Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (124)

Search Parameters:
Keywords = muscle structural abnormalities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 596 KiB  
Article
The Impact of Parafunctional Habits on Temporomandibular Disorders in Medical Students
by Michał Zemowski, Yana Yushchenko and Aneta Wieczorek
J. Clin. Med. 2025, 14(15), 5301; https://doi.org/10.3390/jcm14155301 - 27 Jul 2025
Viewed by 322
Abstract
Background: Temporomandibular disorders (TMD) are common musculoskeletal conditions affecting the temporomandibular joints, masticatory muscles, and associated structures. Their etiology is complex and multifactorial, involving anatomical, behavioral, and psychosocial contributors. Parafunctional habits such as clenching, grinding, and abnormal jaw positioning have been proposed as [...] Read more.
Background: Temporomandibular disorders (TMD) are common musculoskeletal conditions affecting the temporomandibular joints, masticatory muscles, and associated structures. Their etiology is complex and multifactorial, involving anatomical, behavioral, and psychosocial contributors. Parafunctional habits such as clenching, grinding, and abnormal jaw positioning have been proposed as contributing factors, yet their individual and cumulative contributions remain unclear. This exploratory cross-sectional study aimed to evaluate the prevalence and severity of parafunctional habits and their association with TMD in medical students—a group exposed to elevated stress levels. Subjects were examined in Krakow, Poland, using the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) protocol. Methods: Participants completed a 21-item Oral Behavior Checklist (OBC) assessing the frequency of oral behaviors on a 0–4 scale. A self-reported total parafunction load was calculated by summing individual item scores (range: 0–84). Logistic regression was used to evaluate associations between individual and total parafunction severity scores and TMD presence. Results: The study included 66 individuals aged 19–30. TMD was diagnosed in 55 participants (83.3%). The most commonly reported habits were resting the chin on the hand (90.9%) and sleeping in a jaw-compressing position (86.4%). Notably, jaw tension (OR = 14.5; p = 0.002) and daytime clenching (OR = 4.7; p = 0.027) showed significant associations with TMD in the tested population. Each additional point in the total parafunction score increased TMD odds by 13.6% (p = 0.004). Conclusions: These findings suggest that parafunctional behaviors—especially those involving chronic muscle tension or abnormal mandibular positioning—may meaningfully contribute to the risk of TMD in high-stress student populations. Moreover, the cumulative burden of multiple low-intensity habits was also significantly associated with increased TMD risk. Early screening for these behaviors may support prevention strategies, particularly among young adults exposed to elevated levels of stress. Full article
Show Figures

Figure 1

27 pages, 5816 KiB  
Article
Developmental Exposures to Three Mammalian Teratogens Produce Dysmorphic Phenotypes in Adult Caenorhabditis elegans
by Piper Reid Hunt, Martine Ferguson, Nicholas Olejnik, Jeffrey Yourick and Robert L. Sprando
Toxics 2025, 13(7), 589; https://doi.org/10.3390/toxics13070589 - 14 Jul 2025
Viewed by 337
Abstract
Efficient new methods are needed to support initiatives to reduce, refine, and/or replace toxicity testing in vertebrates. 5-fluorouracil (5FU), hydroxyurea (HU), and ribavirin (RV) are mammalian teratogens. Skeletal, endocrine organ, and cardiac effects are often associated with teratogenesis, and a simple nematode like [...] Read more.
Efficient new methods are needed to support initiatives to reduce, refine, and/or replace toxicity testing in vertebrates. 5-fluorouracil (5FU), hydroxyurea (HU), and ribavirin (RV) are mammalian teratogens. Skeletal, endocrine organ, and cardiac effects are often associated with teratogenesis, and a simple nematode like C. elegans lacks these systems. However, many genetic pathways required for mammalian morphogenesis have at least some conserved elements in this small, invertebrate model. The C. elegans lifecycle is 3 days. The effects of 5FU, HU, and RV on the C. elegans morphology were evaluated on day 4 post-initiation of the feeding after hatching for continuous and 24 h (early-only) developmental exposures. Continuous exposures to 5FU and HU induced increases in the incidences of abnormal gonadal structures that were significantly reduced in early-only exposure groups. The incidence of prolapse increased with continuous 5FU and HU exposures and was further increased in early-only exposure groups. Intestinal prolapse through the vulval muscle in C. elegans may be related to reported 5FU and HU effects on skeletal muscle and the gastrointestinal tract in mammals. Continuous RV exposures induced a phenotype lacking a uterus and gonad arms, as well as vulval anomalies that were largely, but not completely, reversed with early-only exposures, which is consistent with reported reversible reproductive tract anomalies after an RV exposure in mammals. These findings suggest that C. elegans can be used to detect the hazard risk from chemicals that adversely affect conserved pathways involved in organismal morphogenesis, but to determine the fit-for-purpose use of this model in chemical safety evaluations, further studies using larger and more diverse chemical test panels are needed. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Graphical abstract

17 pages, 1208 KiB  
Article
Structural Features of the Temporomandibular Joint Evaluated by MRI and Their Association with Oral Function and Craniofacial Morphology in Female Patients with Malocclusion: A Cross-Sectional Study
by Mari Kaneda, Yudai Shimpo, Kana Yoshida, Rintaro Kubo, Fumitaka Kobayashi, Akira Mishima, Chinami Igarashi and Hiroshi Tomonari
J. Clin. Med. 2025, 14(14), 4921; https://doi.org/10.3390/jcm14144921 - 11 Jul 2025
Viewed by 375
Abstract
Background/Objectives: Temporomandibular disorders (TMDs) are a group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint (TMJ), masticatory muscles, and related anatomical structures. Although magnetic resonance imaging (MRI) is considered a noninvasive and highly informative imaging modality for assessing TMJ soft tissues, [...] Read more.
Background/Objectives: Temporomandibular disorders (TMDs) are a group of musculoskeletal and neuromuscular conditions involving the temporomandibular joint (TMJ), masticatory muscles, and related anatomical structures. Although magnetic resonance imaging (MRI) is considered a noninvasive and highly informative imaging modality for assessing TMJ soft tissues, few studies have examined how TMJ structural features observed on MRI findings relate to oral function and craniofacial morphology in female patients with malocclusion. To investigate the associations among TMJ structural features, oral function, and craniofacial morphology in female patients with malocclusion, using MRI findings interpreted in conjunction with a preliminary assessment based on selected components of the DC/TMDs Axis I protocol. Methods: A total of 120 female patients (mean age: 27.3 ± 10.9 years) underwent clinical examination based on DC/TMDs Axis I and MRI-based structural characterization of the TMJ. Based on the structural features identified by MRI, patients were classified into four groups for comparison: osteoarthritis (OA), bilateral disk displacement (BDD), unilateral disk displacement (UDD), and a group with Osseous Change/Disk Displacement negative (OC/DD (−)). Occlusal contact area, occlusal force, masticatory efficiency, tongue pressure, and lip pressure were measured. Lateral cephalometric analysis assessed skeletal and dental patterns. Results: OA group exhibited significantly reduced occlusal contact area (p < 0.0083, η2 = 0.12) and occlusal force (p < 0.0083, η2 = 0.14) compared to the OC/DD (−) group. Cephalometric analysis revealed that both OA and BDD groups had significantly larger ANB angles (OA: 5.7°, BDD: 5.2°, OC/DD (−): 3.7°; p < 0.0083, η2 = 0.21) and FMA angles (OA: 32.4°, BDD: 31.8°, OC/DD (−): 29.0°; p < 0.0083, η2 = 0.17) compared to the OC/DD (−) group. No significant differences were observed in masticatory efficiency, tongue pressure, or lip pressure. Conclusions: TMJ structural abnormalities detected via MRI, especially osteoarthritis, are associated with diminished oral function and skeletal Class II and high-angle features in female patients with malocclusion. Although orthodontic treatment is not intended to manage TMDs, MRI-based structural characterization—when clinically appropriate—may aid in treatment planning by identifying underlying joint conditions. Full article
Show Figures

Figure 1

23 pages, 7664 KiB  
Article
Impact of Aerobic Training on Transcriptomic Changes in Skeletal Muscle of Rats with Cardiac Cachexia
by Daniela Sayuri Inoue, Quinten W. Pigg, Dillon R. Harris, Dongmei Zhang, Devon J. Boland and Mariana Janini Gomes
Int. J. Mol. Sci. 2025, 26(13), 6525; https://doi.org/10.3390/ijms26136525 - 7 Jul 2025
Viewed by 863
Abstract
Cardiac cachexia (CC) is an advanced stage of heart failure (HF) characterized by structural and functional abnormalities in skeletal muscle, leading to muscle loss. Aerobic training provides benefits; however, the underlying molecular mechanisms remain poorly understood. This study aimed to investigate the therapeutic [...] Read more.
Cardiac cachexia (CC) is an advanced stage of heart failure (HF) characterized by structural and functional abnormalities in skeletal muscle, leading to muscle loss. Aerobic training provides benefits; however, the underlying molecular mechanisms remain poorly understood. This study aimed to investigate the therapeutic effects of aerobic training on transcriptomic alterations associated with disease progression in cachectic skeletal muscle. HF was induced in male Wistar rats by a single monocrotaline injection (60 mg/Kg). Aerobic training consisted of 30 min treadmill running at ~55% of maximal capacity, 5×/week for 4 weeks. Assessments included body mass, right ventricle mass, skeletal muscle fiber size and exercise tolerance. RNA-seq analysis was performed on the medial gastrocnemius muscle. Sedentary cachectic rats exhibited 114 differentially expressed genes (DEGs) while exercised cachectic rats had only 18 DEGs. Enrichment pathways analyses and weighted gene co-expression network analysis (WGCNA) identified potential key genes involved in disrupted lipid metabolism in sedentary cachectic rats, which were not observed in the exercised cachectic rats. Validation of DEGs related to lipid metabolism confirmed that Dgat2 gene expression was modulated by aerobic training in CC rats. These findings suggest that aerobic training mitigates transcriptional alterations related to lipid metabolism in rats with CC, highlighting its therapeutic potential. Full article
Show Figures

Graphical abstract

7 pages, 3282 KiB  
Case Report
An Unexpected Finding of a Papillary Fibroelastoma in the Left Ventricle of an Asymptomatic Patient—A Case Report
by Nicole Piber, Christian Nöbauer, Bernhard Voss, Markus Krane and Stephanie Voss
Reports 2025, 8(2), 90; https://doi.org/10.3390/reports8020090 - 6 Jun 2025
Viewed by 438
Abstract
Background and Clinical Significance: Papillary Fibroelastoma is a benign primary cardiac tumor, commonly located in a valvular position, predominantly on the aortic valve. Case Presentation: We present a 73-year-old male patient with a medical history of chronic lymphatic leukemia, kidney failure, diabetes, [...] Read more.
Background and Clinical Significance: Papillary Fibroelastoma is a benign primary cardiac tumor, commonly located in a valvular position, predominantly on the aortic valve. Case Presentation: We present a 73-year-old male patient with a medical history of chronic lymphatic leukemia, kidney failure, diabetes, and obstructive sleep apnea. In a routinely performed echocardiogram an abnormal structure in the left ventricle was found. The patient presented completely asymptomatically at the time of examination. A cardiac magnetic resonance-scan provided further information about the size and localization of the tumor in the left ventricle, which seemed to be attached to a papillary muscle and was about 1.6 cm in diameter. Due to visible scarring of the myocardia, which was identified in the scan, a cardiac catheter examination was performed. A coronary artery disease was detected with a severe stenosis in three vessels. During an elective bypass-operation, the removal of the structure was performed with an approach through the left atrium, passing the mitral valve using a valve sizer for better exposure. The tumor of 1 cm presented macroscopically with an anemone-like shape. The histopathological examination confirmed the intraoperative assumption of a papillary fibroelastoma, found in an aberrant location. Conclusions: Unexpectedly challenging surgical removals of structures in the left ventricle require innovative techniques with available instruments for better exposure. Full article
Show Figures

Figure 1

14 pages, 2201 KiB  
Article
Effect of Photobiomodulation in Patients with Temporomandibular Dysfunction Refractory to Botulinum Toxin Treatment: A Non-Controlled Multicentric Pilot Study
by José Antonio Blanco Rueda, Antonio López-Valverde, Antonio Marquez-Vera, Natàlia dos Reis Ferreira, Bruno Macedo de Sousa and Nansi López-Valverde
J. Clin. Med. 2025, 14(11), 3778; https://doi.org/10.3390/jcm14113778 - 28 May 2025
Viewed by 520
Abstract
Background/Objectives: Temporomandibular disorders are a heterogeneous group of degenerative musculoskeletal conditions that present a series of symptoms such as pain, dysfunction of the masticatory muscles and/or temporomandibular joints, structural abnormalities, and limitation or alteration of mandibular movements. The objective of this study [...] Read more.
Background/Objectives: Temporomandibular disorders are a heterogeneous group of degenerative musculoskeletal conditions that present a series of symptoms such as pain, dysfunction of the masticatory muscles and/or temporomandibular joints, structural abnormalities, and limitation or alteration of mandibular movements. The objective of this study was to evaluate the efficacy of photobiomodulation therapy with low-power laser in patients refractory to treatment with botulinum toxin type A. Methods: A multicenter prospective experimental pilot study was proposed, in which 10 patients between 33 and 68 (50 ± 11.2) years old participated, assigned to a laser group (940 nm diode laser) who had previously been treated with a minimum of three doses of botulinum toxin type A without obtaining positive results. The patients underwent four photobiomodulation sessions over 4 weeks (registered at ClinicalTrials NCT06915064). Painful symptoms were evaluated using a visual analog scale at different locations, the pressure pain threshold using algometry, and the maximum vertical mandibular movement determined using digital calipers. The results were recorded four weeks after the end of treatment. Adverse effects were also evaluated. Results: Pain in the masticatory muscles was reduced in 70% of patients with statistically significant values (p = 0.002); a total of 60% of patients showed a considerable reduction in joint noise with outstanding statistical significance (p = 0.015). The majority of participants reported a reduction in the intensity of headaches after treatment. However, it only produced a slight improvement in maximum mouth opening and lateral excursions. Algometric values in the masticatory muscles showed improvement only in the left-sided irradiated muscles. Conclusions: Photobiomodulation therapy is a non-invasive treatment option for temporomandibular disorders that generates positive effects in cases refractory to treatment with botulinum toxin type A. Full article
(This article belongs to the Special Issue Clinical Management of Temporomandibular Joint Diseases)
Show Figures

Figure 1

10 pages, 5714 KiB  
Review
Clinical Consequences of Ankyloglossia from Childhood to Adulthood: Support for and Development of a Three-Dimensional Animated Video
by Carlos O’Connor-Reina, Laura Rodriguez Alcala, Gabriela Bosco, Paula Martínez-Ruiz de Apodaca, Paula Mackers, Maria Teresa Garcia-Iriarte, Peter Baptista and Guillermo Plaza
Int. J. Orofac. Myol. Myofunct. Ther. 2025, 51(1), 5; https://doi.org/10.3390/ijom51010005 - 23 May 2025
Cited by 1 | Viewed by 7884
Abstract
Ankyloglossia causes impairment of normal tongue motility and disrupts the average balance of the muscle forces that form the orofacial complex. Inadequate swallowing from birth can cause long-term anatomical and functional consequences in adult life. Using the video presented herein, we describe the [...] Read more.
Ankyloglossia causes impairment of normal tongue motility and disrupts the average balance of the muscle forces that form the orofacial complex. Inadequate swallowing from birth can cause long-term anatomical and functional consequences in adult life. Using the video presented herein, we describe the current knowledge about the long-term implications of ankyloglossia. After a literature review of the Medline, Google Scholar, and Embase databases on the relations between ankyloglossia and sleep-disordered breathing, we designed and created a three-dimensional (3D) video using Adobe After Effects based on the anatomical and functional changes produced by repeated deglutition, with and without ankyloglossia, from childhood to adulthood. The animated video (Blender 3D, Amsterdam, The Netherlands, 2024) presented herein was based on the most recent literature review of dentition, breathing, posture, and abnormal swallowing, emphasizing the importance of the potential consequences of sleep-disordered breathing. The resulting animated 3D video includes dynamic sequences of a growing child, demonstrating the anatomy and physiology of deglutition with and without ankyloglossia, and its potential consequences for the surrounding structures during growth due to untreated ankyloglossia. This visual instructional video regarding the impacts of ankyloglossia on deglutition/swallowing may help motivate early childhood diagnosis and treatment of ankyloglossia. This instrument addresses the main myofunctional aspects of normal deglutition based on the importance of free tongue motion and can be used by students or professionals training in myofunctional disorders. Full article
Show Figures

Figure 1

9 pages, 3329 KiB  
Case Report
Brachial Plexus Abnormalities with Delayed Median Nerve Root Convergence: A Cadaveric Case Report
by Austin Lawrence, Nathaniel B. Dusseau, Alina Torres Marquez, Cecilia Tompkins, Eunice Obi and Adel Maklad
Anatomia 2025, 4(2), 7; https://doi.org/10.3390/anatomia4020007 - 12 May 2025
Viewed by 566
Abstract
Background: The brachial plexus is a network of nerves responsible for the motor and sensory innervation of the upper limb. Variations in the formation and course of the brachial plexus are well documented, though combinations of multiple unilateral abnormalities are rare. The complex [...] Read more.
Background: The brachial plexus is a network of nerves responsible for the motor and sensory innervation of the upper limb. Variations in the formation and course of the brachial plexus are well documented, though combinations of multiple unilateral abnormalities are rare. The complex pathology of this structure nerve may result in clinical consequences. We present a unique set of brachial plexus abnormalities involving the C4–C6 nerve roots, superior and middle trunks, additional communicating branches, and delayed median nerve union. Case Presentation: During the routine dissection of a 70-year-old female cadaver, several unique variations in the brachial plexus anatomy were identified. The C4 root contributed to C5 before the superior trunk formed, resulting in a superior trunk composed of C4–C6. The C5 root was located anterior to the anterior scalene muscle, whereas C6 maintained its usual posterior position. Additionally, an anterior communicating branch from the middle trunk to the posterior cord was observed. A communicating branch between the lateral and medial cords split into two terminal branches: one merged with the ulnar nerve, and the other joined the medial contribution of the median nerve. The median nerve contributions from the lateral and medial cords merged approximately two inches above the elbow. Conclusions: This rare combination of brachial plexus anomalies has not been previously described in the literature and is of significant clinical relevance. The additional anterior communicating branch from the middle trunk may suggest potential flexor muscle innervation by the posterior cord, which typically innervates extensor muscles. Additionally, the delayed convergence of the median nerve may provide a protective mechanism in cases of midshaft humeral fracture. Awareness of these peripheral nerve abnormalities is important for diagnostic imaging, surgery, or peripheral nerve blocks. Knowledge of such variations is critical for clinicians managing upper limb pathologies. Full article
(This article belongs to the Special Issue From Anatomy to Clinical Neurosciences)
Show Figures

Figure 1

35 pages, 2225 KiB  
Review
Myocardial Perfusion Imaging with Cardiovascular Magnetic Resonance in Nonischemic Cardiomyopathies: An In-Depth Review of Techniques and Clinical Applications
by Ilir Sharka, Giorgia Panichella, Chrysanthos Grigoratos, Matilda Muca, Carmelo De Gori, Petra Keilberg, Giovanni Novani, Valerio Barra, Hana Hlavata, Matteo Bianchi, Denisa Simona Zai, Francesca Frijia, Alberto Clemente, Giancarlo Todiere and Andrea Barison
Medicina 2025, 61(5), 875; https://doi.org/10.3390/medicina61050875 - 10 May 2025
Viewed by 2489
Abstract
Background and Objectives: Nonischemic cardiomyopathies comprise a wide spectrum of heart muscle disorders characterized by different morphological, functional, and tissue abnormalities. Cardiovascular magnetic resonance (CMR) represents the gold standard imaging modality for assessing cardiac morphology, systolic function, and tissue characterization, thereby aiding [...] Read more.
Background and Objectives: Nonischemic cardiomyopathies comprise a wide spectrum of heart muscle disorders characterized by different morphological, functional, and tissue abnormalities. Cardiovascular magnetic resonance (CMR) represents the gold standard imaging modality for assessing cardiac morphology, systolic function, and tissue characterization, thereby aiding in early diagnosis, precise phenotyping, and tailored treatment. The aim of this review is to provide an up-to-date overview of CMR techniques for studying myocardial perfusion and their applications to nonischemic cardiomyopathy, not only to rule out an underlying ischemic aetiology but also to investigate the pathophysiological characteristics of microcirculatory dysfunction in these patients. Materials and Methods: We performed a structured review of the literature focusing on first-pass gadolinium perfusion sequences, stress protocols, and emerging pixel-wise perfusion mapping approaches. Studies were selected to illustrate the methods for image acquisition, post-processing, and quantification of myocardial blood flow (MBF) and myocardial perfusion reserve (MPR), as well as to highlight associations with clinical endpoints. Results: First-pass CMR perfusion imaging reliably detects diffuse and regional microvascular dysfunction across cardiomyopathies. Semi-quantitative parameters (e.g., upslope, MPRI) and quantitative MBF mapping (mL/g/min) have demonstrated that impaired perfusion correlates with disease severity, extent of fibrosis, and adverse outcomes, including heart failure hospitalization, arrhythmias, and mortality. Novel automated pixel-wise mapping enhances reproducibility and diagnostic accuracy, distinguishing coronary microvascular dysfunction from balanced three-vessel disease. Microvascular dysfunction—present in approximately 50–60% of dilated cardiomyopathy (DCM), 40–80% of hypertrophic cardiomyopathy (HCM), and >95% of cardiac amyloidosis (CA) patients—has emerged as a key driver of adverse outcomes. Perfusion defects appear early, often preceding overt hypertrophy or fibrosis, and provide incremental prognostic value beyond conventional CMR metrics. Conclusions: CMR represents a powerful tool for detecting myocardial perfusion abnormalities in nonischemic cardiomyopathies, improving phenotyping, risk stratification, and personalized management. Further standardization of quantitative perfusion techniques will facilitate broader clinical adoption. Full article
Show Figures

Figure 1

12 pages, 940 KiB  
Case Report
A Rare Homozygous AP4S1 Variant in Rwandan Siblings with Autosomal Recessive Hereditary Spastic Paraplegia Type 52 (SPG52)
by Sylvine Niyoyita, Esther Uwibambe, Janvier Ndinkabandi, Placide Sesonga, Josse Belladone Niyongere, Benjamin Tuyishimire, Adelaide Urugwiro, Alype Rwamatwara, Gisèle Isingizwe, Janvière Mutamuliza, Christian Nsanzabaganwa, John Bukuru, Florent Rutagarama, Agnès Mukaruziga, Osée Karangwa, Augustin Ndatinya, Maurice Nsanzabera, Norbert Dukuze and Léon Mutesa
Genes 2025, 16(5), 542; https://doi.org/10.3390/genes16050542 - 30 Apr 2025
Viewed by 666
Abstract
Background/Objectives: Hereditary spastic paraplegia type 52 (SPG52) is a rare, inherited neurodevelopmental condition passed down in an autosomal recessive pattern. In this report, we describe two siblings from Rwanda who exhibited classic signs of the disorder, including progressive lower-limb spasticity, significant delays [...] Read more.
Background/Objectives: Hereditary spastic paraplegia type 52 (SPG52) is a rare, inherited neurodevelopmental condition passed down in an autosomal recessive pattern. In this report, we describe two siblings from Rwanda who exhibited classic signs of the disorder, including progressive lower-limb spasticity, significant delays in motor development, and exaggerated deep tendon reflexes. Methods: Genetic testing through Whole-Exome Sequencing (WES) reveals a rare homozygous splice-site variant (NM_001128126.3:c.295-3C>A) in the AP4S1 gene. Results: Despite the severity of symptoms, both children responded positively to treatment with muscle relaxants and regular physiotherapy. Notably, MRI scans of the brain and spine showed no structural abnormalities. Conclusions: By documenting this case, we add to the growing understanding of SPG52, particularly within under-represented Sub-Saharan African populations, and underscore the critical role of early genetic testing in guiding timely diagnosis and intervention. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

13 pages, 283 KiB  
Article
Might Thyroid Function in Patients with Turner Syndrome Have a Significant Impact on Their Muscle Strength?
by Mariola Krzyscin, Elżbieta Sowińska-Przepiera, Žana Bumbulienė and Anhelli Syrenicz
Int. J. Mol. Sci. 2025, 26(8), 3679; https://doi.org/10.3390/ijms26083679 - 13 Apr 2025
Viewed by 709
Abstract
Turner syndrome (TS) is a genetic disorder caused by abnormalities in one of the X chromosomes. Individuals with TS have a higher incidence of autoimmune thyroid disorders, particularly Hashimoto’s disease, leading to thyroid dysfunction, most commonly hypothyroidism. Hormonal imbalance, growth hormone deficiency, and [...] Read more.
Turner syndrome (TS) is a genetic disorder caused by abnormalities in one of the X chromosomes. Individuals with TS have a higher incidence of autoimmune thyroid disorders, particularly Hashimoto’s disease, leading to thyroid dysfunction, most commonly hypothyroidism. Hormonal imbalance, growth hormone deficiency, and reduced physical activity contribute to muscle weakness in TS patients, and thyroid dysfunction can exacerbate these effects. The purpose of this study was to evaluate whether thyroid factors affect muscle strength in female patients with TS. The study included 70 women with TS and 88 age- and weight-matched controls. TS diagnoses were genetically confirmed (mosaic karyotypes: n = 20; monosomy X: n = 37; structural abnormalities: n = 7). The main criterion for exclusion from the study was unbalanced thyroid function. Serum levels of thyroid-stimulating hormone (TSH), free thyroxine (fT4), free triiodothyronine (fT3), and thyroid antibodies (anti-thyroid peroxidase antibodies (aTPO), anti-thyroglobulin antibodies (aTG)) were measured, and muscle strength was assessed using hand-held dynamometry. In TS patients, higher TSH levels were positively correlated, and higher fT4 levels were negatively correlated with muscle strength. No such correlations were found in controls. Thyroid compensation may impact musculoskeletal health in TS. Lower-normal TSH levels are associated with reduced muscle strength, and autoimmune thyroid changes like aTPO and aTG may contribute to muscle deterioration. Further research is needed to confirm these findings. Full article
Show Figures

Graphical abstract

18 pages, 12199 KiB  
Article
Impairment of Muscle Function Causes Pupal Lethality in Flies Expressing the Mitochondrial Alternative Oxidase
by Carlos A. Couto-Lima, Sina Saari, Geovana S. Garcia, Gabriel H. Rocha, Johanna ten Hoeve, Eric Dufour and Marcos T. Oliveira
Biomolecules 2025, 15(4), 570; https://doi.org/10.3390/biom15040570 - 11 Apr 2025
Viewed by 638
Abstract
The mitochondrial alternative oxidase (AOX) from the tunicate Ciona intestinalis has been explored as a potential therapeutic enzyme for human mitochondrial diseases, yet its systemic effects remain poorly understood. Here, we investigate the metabolic and physiological consequences of AOX expression during the development [...] Read more.
The mitochondrial alternative oxidase (AOX) from the tunicate Ciona intestinalis has been explored as a potential therapeutic enzyme for human mitochondrial diseases, yet its systemic effects remain poorly understood. Here, we investigate the metabolic and physiological consequences of AOX expression during the development of Drosophila cultured under dietary stress. We show that the combination of strong, ubiquitous AOX expression and a low-nutrient condition leads to pupal lethality and severe defects in larval musculature, characterized by actin aggregation and muscle shortening. These structural abnormalities correlate with a decrease in larval biomass and motility. Interestingly, the muscle defects and the motility impairments vary in severity among individuals, predicting survival rates at the pupal stage. AOX expression in specific tissues (muscle, nervous system or fat body) does not individually recapitulate the lethal phenotype observed with ubiquitous expressions of the enzyme, indicating a complex metabolic imbalance. Metabolomic analysis revealed that the low-nutrient diet and AOX expression have opposite effects on most metabolites analyzed, especially in the levels of amino acids. Notably, supplementation of the low-nutrient diet with the essential amino acids methionine and/or tryptophan partially rescues pupal viability, body size, muscle morphology, and locomotion, whereas supplementation with proline and/or glutamate does not, highlighting a specific perturbation in amino acid metabolism rather than general bioenergetic depletion. These findings demonstrate that AOX expression disrupts metabolic homeostasis, with developmental and physiological consequences that must be considered when evaluating AOX for therapeutic applications. Full article
(This article belongs to the Special Issue Drosophila as a Model System to Study Metabolism)
Show Figures

Figure 1

21 pages, 2386 KiB  
Article
GWAS by Subtraction to Disentangle RBD Genetic Background from α-Synucleinopathies
by Andrea Gaudio, Fabio Gotta, Clarissa Ponti, Alessandro Geroldi, Andrea La Barbera and Paola Mandich
Int. J. Mol. Sci. 2025, 26(8), 3578; https://doi.org/10.3390/ijms26083578 - 10 Apr 2025
Viewed by 830
Abstract
Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by loss of muscle atonia and abnormal behaviors occurring during REM sleep. Idiopathic RBD (iRBD) is recognized as the strongest prodromal hallmark of α-synucleinopathies, with an established conversion rate to a [...] Read more.
Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by loss of muscle atonia and abnormal behaviors occurring during REM sleep. Idiopathic RBD (iRBD) is recognized as the strongest prodromal hallmark of α-synucleinopathies, with an established conversion rate to a neurodegenerative condition that reaches up to 96.6% at 15 years of follow-up. Moreover, RBD-converters display a more severe clinical trajectory compared to those that do not present with RBD. However, the extent to which iRBD represents a distinct genetic entity or an early manifestation of neurodegeneration remains unclear. To address this, we applied Genomic Structural Equation Modeling (GenomicSEM) using a GWAS-by-subtraction approach to disentangle the genetic architecture of iRBD from the shared genomic liability across α-synucleinopathies. Our findings highlight the SNCA locus as a key genetic regulator of iRBD susceptibility. While iRBD exhibits a partially distinct genetic signature, residual genomic overlap with neurodegenerative traits suggests that its genetic architecture exists along a continuum of α-synucleinopathy risk. In this scenario, the associations with neuroanatomical correlates may serve as early indicators of a trajectory toward future neurodegeneration. These findings provide a framework for identifying biomarkers that could aid in disease stratification and risk prediction, potentially improving early intervention strategies. Full article
Show Figures

Figure 1

24 pages, 3963 KiB  
Article
Development of a Bayesian Network-Based Parallel Mechanism for Lower Limb Gait Rehabilitation
by Huiguo Ma, Yuqi Bao, Chao Jia, Guoqiang Chen, Jingfu Lan, Mingxi Shi, He Li, Qihan Guo, Lei Guan, Shuang Li and Peng Zhang
Biomimetics 2025, 10(4), 230; https://doi.org/10.3390/biomimetics10040230 - 8 Apr 2025
Viewed by 576
Abstract
This study aims to address the clinical needs of hemiplegic and stroke patients with lower limb motor impairments, including gait abnormalities, muscle weakness, and loss of motor coordination during rehabilitation. To achieve this, it proposes an innovative design method for a lower limb [...] Read more.
This study aims to address the clinical needs of hemiplegic and stroke patients with lower limb motor impairments, including gait abnormalities, muscle weakness, and loss of motor coordination during rehabilitation. To achieve this, it proposes an innovative design method for a lower limb rehabilitation training system based on Bayesian networks and parallel mechanisms. A Bayesian network model is constructed based on expert knowledge and structural mechanics analysis, considering key factors such as rehabilitation scenarios, motion trajectory deviations, and rehabilitation goals. By utilizing the motion characteristics of parallel mechanisms, we designed a rehabilitation training device that supports multidimensional gait correction. A three-dimensional digital model is developed, and multi-posture ergonomic simulations are conducted. The study focuses on quantitatively assessing the kinematic characteristics of the hip, knee, and ankle joints while wearing the device, establishing a comprehensive evaluation system that includes range of motion (ROM), dynamic load, and optimization matching of motion trajectories. Kinematic analysis verifies that the structural design of the device is reasonable, aiding in improving patients’ gait, enhancing strength, and restoring flexibility. The Bayesian network model achieves personalized rehabilitation goal optimization through dynamic probability updates. The design of parallel mechanisms significantly expands the range of joint motion, such as enhancing hip sagittal plane mobility and reducing dynamic load, thereby validating the notable optimization effect of parallel mechanisms on gait rehabilitation. Full article
(This article belongs to the Special Issue Advanced Service Robots: Exoskeleton Robots 2025)
Show Figures

Figure 1

16 pages, 7151 KiB  
Article
Variable Ophthalmologic Phenotypes Associated with Biallelic Loss-of-Function Variants in POMGNT1
by Lucia Ziccardi, Lucilla Barbano, Mattia D’Andrea, Alessandro Bruselles, Carmen Dell’Aquila, Marcello Niceta, Cecilia Mancini, Alessandro Leone, Mattia Carvetta, Maria Albanese, Emilia Stellacci, Marco Tartaglia and Viviana Cordeddu
Int. J. Mol. Sci. 2025, 26(7), 3278; https://doi.org/10.3390/ijms26073278 - 1 Apr 2025
Viewed by 515
Abstract
O-mannosylation is a post-translational modification required for the proper function of various proteins and critical for development and growth. POMGNT1 encodes the enzyme O-linked-mannose β-1,2-N-acetylglucosaminyltransferase 1, which catalyzes the second step in the synthesis of α-dystroglycan O-mannosyl glycans. Among POMGNT1-related α-dystroglycanopathies, muscle–eye–brain [...] Read more.
O-mannosylation is a post-translational modification required for the proper function of various proteins and critical for development and growth. POMGNT1 encodes the enzyme O-linked-mannose β-1,2-N-acetylglucosaminyltransferase 1, which catalyzes the second step in the synthesis of α-dystroglycan O-mannosyl glycans. Among POMGNT1-related α-dystroglycanopathies, muscle–eye–brain (MEB) disease presents with congenital muscular dystrophy, structural brain abnormalities, and retinal dystrophy. Defects in protein O-mannosylation due to biallelic loss-of-function POMGNT1 mutations produce disturbances in assembling and organizing the basal membrane in the neuroretinal system, involving both the central and peripheral nervous systems. In the retina, POMGNT1 is expressed in photoreceptors and is localized near the photoreceptor cilium basal body, a structure critical for protein transport. Recent studies have reported an isolated degenerative ocular phenotype without any involvement of muscular or neuronal tissues. Here, we report on a family with three siblings affected by an apparently isolated clinically variable retinal disease and sharing biallelic inactivating POMGNT1 variants. Notably, the rod-cone dystrophy phenotype in the three siblings varied significantly in onset, presentation, and severity. These findings provide further evidence of the clinical variability associated with defective POMGNT1 function. Full article
(This article belongs to the Special Issue Molecular Research in Retinal Degeneration)
Show Figures

Figure 1

Back to TopTop