets. This study investigates the intricate hydration phenomena and novel triple-interlayer lattice configurations that emerge from sulfate intercalation in GO nanosheets. Utilizing a straightforward methodology for obtaining precise X-ray measurements of confined nanospaces, we analyzed the temperature-dependent behavior and structural characteristics of these systems. Our findings reveal how sulfate ions modulate interlayer spacing, the dynamics of GO layers, and phase transitions. This research offers an atomic-scale understanding of hybrid hydration behaviors within confined SO4-H2O nano-environments, advancing our knowledge of sulfate interactions in two-dimensional materials. Full article
(This article belongs to the Special Issue Graphite Minerals and Graphene, 2nd Edition)
Show Figures

Figure 1

12 pages, 3670 KB  
Article
Tunable Plasmon Resonance in Silver Nanodisk-on-Mirror Structures and Scattering Enhancement by Annealing
by Ryohei Hatsuoka, Kota Yamasaki, Kenji Wada, Tetsuya Matsuyama and Koichi Okamoto
Nanomaterials 2024, 14(19), 1559; https://doi.org/10.3390/nano14191559 - 26 Sep 2024
Cited by 4 | Viewed by 1862
Abstract
In this study, we evaluated the surface plasmon characteristics of periodic silver nanodisk structures fabricated on a dielectric thin-film spacer layer on a Ag mirror substrate (NanoDisk on Mirror: NDoM) through finite difference time domain (FDTD) simulations and experiments involving actual sample fabrication. [...] Read more.
In this study, we evaluated the surface plasmon characteristics of periodic silver nanodisk structures fabricated on a dielectric thin-film spacer layer on a Ag mirror substrate (NanoDisk on Mirror: NDoM) through finite difference time domain (FDTD) simulations and experiments involving actual sample fabrication. Through FDTD simulations, it was confirmed that the NDoM structure exhibits two sharp peaks in the visible range, and by adjusting the thickness of the spacer layer and the size of the nanodisk structure, sharp peaks can be obtained across the entire visible range. Additionally, we fabricated the NDoM structure using electron beam lithography (EBL) and experimentally confirmed that the obtained peaks matched the simulation results. Furthermore, we discovered that applying annealing at an appropriate temperature to the fabricated structure enables the adjustment of the resonance peak wavelength and enhances the scattering intensity by approximately five times. This enhancement is believed to result from changes in the shape and size of the nanodisk structure, as well as a reduction in grain boundaries in the metal crystal due to annealing. These results have the potential to contribute to technological advancements in various application fields, such as optical sensing and emission enhancement. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Sensing and Detection (2nd Edition))
Show Figures

Figure 1

18 pages, 4409 KB  
Review
Supramolecular Chemistry of Polymer-Based Molecular Tweezers: A Minireview
by Bahareh Vafakish and Lee D. Wilson
Surfaces 2024, 7(3), 752-769; https://doi.org/10.3390/surfaces7030049 - 14 Sep 2024
Cited by 1 | Viewed by 1610
Abstract
Polymer-based molecular tweezers have emerged as a prominent research area due to their enhanced ability to form host–guest complexes, driven by advancements in their design and synthesis. The impact of the spacer structure on the tweezers is predominant. They can be rigid, flexible, [...] Read more.
Polymer-based molecular tweezers have emerged as a prominent research area due to their enhanced ability to form host–guest complexes, driven by advancements in their design and synthesis. The impact of the spacer structure on the tweezers is predominant. They can be rigid, flexible, and stimuli-responsive. Herein, a new generation of molecular tweezers is introduced as polymer-based molecular tweezers. The integration of molecular tweezers onto biopolymers has significantly expanded their potential applications, making them promising candidates, especially in drug delivery, owing to their biocompatibility, adaptive structural features, and versatile interaction capabilities. The unique structure of polymer-based molecular tweezers, particularly when integrated with biopolymers, creates a unique nano-environment that enhances their interaction with guest molecules. This minireview focuses on the synthesis and applications of polymer-based molecular tweezers and examines how the incorporation of various spacers affects their binding affinity and specificity. These features highlight the advancement of these polymer-based systems, emphasizing their potential applications, particularly in drug delivery, water treatment technology, and future research opportunities. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Graphical abstract

15 pages, 3589 KB  
Article
Numerical Investigation of Localized Surface Plasmons in Gold Nano-Ridge Dimer-on-Mirror Structures
by Mohamed El Ghafiani, Adnane Noual, Madiha Amrani, Mohammed Moutaouekkil and El Houssaine El Boudouti
Photonics 2024, 11(9), 817; https://doi.org/10.3390/photonics11090817 - 30 Aug 2024
Cited by 1 | Viewed by 1644
Abstract
The study of localized surface plasmons (LSPs) in nanoscale structures is an essential step towards identifying optimal plasmonic modes that can facilitate robust optomechanical coupling and deepen our understanding of light–matter interactions at the nanoscale. This paper investigates, numerically, using the finite element [...] Read more.
The study of localized surface plasmons (LSPs) in nanoscale structures is an essential step towards identifying optimal plasmonic modes that can facilitate robust optomechanical coupling and deepen our understanding of light–matter interactions at the nanoscale. This paper investigates, numerically, using the finite element method, LSP modes in a design comprising two coupled nano-ridges deposited on a gold layer with an interposing polymer spacer layer. Such a structure, usually referred to as a particle-on-mirror structure, shows exquisite optical properties at the nanoscale. We first examine the LSP modes of a single nano-ridge through the analysis of its scattering cross-section in the visible and infrared ranges. To enhance the plasmonic response, a thin polymer layer is placed at the middle of the ridge, which introduces additional LSP modes confined within the former. Then, we extend the analysis to the dimer configuration, which exhibits more complex and enhanced plasmonic behavior compared to a single nano-ridge. In particular, the dimer configuration yields LSP resonances with a quality factor enhancement of approximately threefold relative to a single nano-ridge. Furthermore, the presence of the polymer layer within the ridges significantly improves plasmon field localization and the quality factor. These findings underscore the potential of nano-ridge-based structures in advancing optomechanical coupling and offering valuable insights for the development of high-performance acousto-plasmonic devices. In particular, the proposed device could help significantly improve the design of nano-acousto-optic modulators, operating in the visible or in the near-infrared ranges, that require an enhanced light–phonon coupling rate. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Nonlinear Photonics)
Show Figures

Figure 1

17 pages, 3956 KB  
Article
Investigating the Free Volumes as Nanospaces in Human Stratum Corneum Lipid Bilayers Using Positron Annihilation Lifetime Spectroscopy (PALS)
by Krystyna Mojsiewicz-Pieńkowska, Dagmara Bazar, Jacek Filipecki and Kordian Chamerski
Int. J. Mol. Sci. 2024, 25(12), 6472; https://doi.org/10.3390/ijms25126472 - 12 Jun 2024
Cited by 1 | Viewed by 1616
Abstract
This work is the first one that provides not only evidence for the existence of free volumes in the human stratum corneum but also focuses on comparing these experimental data, obtained through the unique positron annihilation lifetime spectroscopy (PALS) method, with theoretical values [...] Read more.
This work is the first one that provides not only evidence for the existence of free volumes in the human stratum corneum but also focuses on comparing these experimental data, obtained through the unique positron annihilation lifetime spectroscopy (PALS) method, with theoretical values published in earlier works. The mean free volume of 0.269 nm was slightly lower than the theoretical value of 0.4 nm. The lifetime τ3 (1.83 ns with a coefficient of variation CV of 3.21%) is dependent on the size of open sites in the skin. This information was used to calculate the free volume radius R (0.269 nm with CV 2.14%), free volume size Vf (0.081 nm3 with CV 4.69%), and the intensity I3 (9.01% with CV 10.94%) to estimate the relative fractional free volume fv (1.32 a.u. with CV 13.68%) in human skin ex vivo. The relation between the lifetime of o-Ps (τ3) and the radius of free volume (R) was formulated using the Tao–Eldrup model, which assumes spherical voids and applies to sites with radii smaller than 1 nm. The results indicate that PALS is a powerful tool for confirming the existence of free volumes and determining their size. The studies also focused on describing the probable locations of these nanospaces in SC lipid bilayers. According to the theory, these play an essential role in dynamic processes in biological systems, including the diffusion of low-molecular-weight hydrophobic and moderately hydrophilic molecules. The mechanism of their formation has been determined by the molecular dynamics of the lipid chains. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

29 pages, 49336 KB  
Article
Multimodal Spectroscopy Assays for Advanced Nano-Optics Approaches by Tuning Nano-Tool Surface Chemistry and Metal-Enhanced Fluorescence
by Marcelo R. Romero, Alicia V. Veglia, Maria Valeria Amé and Angel Guillermo Bracamonte
Crystals 2024, 14(4), 338; https://doi.org/10.3390/cryst14040338 - 31 Mar 2024
Cited by 3 | Viewed by 1704
Abstract
In this research work, different chemical modifications were applied to gold nanoparticles and their use in enhanced non-classical light emitters based on metal-enhanced fluorescence (MEF) was evaluated. In order to achieve this, gold core–shell nanoparticles with silica shells were modified via multilayered addition [...] Read more.
In this research work, different chemical modifications were applied to gold nanoparticles and their use in enhanced non-classical light emitters based on metal-enhanced fluorescence (MEF) was evaluated. In order to achieve this, gold core–shell nanoparticles with silica shells were modified via multilayered addition and the incorporation of a covalently linked laser dye to develop MEF. Their inter-nanoparticle interactions were evaluated by using additional silica shell multilayers and modified cyclodextrin macrocycles. In this manner, the sizes and chemical surface interactions on the multilayered nanoarchitectures were varied. These optical active nanoplatforms led to the development of different nanoassembly sizes and luminescence behaviors. Therefore, the interactions and nanoassembly properties were evaluated by using various spectroscopic and nanoimaging techniques. Highly dispersible gold core–shell nanoparticles with diameters of 50–60 nm showed improved colloidal dispersion that led to single ultraluminescent gold core–shell nanoparticles with MEF. Then, the addition of variable silica lengths produced increased interactions and consequent nanoaggregation. However, the silanized nanoparticles were easily dispersible after agitation or sonication. Thus, their sizes were proportional only to the diameter and the van de Waals interaction did not affect their sizes in bulk. Then, the covalent linking of different concentrations of modified cyclodextrins was applied to the chemical surfaces by incorporating additional hydroxyl groups from the glucose monomeric unities of cyclodextrins. In this manner, variable larger-sized and inter-branched grafted gold core–shell silica nanoparticles were generated. The ultraluminescent properties were conserved due to the non-optical activity of the cyclodextrins. However, they generated enhanced ultraluminescence phenomena. Laser fluorescence microscopy nanoimaging showed enhanced resolutions in comparison to non-grafted supramolecular gold core–shell nanoparticles. The differences in their interactions and the sizes of the nanoassemblies were explained by their single nanoparticle diameters and the interacting chemical groups on their nanosurfaces. While the varied luminescence emissions generated were tuned by plasmonics, enhanced plasmonic phenomena and light scattering properties were seen depending on the type of nanoassembly. Thus, optically active and non-optically active materials led to different optical properties in the bright field and enhanced the excited state within the electromagnetic near-field of the gold nanotemplates. In this manner, it was possible to achieve high sensitivity by varying the spacer lengths and optical properties. Therefore, further perspectives regarding the design of nano-tools composed of light for various applications were discussed. Full article
(This article belongs to the Special Issue Solution Processing and Properties of Oxide Films and Nanostructures)
Show Figures

Figure 1

43 pages, 19909 KB  
Review
Confined Space Nanoarchitectonics for Dynamic Functions and Molecular Machines
by Katsuhiko Ariga
Micromachines 2024, 15(2), 282; https://doi.org/10.3390/mi15020282 - 17 Feb 2024
Cited by 5 | Viewed by 3586
Abstract
Nanotechnology has advanced the techniques for elucidating phenomena at the atomic, molecular, and nano-level. As a post nanotechnology concept, nanoarchitectonics has emerged to create functional materials from unit structures. Consider the material function when nanoarchitectonics enables the design of materials whose internal structure [...] Read more.
Nanotechnology has advanced the techniques for elucidating phenomena at the atomic, molecular, and nano-level. As a post nanotechnology concept, nanoarchitectonics has emerged to create functional materials from unit structures. Consider the material function when nanoarchitectonics enables the design of materials whose internal structure is controlled at the nanometer level. Material function is determined by two elements. These are the functional unit that forms the core of the function and the environment (matrix) that surrounds it. This review paper discusses the nanoarchitectonics of confined space, which is a field for controlling functional materials and molecular machines. The first few sections introduce some of the various dynamic functions in confined spaces, considering molecular space, materials space, and biospace. In the latter two sections, examples of research on the behavior of molecular machines, such as molecular motors, in confined spaces are discussed. In particular, surface space and internal nanospace are taken up as typical examples of confined space. What these examples show is that not only the central functional unit, but also the surrounding spatial configuration is necessary for higher functional expression. Nanoarchitectonics will play important roles in the architecture of such a total system. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Chemistry 2023)
Show Figures

Figure 1

23 pages, 6719 KB  
Article
Old Acquaintances and Novel Complex Structures for the Ni(II) and Cu(II) Complexes of bis-Chelate Oxime–Amide Ligands
by Carla Bazzicalupi, Craig Grimmer and Igor Vasyl Nikolayenko
Molecules 2024, 29(2), 522; https://doi.org/10.3390/molecules29020522 - 20 Jan 2024
Cited by 2 | Viewed by 1986
Abstract
In the process of systematically studying the methylhydroxyiminoethaneamide bis-chelate ligands with polymethylene spacers of different lengths, L1–L3, and their transition metal complexes, a number of new Ni(II) and Cu(II) species have been isolated, and their molecular and crystal structures were determined using [...] Read more.
In the process of systematically studying the methylhydroxyiminoethaneamide bis-chelate ligands with polymethylene spacers of different lengths, L1–L3, and their transition metal complexes, a number of new Ni(II) and Cu(II) species have been isolated, and their molecular and crystal structures were determined using single-crystal X-ray diffraction. In all of these compounds, the divalent metal is coordinated by the ligand donor atoms in a square-planar arrangement. In addition, a serendipitously discovered new type of neutral Ni(II) complex, where the propane spacer of ligand L2 underwent oxidation to the propene spacer, and one of the amide groups was oxidised to the ketoimine, is also reported. The resulting ligand L2′ affords the formation of neutral planar Ni(II) complexes, which are assembled in the solid state on top of each other, and yield two polymorphic structures. In both structures, the resulting infinite, exclusively parallel metal ion columns in ligand insulation may serve as precursor materials for sub-nano-conducting connectors. Overall, this paper reports the synthesis and characterisation of seven new anionic, cationic, and neutral Ni(II) and Cu(II) complexes, their crystal structures, as well as experimental and computed UV–Vis absorption spectra for two structurally similar Ni(II) complexes, yellow and red. Full article
Show Figures

Figure 1

16 pages, 2311 KB  
Article
Developing an Amide-Spacered Triterpenoid Rhodamine Hybrid of Nano-Molar Cytotoxicity Combined with Excellent Tumor Cell/Non-Tumor Cell Selectivity
by Niels V. Heise, Toni C. Denner, Selina Becker, Sophie Hoenke and René Csuk
Molecules 2023, 28(17), 6404; https://doi.org/10.3390/molecules28176404 - 1 Sep 2023
Cited by 3 | Viewed by 2252
Abstract
Asiatic acid, a pentacyclic triterpene, was converted into a series of piperazinyl, homopiperazinyl, and 1,5-diazocinyl spacered rhodamine conjugates, differing in the type of spacer and the substitution pattern on the rhodamine moiety of the hybrids. The compounds were tested for cytotoxic activity in [...] Read more.
Asiatic acid, a pentacyclic triterpene, was converted into a series of piperazinyl, homopiperazinyl, and 1,5-diazocinyl spacered rhodamine conjugates, differing in the type of spacer and the substitution pattern on the rhodamine moiety of the hybrids. The compounds were tested for cytotoxic activity in SRB assays and compound 12, holding an EC50 of 0.8 nM, was the most cytotoxic compound of this series, but compound 18 (containing a ring expanded 1,5-diazocinyl moiety and n-propyl substituents on the rhodamine) was the most selective compound exhibiting a selectivity factor of almost 190 while retaining high cytotoxicity (EC50 = 1.9 nM, for A2780 ovarian carcinoma). Full article
Show Figures

Graphical abstract

11 pages, 6055 KB  
Article
Colloidal Quantum Dot Nanolithography: Direct Patterning via Electron Beam Lithography
by Taewoo Ko, Samir Kumar, Sanghoon Shin, Dongmin Seo and Sungkyu Seo
Nanomaterials 2023, 13(14), 2111; https://doi.org/10.3390/nano13142111 - 20 Jul 2023
Cited by 7 | Viewed by 4333
Abstract
Micro/nano patterns based on quantum dots (QDs) are of great interest for applications ranging from electronics to photonics to sensing devices for biomedical purposes. Several patterning methods have been developed, but all lack the precision and reproducibility required to fabricate precise, complex patterns [...] Read more.
Micro/nano patterns based on quantum dots (QDs) are of great interest for applications ranging from electronics to photonics to sensing devices for biomedical purposes. Several patterning methods have been developed, but all lack the precision and reproducibility required to fabricate precise, complex patterns of less than one micrometer in size, or require specialized crosslinking ligands, limiting their application. In this study, we present a novel approach to directly pattern QD nanopatterns by electron beam lithography using commercially available colloidal QDs without additional modifications. We have successfully generated reliable dot and line QD patterns with dimensions as small as 140 nm. In addition, we have shown that using a 10 nm SiO2 spacer layer on a 50 nm Au layer substrate can double the fluorescence intensity compared to QDs on the Au layer without SiO2. This method takes advantage of traditional nanolithography without the need for a resist layer. Full article
(This article belongs to the Special Issue Study on Quantum Dot and Quantum Dot-Based Device)
Show Figures

Figure 1

20 pages, 8887 KB  
Article
Eco-Friendly Blends of Recycled PET Copolymers with PLLA and Their Composites with Chopped Flax Fibres
by Martial Aimé Kuété, Pascal Van Velthem, Wael Ballout, Nathan Klavzer, Bernard Nysten, Maurice Kor Ndikontar, Thomas Pardoen and Christian Bailly
Polymers 2023, 15(14), 3004; https://doi.org/10.3390/polym15143004 - 10 Jul 2023
Cited by 5 | Viewed by 2447
Abstract
The structure and properties of blends of a novel polyethylene terephthalate copolymer (COPET) obtained by chemical recycling of commercial PET with high-molar-mass poly-L-lactide (PLLA) are investigated and compared to corresponding composites with chopped flax fibres. The focus is on the morphology at nano- [...] Read more.
The structure and properties of blends of a novel polyethylene terephthalate copolymer (COPET) obtained by chemical recycling of commercial PET with high-molar-mass poly-L-lactide (PLLA) are investigated and compared to corresponding composites with chopped flax fibres. The focus is on the morphology at nano- and micro-scales, on the thermal characteristics and on the mechanical behaviour. The blends are immiscible, as evidenced by virtually unchanged glass transition temperatures of the blend components compared to the neat polymers (49 °C for COPET and 63 °C for PLLA by DSC). At low PLLA content, the blends display a sea–island morphology with sub-micron to micron droplet sizes. As the composition approaches 50/50, the morphology transitions to a coarser co-continuous elongated structure. The blends and composites show strongly improved stiffness compared to COPET above its glass transition temperature, e.g., from melt behaviour at 60 °C for COPET alone to almost 600 MPa for the 50/50 blend and 500 MPa for the 20% flax composite of the 80/20 COPET/PLLA blend. The flax fibres increase the crystallisation rate of PLLA in blends with dispersed PLLA morphology. The evidence of cavitation on the fracture surfaces of blends shows that despite the immiscibility of the components, the interfacial adhesion between the phases is excellent. This is attributed to the presence of aliphatic ester spacers in COPET. The tensile strength of the 80/20 blend is around 50 MPa with a Young’s modulus of 2250 MPa. The corresponding 20% flax composite has similar tensile strength but a high Young’s modulus equal to 6400 MPa, which results from the individual dispersion and strong adhesion of the flax fibres and leads close to the maximum possible reinforcement of the composite, as demonstrated by tensile tests and nano-indentation. The Ashby approach to eco-selection relying on the embodied energy (EE) further clarifies the eco-friendliness of the blends and their composites, which are even better positioned than PLLA in a stiffness versus EE chart. Full article
Show Figures

Graphical abstract

22 pages, 4126 KB  
Article
Effect of Green Synthesized ZnO-NPs on Growth, Antioxidant System Response and Bioactive Compound Accumulation in Echinops macrochaetus, a Potential Medicinal Plant, and Assessment of Genome Size (2C DNA Content)
by Salim Khan, Fahad Al-Qurainy, Abdulrahman Al-hashimi, Mohammad Nadeem, Mohamed Tarroum, Hassan O. Shaikhaldein and Abdalrhaman M. Salih
Plants 2023, 12(8), 1669; https://doi.org/10.3390/plants12081669 - 17 Apr 2023
Cited by 13 | Viewed by 3122
Abstract
Echinops macrochaetus is a medicinal plant that can be used to cure various diseases. In the present study, plant-mediated zinc oxide nanoparticles (ZnO-NPs) were synthesized using an aqueous leaf extract of the medicinal plant Heliotropium bacciferum and characterized using various techniques. E. macrochaetus was collected [...] Read more.
Echinops macrochaetus is a medicinal plant that can be used to cure various diseases. In the present study, plant-mediated zinc oxide nanoparticles (ZnO-NPs) were synthesized using an aqueous leaf extract of the medicinal plant Heliotropium bacciferum and characterized using various techniques. E. macrochaetus was collected from the wild and identified using the internal transcribed spacer sequence of nrDNA (ITS-nrDNA), which showed the closeness to its related genus in a phylogenetic tree. The effect of synthesized biogenic ZnO-NPs was studied on E. macrochaetus in a growth chamber for growth, bioactive compound enhancement and antioxidant system response. The irrigation of plants at a low concentration of ZnO-NPs (T1 = 10 mg/L) induced more growth in terms of biomass, chlorophyll content (273.11 µg/g FW) and carotenoid content (135.61 µg/g FW) than the control and other treatments (T2-20 mg/L and T3-40 mg/L). However, the application of a high concentration of ZnO-NPs (20 and 40 mg/L) increased the level of antioxidant enzymes (SOD, APX and GR), total crude and soluble protein, proline and TBARS contents. The accumulations of the compounds quercetin-3-β-D-glucoside, luteolin 7-rutinoside and p-coumaric acid were greater in the leaf compared to the shoot and root. A minor variation was observed in genome size in treated plants as compared to the control group. Overall, this study revealed the stimulatory effect of phytomediated ZnO-NPs, which act as bio-stimulants/nano-fertilizers as revealed by more biomass and the higher production of phytochemical compounds in different parts of the E. macrochaetus. Full article
Show Figures

Figure 1

Back to TopTop