Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = muscle derived mesenchymal stem cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2098 KiB  
Review
Recent Advances in Experimental Functional Characterization of GWAS Candidate Genes in Osteoporosis
by Petra Malavašič, Jasna Lojk, Marija Nika Lovšin and Janja Marc
Int. J. Mol. Sci. 2025, 26(15), 7237; https://doi.org/10.3390/ijms26157237 - 26 Jul 2025
Viewed by 427
Abstract
Osteoporosis is a multifactorial, polygenic disease characterized by reduced bone mineral density (BMD) and increased fracture risk. Genome-wide association studies (GWASs) have identified numerous loci associated with BMD and/or bone fractures, but functional characterization of these target genes is essential to understand the [...] Read more.
Osteoporosis is a multifactorial, polygenic disease characterized by reduced bone mineral density (BMD) and increased fracture risk. Genome-wide association studies (GWASs) have identified numerous loci associated with BMD and/or bone fractures, but functional characterization of these target genes is essential to understand the biological mechanisms underlying osteoporosis. This review focuses on current methodologies and key examples of successful functional studies aimed at evaluating gene function in osteoporosis research. Functional evaluation typically follows a multi-step approach. In silico analyses using omics datasets expression quantitative trait loci (eQTLs), protein quantitative trait loci (pQTLs), and DNA methylation quantitative trait loci (mQTLs) help prioritize candidate genes and predict relevant biological pathways. In vitro models, including immortalized bone-derived cell lines and primary mesenchymal stem cells (MSCs), are used to explore gene function in osteogenesis. Advanced three-dimensional culture systems provide additional physiological relevance for studying bone-related cellular processes. In situ analyses of patient-derived bone and muscle tissues offer validation in a disease-relevant context, while in vivo studies using mouse and zebrafish models enable comprehensive assessment of gene function in skeletal development and maintenance. Integration of these complementary methodologies helps translate GWAS findings into biological insights and supports the identification of novel therapeutic targets for osteoporosis. Full article
Show Figures

Figure 1

17 pages, 10722 KiB  
Article
Fin Cells as a Promising Seed Cell Source for Sustainable Fish Meat Cultivation
by Zongyun Du, Jihui Lao, Yuyan Jiang, Jingyu Liu, Shili Liu, Jianbo Zheng, Fei Li, Yongyi Jia, Zhimin Gu, Jun Chen and Xiao Huang
Foods 2025, 14(12), 2075; https://doi.org/10.3390/foods14122075 - 12 Jun 2025
Viewed by 804
Abstract
Cell-cultured meat production relies on stable, proliferative seed cells, commonly sourced from muscle satellite cells (MuSCs) and adipose-derived mesenchymal stem cells (AD-MSCs). However, establishing such cell lines in fish species remains technically challenging. While pluripotent stem cells (e.g., ESCs/MSCs) offer alternatives, their differentiation [...] Read more.
Cell-cultured meat production relies on stable, proliferative seed cells, commonly sourced from muscle satellite cells (MuSCs) and adipose-derived mesenchymal stem cells (AD-MSCs). However, establishing such cell lines in fish species remains technically challenging. While pluripotent stem cells (e.g., ESCs/MSCs) offer alternatives, their differentiation efficiency and predictability are limited. Here, we developed TCCF2022, a novel caudal fin-derived cell line from Topmouth culter (Culter alburnus), which expresses pluripotency markers (AP, Oct4, Sox2, Klf4, and Nanog) and aggregated growth to form 3D spheroids. Forskolin supplementation enhanced pluripotency maintenance. The presence of adipogenic and myogenic lineage cells within the 3D spheroids was confirmed, demonstrating their potential as seed cells for cell-cultured meat. Using a small-molecule cocktail 5LRCF (5-Azacytidine, LY411575, RepSox, CHIR99021, and Forskolin), we successfully differentiated TCCF2022 cells into functional myotubes. Additionally, we established a method to induce the differentiation of TCCF2022 cells into adipocytes simultaneously. Thus, the TCCF2022 cell line can be used to improve muscle fiber formation and lipid composition, potentially enhancing the nutritional profile and flavor of cultured fish meat. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

16 pages, 1931 KiB  
Article
Single Cell RNA Sequencing of Papillary Cancer Mesenchymal Stem/Stromal Cells Reveals a Transcriptional Profile That Supports a Role for These Cells in Cancer Progression
by Danny Jandu, Nani Latar, Artida Bajrami, Rachel Queen, Megan Hasoon, Matthew Teasdale, Rafiqul Hussain, Jonathan Coxhead, Sebastian Aspinall and Annette Meeson
Int. J. Mol. Sci. 2025, 26(10), 4957; https://doi.org/10.3390/ijms26104957 - 21 May 2025
Viewed by 792
Abstract
Papillary thyroid cancer (PTC) contains mesenchymal stem/stromal cells (MSCs), but their contribution to PTC progression is not clear. In this study, we compared the transcriptional signatures of normal thyroid (NT) and PTC-derived MSCs with the aim of determining if these have distinct transcriptomes [...] Read more.
Papillary thyroid cancer (PTC) contains mesenchymal stem/stromal cells (MSCs), but their contribution to PTC progression is not clear. In this study, we compared the transcriptional signatures of normal thyroid (NT) and PTC-derived MSCs with the aim of determining if these have distinct transcriptomes that might influence PTC progression. We used flow cytometry in combination with a panel of MSC clusters of differentiation (CD) markers and showed that both thyroid MSC populations expressed MSC markers and lacked expression of markers not normally expressed by MSCs. In addition, we determined that both MSC populations could differentiate to adipocytes and osteocytes. Analysis of single cell RNA sequencing data from both MSC populations revealed, regardless of tissue of origin, that both contained similar numbers of subpopulations. Cluster analysis revealed similarity in expression of both MSC populations for stromal markers, the vascular marker VEGFA and the smooth muscle marker CALD1, while smaller subpopulations expressed markers of more lineage-committed thyroid cells. PTC MSCs also showed upregulated expression of 28 genes, many of which are known to be involved in epithelial–mesenchymal transition (EMT) and/or disease progression in several types of cancers, including but not limited to breast cancer, gastric cancer, cervical carcinoma, bladder cancer and thyroid cancer. This included several members of the S100 and IGFBP gene families. Taken together, these data support a role for PTC MSCs in PTC progression. Full article
Show Figures

Figure 1

17 pages, 1143 KiB  
Review
New Perspectives on the Molecular Action of Metformin in the Context of Cellular Transduction and Adipogenesis
by Jorge Enrique González-Casanova, Mario Navarro-Marquez, Tamara Saez-Tamayo, Lissé Angarita, Samuel Durán-Agüero, Héctor Fuentes-Barría, Valmore Bermúdez and Diana Marcela Rojas-Gómez
Int. J. Mol. Sci. 2025, 26(8), 3690; https://doi.org/10.3390/ijms26083690 - 14 Apr 2025
Viewed by 1264
Abstract
Metformin, a widely used antidiabetic drug, modulates the cellular physiology and metabolism of various body tissues, including adipose tissue. Adipogenesis, a complex process in which mesenchymal stem cells (MSC) differentiate into functional adipocytes, plays a key role in metabolic health and represents a [...] Read more.
Metformin, a widely used antidiabetic drug, modulates the cellular physiology and metabolism of various body tissues, including adipose tissue. Adipogenesis, a complex process in which mesenchymal stem cells (MSC) differentiate into functional adipocytes, plays a key role in metabolic health and represents a potential therapeutic target for diverse metabolic disorders. Notably, recent evidence suggests that metformin modulates adipocyte differentiation. This narrative review explores the effects of metformin on cellular metabolism, with a particular focus on adipogenesis. The findings compiled in this review show that metformin regulates glucose and lipid metabolism in multiple tissues, including skeletal muscle, adipose tissue, liver, and intestine. Furthermore, metformin modulates adipogenesis through AMP-activated protein kinase (AMPK)-dependent and independent mechanisms in 3T3-L1 cells and adipose-derived stem cells. The review also emphasizes that metformin can promote or inhibit adipogenesis and lipid accumulation, depending on its concentration. Additionally, metformin attenuates inflammatory pathways by reducing the production of proinflammatory cytokines such as IL-6, MCP-1, and COX-2. Finally, evidence supports that vitamin D enhances the anti-inflammatory actions of metformin and promotes cell differentiation toward a beige adipocyte phenotype. In summary, this review examines the molecular actions of metformin to propose potential new therapeutic strategies for managing obesity and related metabolic diseases. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Obesity and Metabolic Diseases)
Show Figures

Figure 1

35 pages, 3120 KiB  
Review
Regional Gene Therapy for Bone Tissue Engineering: A Current Concepts Review
by Matthew C. Gallo, Aura Elias, Julius Reynolds, Jacob R. Ball and Jay R. Lieberman
Bioengineering 2025, 12(2), 120; https://doi.org/10.3390/bioengineering12020120 - 27 Jan 2025
Cited by 2 | Viewed by 3306
Abstract
The management of segmental bone defects presents a complex reconstruction challenge for orthopedic surgeons. Current treatment options are limited by efficacy across the spectrum of injury, morbidity, and cost. Regional gene therapy is a promising tissue engineering strategy for bone repair, as it [...] Read more.
The management of segmental bone defects presents a complex reconstruction challenge for orthopedic surgeons. Current treatment options are limited by efficacy across the spectrum of injury, morbidity, and cost. Regional gene therapy is a promising tissue engineering strategy for bone repair, as it allows for local implantation of nucleic acids or genetically modified cells to direct specific protein expression. In cell-based gene therapy approaches, a variety of different cell types have been described including mesenchymal stem cells (MSCs) derived from multiple sources—bone marrow, adipose, skeletal muscle, and umbilical cord tissue, among others. MSCs, in particular, have been well studied, as they serve as a source of osteoprogenitor cells in addition to providing a vehicle for transgene delivery. Furthermore, MSCs possess immunomodulatory properties, which may support the development of an allogeneic “off-the-shelf” gene therapy product. Identifying an optimal cell type is paramount to the successful clinical translation of cell-based gene therapy approaches. Here, we review current strategies for the management of segmental bone loss in orthopedic surgery, including bone grafting, bone graft substitutes, and operative techniques. We also highlight regional gene therapy as a tissue engineering strategy for bone repair, with a focus on cell types and cell sources suitable for this application. Full article
(This article belongs to the Section Regenerative Engineering)
Show Figures

Graphical abstract

13 pages, 2021 KiB  
Article
Effect of Combining Exercise with Adipose-Derived Mesenchymal Stem Cells in Muscle Atrophy Model of Sarcopenia
by Dong-Hwa Jeong, Min-Jeong Kim and Chul-Hyun Park
Int. J. Mol. Sci. 2025, 26(2), 451; https://doi.org/10.3390/ijms26020451 - 7 Jan 2025
Viewed by 3651
Abstract
Deterioration in muscle mass, strength, and physical performance due to conditions such as sarcopenia can affect daily activities and quality of life in the elderly. Exercise and mesenchymal stem cells (MSCs) are potential therapies for sarcopenia. This study evaluates the combined effects of [...] Read more.
Deterioration in muscle mass, strength, and physical performance due to conditions such as sarcopenia can affect daily activities and quality of life in the elderly. Exercise and mesenchymal stem cells (MSCs) are potential therapies for sarcopenia. This study evaluates the combined effects of exercise and adipose-derived MSCs (ADMSCs) in aged rats with sarcopenia. Eighteen-month-old rats were randomly divided into four groups: control, exercise (Ex), ADMSCs injection (MSC), and ADMSCs injection with exercise (MSC + Ex). Gastrocnemius (GCM) muscle mass increased in the Ex, MSC, and MSC + Ex groups compared to the control group. Although the mean CSA did not differ significantly between the groups, the size distribution of myofibers shifted toward larger sizes in the Ex and MSC + Ex groups. The MSC + Ex group performed best in functional tests, including the rotarod and hot plate tests. The protein expression levels of tumor necrosis factor (TNF) and the p-AMP-activated protein kinase (AMPK)/AMPK ratio in the GCM muscle were the lowest in the MSC + Ex group. This study demonstrates that combining exercise and ADMSC interventions was the most effective treatment for aged sarcopenic rats, suggesting a potential synergistic approach for sarcopenia treatment. Full article
(This article belongs to the Special Issue Biomolecular Basis of Life Processes)
Show Figures

Figure 1

30 pages, 911 KiB  
Review
Therapeutic Efficacy and Promise of Human Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles in Aging and Age-Related Disorders
by Anyuan Zhang, Qiubai Li and Zhichao Chen
Int. J. Mol. Sci. 2025, 26(1), 225; https://doi.org/10.3390/ijms26010225 - 30 Dec 2024
Cited by 5 | Viewed by 2628
Abstract
The global issue of aging populations has become increasingly prominent, thus the research and development for anti-aging therapies to assure longevity as well as to ameliorate age-related complications is put high on the agenda. The young humoral milieu has been substantiated to impart [...] Read more.
The global issue of aging populations has become increasingly prominent, thus the research and development for anti-aging therapies to assure longevity as well as to ameliorate age-related complications is put high on the agenda. The young humoral milieu has been substantiated to impart youthful characteristics to aged cells or organs. Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membrane-limited structures that serve as couriers of proteins and genetic material to regulate intercellular communication. Of note, EVs appeared to be an indispensable component of young blood in prolonging lifespans, and circulating EVs have been indicated to mediate the beneficial effect of a young milieu on aging. Human umbilical cord mesenchymal stem cell-derived EVs (HUCMSC-EVs), isolated from the youngest adult stem cell source, are speculated to reproduce the function of circulating EVs in young blood and partially revitalize numerous organs in old animals. Robust evidence has suggested HUCMSC-EVs as muti-target therapeutic agents in combating aging and alleviating age-related degenerative disorders. Here, we provide a comprehensive overview of the anti-aging effects of HUCMSC-EVs in brain, heart, vasculature, kidney, muscle, bone, and other organs. Furthermore, we critically discuss the current investigation on engineering strategies of HUCMSC-EVs, intending to unveil their full potential in the field of anti-aging research. Full article
Show Figures

Graphical abstract

25 pages, 2207 KiB  
Review
Stem Cell Therapy for the Treatment of Amyotrophic Lateral Sclerosis: Comparison of the Efficacy of Mesenchymal Stem Cells, Neural Stem Cells, and Induced Pluripotent Stem Cells
by Lauren Frawley, Noam Tomer Taylor, Olivia Sivills, Ella McPhillamy, Timothy Duy To, Yibo Wu, Beek Yoke Chin and Chiew Yen Wong
Biomedicines 2025, 13(1), 35; https://doi.org/10.3390/biomedicines13010035 - 27 Dec 2024
Cited by 2 | Viewed by 4787
Abstract
Background/Objectives: Amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, is a debilitating, incurable neurodegenerative disorder characterised by motor neuron death in the spinal cord, brainstem, and motor cortex. With an incidence rate of about 4.42 cases per 100,000 people annually, ALS severely impacts [...] Read more.
Background/Objectives: Amyotrophic lateral sclerosis (ALS), or Lou Gehrig’s disease, is a debilitating, incurable neurodegenerative disorder characterised by motor neuron death in the spinal cord, brainstem, and motor cortex. With an incidence rate of about 4.42 cases per 100,000 people annually, ALS severely impacts motor function and quality of life, causing progressive muscle atrophy, spasticity, paralysis, and eventually death. The cause of ALS is largely unknown, with 90% of cases being sporadic and 10% familial. Current research targets molecular mechanisms of inflammation, excitotoxicity, aggregation-prone proteins, and proteinopathy. Methods: This review evaluates the efficacy of three stem cell types in ALS treatment: mesenchymal stem cells (MSCs), neural stem cells (NSCs), and induced pluripotent stem cells (iPSCs). Results: MSCs, derived from various tissues, show neuroprotective and regenerative qualities, with clinical trials suggesting potential benefits but limited by small sample sizes and non-randomised designs. NSCs, isolated from the fetal spinal cord or brain, demonstrate promise in animal models but face functional integration and ethical challenges. iPSCs, created by reprogramming patient-specific somatic cells, offer a novel approach by potentially replacing or supporting neurons. iPSC therapy addresses ethical issues related to embryonic stem cells but encounters challenges regarding genotoxicity and epigenetic irregularities, somatic cell sources, privacy concerns, the need for extensive clinical trials, and high reprogramming costs. Conclusions: This research is significant for advancing ALS treatment beyond symptomatic relief and modest survival extensions to actively modifying disease progression and improving patient outcomes. Successful stem cell therapies could lead to new ALS treatments, slowing motor function loss and reducing symptom severity. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Graphical abstract

20 pages, 13806 KiB  
Article
Application of Mesenchymal Stem Cell-Derived Schwann Cell-like Cells Spared Neuromuscular Junctions and Enhanced Functional Recovery After Peripheral Nerve Injury
by Yu Hwa Nam, Ji-Sup Kim, Yoonji Yum, Juhee Yoon, Hyeryung Song, Ho-Jin Kim, Jaeseung Lim, Saeyoung Park and Sung-Chul Jung
Cells 2024, 13(24), 2137; https://doi.org/10.3390/cells13242137 - 23 Dec 2024
Viewed by 1500
Abstract
In general, the nerve cells of the peripheral nervous system regenerate normally within a certain period after the physical damage of their axon. However, when peripheral nerves are transected by trauma or tissue extraction for cancer treatment, spontaneous nerve regeneration cannot occur. Therefore, [...] Read more.
In general, the nerve cells of the peripheral nervous system regenerate normally within a certain period after the physical damage of their axon. However, when peripheral nerves are transected by trauma or tissue extraction for cancer treatment, spontaneous nerve regeneration cannot occur. Therefore, it is necessary to perform microsurgery to connect the transected nerve directly or insert a nerve conduit to connect it. In this study, we applied human tonsillar mesenchymal stem cell (TMSC)-derived Schwann cell-like cells (TMSC-SCs) to facilitate nerve regeneration and prevent muscle atrophy after neurorrhaphy. The TMSC-SCs were manufactured in a good manufacturing practice facility and termed neuronal regeneration-promoting cells (NRPCs). A rat model of peripheral nerve injury (PNI) was generated and a mixture of NRPCs and fibrin glue was transplanted into the injured nerve after neurorrhaphy. The application of NRPCs and fibrin glue led to the efficient induction of sciatic nerve regeneration, with the sparing of gastrocnemius muscles and neuromuscular junctions. This sparing effect of NRPCs toward neuromuscular junctions might prevent muscle atrophy after neurorrhaphy. These results suggest that a mixture of NRPCs and fibrin glue may be a therapeutic candidate to enable peripheral nerve and muscle regeneration in the context of neurorrhaphy in patients with PNI. Full article
(This article belongs to the Special Issue The Role of Adipose-Derived Stem Cells in Neural Regeneration)
Show Figures

Figure 1

14 pages, 3244 KiB  
Article
Adipose-Derived Mesenchymal Stem Cells (ADSCs) Have Anti-Fibrotic Effects on Lung Fibroblasts from Idiopathic Pulmonary Fibrosis (IPF) Patients
by Noriko Ouji-Sageshima, Aiko Hiyama, Makiko Kumamoto, Masahiro Kitabatake, Atsushi Hara, Ryutaro Furukawa, Shigeto Hontsu, Takeshi Kawaguchi, Noriyoshi Sawabata, Shigeo Muro and Toshihiro Ito
Cells 2024, 13(24), 2050; https://doi.org/10.3390/cells13242050 - 12 Dec 2024
Cited by 2 | Viewed by 1591
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common type of fibrosis in lungs, characterized as a chronic and progressive interstitial lung disease involving pathological findings of fibrosis with a median survival of 3 years. Despite the knowledge accumulated regarding IPF from basic and [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is the most common type of fibrosis in lungs, characterized as a chronic and progressive interstitial lung disease involving pathological findings of fibrosis with a median survival of 3 years. Despite the knowledge accumulated regarding IPF from basic and clinical research, an effective medical therapy for the condition remains to be established. Thus, it is necessary for further research, including stem cell therapy, which will provide new insights into and expectations for IPF treatment. Recently, it has been reported that one of the new therapeutic candidates for IPF is adipose-derived mesenchymal stem cells (ADSCs), which have several benefits, such as easy accessibility and minimal morbidity compared to bone marrow-derived mesenchymal stem cells. Therefore, we investigated the possibility of ADSCs as a therapeutic candidate for IPF. Using human lung fibroblasts (LFs) from IPF patients, we demonstrated that human IPF LFs cocultured with ADSCs led to reduced fibrosis-related genes. Further analysis revealed that ADSCs prevented the activation of the ERK signaling pathway in IPF LFs via the upregulation of protein tyrosine phosphatase receptor-type R (PTPRR), which negatively regulates the ERK signaling pathway. Moreover, we demonstrated that intravascular administration of ADSCs improved the pathogenesis of bleomycin-induced pulmonary fibrosis with reduced collagen deposition in histology and hydroxyproline quantification and collagen markers such as the gene expression of types I and III collagen and α-smooth muscle actin (α-SMA) in a murine model. ADSC transfer was also investigated in a humanized mouse model of lung fibrosis induced via the infusion of human IPF LFs, because the bleomycin installation model does not fully recapitulate the pathogenesis of IPF. Using the humanized mouse model, we found that intravascular administration of ADSCs also improved fibrotic changes in the lungs. These findings suggest that ADSCs are a promising therapeutic candidate for IPF. Full article
(This article belongs to the Special Issue New Insights into Adipose-Derived Stem Cells (ADSCs))
Show Figures

Figure 1

8 pages, 1402 KiB  
Brief Report
CRISPR/Cas9 Edition of the F9 Gene in Human Mesenchymal Stem Cells for Hemophilia B Therapy
by Irving Jair Lara-Navarro, Luis Felipe Jave-Suárez, Juan Antonio Marchal and Ana Rebeca Jaloma-Cruz
Life 2024, 14(12), 1640; https://doi.org/10.3390/life14121640 - 11 Dec 2024
Cited by 1 | Viewed by 2181
Abstract
Hemophilia B is a genetic disorder characterized by clotting factor IX deficiency and bleeding in joints and muscles. Current treatments involve intravenous infusion of plasma-derived products or recombinant proteins, which have limited efficacy due to the short half-life of infused proteins. Recently, gene [...] Read more.
Hemophilia B is a genetic disorder characterized by clotting factor IX deficiency and bleeding in joints and muscles. Current treatments involve intravenous infusion of plasma-derived products or recombinant proteins, which have limited efficacy due to the short half-life of infused proteins. Recently, gene therapy for bleeding disorders has offered a potential solution. This study aimed to develop an in vitro gene therapy model using the CRISPR/Cas9 system to incorporate the F9 cDNA in human mesenchymal stem cells (hMSCs) to produce clotting factor IX. RNA guide sequences targeting the promoter-exon 1 region of the F9 gene were designed to incorporate a wild-type F9 cDNA into the cells. Knockin was performed with the CRISPR/Cas9 system and pDONOR-CMV/cDNAF9/IRES/EGFP vector template recombination in Lenti-X HEK293 cells and MSCs. A lentiviral F9 cDNA vector was designed as a FIX secretor model to validate the CRISPR/Cas9 system. Results showed successful gene editing and F9 expression in both cell models, although editing efficiency was lower in hMSCs. Future investigations will focus on improving gene editing efficiency using different transfection conditions or hybrid methodologies. This study demonstrates the potential of CRISPR/Cas9-based gene therapy in hMSCs as a target for hemophilia B. Further optimizations are required to translate these findings into clinical applications. Full article
(This article belongs to the Special Issue Hemophilia)
Show Figures

Graphical abstract

18 pages, 25417 KiB  
Article
Combination of Adult Mesenchymal Stem Cell Therapy and Immunomodulation with Dimethyl Fumarate Following Spinal Cord Ventral Root Repair
by Paula Regina Gelinski Kempe, Mateus Vidigal de Castro, Lilian de Oliveira Coser, Luciana Politti Cartarozzi, Benedito Barraviera, Rui Seabra Ferreira and Alexandre Leite Rodrigues de Oliveira
Biology 2024, 13(11), 953; https://doi.org/10.3390/biology13110953 - 20 Nov 2024
Viewed by 1382
Abstract
Spinal cord injury results in significant motor and sensory loss. In the experimental ventral root avulsion (VRA) model, the ventral (motor) roots are disconnected from the spinal cord surface, disrupting contact between spinal motoneurons and muscle fibers. Axotomized motoneurons typically degenerate within two [...] Read more.
Spinal cord injury results in significant motor and sensory loss. In the experimental ventral root avulsion (VRA) model, the ventral (motor) roots are disconnected from the spinal cord surface, disrupting contact between spinal motoneurons and muscle fibers. Axotomized motoneurons typically degenerate within two to three weeks after avulsion, the situation being exacerbated by an increased glial response and chronic inflammation. Nevertheless, root reimplantation has been observed to stimulate regenerative potential in some motoneurons, serving as a model for CNS/PNS regeneration. We hypothesized that a combination of neuroprotective and immunomodulatory therapies is capable of enhancing regenerative responses following nerve root injury and repair. A heterologous fibrin biopolymer (HFB) was used for surgical repair; dimethyl fumarate (DMF) was used for neuroprotection and immunomodulation; and adipose tissue-derived mesenchymal stem cells (AT-MSCs) were used as a source of trophic factors and cytokines that may further enhance neuronal survival. Thus, adult female Lewis rats underwent unilateral VRA of the L4–L6 roots, followed by reimplantation with HFB, AT-MSCs transplantation, and daily DMF treatment for four weeks, with a 12-week postoperative survival period. An evaluation of the results focused on light microscopy, qRT-PCR, and the Catwalk motor function recovery system. Data were analyzed using one-way or two-way ANOVA (p < 0.05). The results indicate that the combined therapy resulted in a reduced glial response and a 70% improvement in behavioral motor recovery. Overall, the data support the potential of combined regenerative approaches after spinal cord root injury. Full article
(This article belongs to the Section Neuroscience)
Show Figures

Figure 1

14 pages, 2013 KiB  
Article
Electrospun PCL Nerve Wrap Coated with Graphene Oxide Supports Axonal Growth in a Rat Sciatic Nerve Injury Model
by Meaghan E. Harley-Troxell, Richard Steiner, Steven D. Newby, Austin J. Bow, Thomas J. Masi, Nicholas Millis, Alicia Adina Matavosian, Dustin Crouch, Stacy Stephenson, David E. Anderson and Madhu Dhar
Pharmaceutics 2024, 16(10), 1254; https://doi.org/10.3390/pharmaceutics16101254 - 27 Sep 2024
Cited by 4 | Viewed by 1429
Abstract
Background/Objectives: Peripheral nerve injuries (PNIs) are a debilitating problem, resulting in diminished quality of life due to the continued presence of both chronic and acute pain. The current standard of practice for the repair of PNIs larger than 10 mm is the use [...] Read more.
Background/Objectives: Peripheral nerve injuries (PNIs) are a debilitating problem, resulting in diminished quality of life due to the continued presence of both chronic and acute pain. The current standard of practice for the repair of PNIs larger than 10 mm is the use of autologous nerve grafts. Autologous nerve grafts have limitations that often result in outcomes that are not sufficient to remove motor and sensory impairments. Bio-mimetic nanocomposite scaffolds combined with mesenchymal stem cells (MSCs) represent a promising approach for PNIs. In this study, we investigated the potential of an electrospun wrap of polycaprolactone (PCL) + graphene oxide (GO), with and without xenogeneic human adipose tissue-derived MSCs (hADMSCs) to use as a platform for neural tissue engineering. Methods: We evaluated, in vitro and in vivo, the potential of the nerve wrap in providing support for axonal growth. To establish the rat sciatic nerve defect model, a 10 mm long limiting defect was created in the rat sciatic nerve of 18 Lewis rats. Rats treated with the nanocomposites were compared with autograft-treated defects. Gait, histological, and muscle analyses were performed after sacrifice at 12 weeks post-surgery. Results: Our findings demonstrate that hADMSCs had the potential to transdifferentiate into neural lineage and that the nanocomposite successfully delivered hADMSCs to the injury site. Histologically, we show that the PCL + GO nanocomposite with hADMSCs is comparable to the autologous nerve graft, to support and guide axonal growth. Conclusions: The novel PCL + GO nerve wrap and hADMSCs used in this study provide a foundation on which to build upon and generate future strategies for PNI repair. Full article
(This article belongs to the Special Issue Nanofibrous Scaffolds Application in Biomedicine)
Show Figures

Figure 1

14 pages, 1942 KiB  
Article
Revealing the Therapeutic Potential of Muscle-Derived Mesenchymal Stem/Stromal Cells: An In Vitro Model for Equine Laminitis Based on Activated Neutrophils, Anoxia–Reoxygenation, and Myeloperoxidase
by Didier Serteyn, Nazaré Storms, Ange Mouithys-Mickalad, Charlotte Sandersen, Ariane Niesten, Julien Duysens, Hélène Graide, Justine Ceusters and Thierry Franck
Animals 2024, 14(18), 2681; https://doi.org/10.3390/ani14182681 - 14 Sep 2024
Cited by 2 | Viewed by 1396
Abstract
Laminitis in horses is a crippling condition marked by the deterioration of the dermal–epidermal interface, leading to intense lameness and discomfort, often necessitating euthanasia. This study aimed to establish an in vitro model of laminitis using a continuous keratinocyte cell line exposed to [...] Read more.
Laminitis in horses is a crippling condition marked by the deterioration of the dermal–epidermal interface, leading to intense lameness and discomfort, often necessitating euthanasia. This study aimed to establish an in vitro model of laminitis using a continuous keratinocyte cell line exposed to anoxia–reoxygenation and an activated neutrophil supernatant. A significant decrease in the keratinocytes’ metabolism was noted during the reoxygenation period, indicative of cellular stress. Adding muscle-derived mesenchymal stem/stromal cells during the reoxygenation demonstrated a protective effect, restoring the keratinocytes’ metabolic activity. Moreover, the incubation of the keratinocytes with either an activated neutrophil supernatant or myeloperoxidase alone induced increased keratinocyte myeloperoxidase activity, which was modulated by stem cells. These findings underscore the potential of muscle-derived mesenchymal stem/stromal cells in mitigating inflammation and restoring keratinocyte metabolism, offering insights for future cell therapy research in laminitis treatment. Full article
Show Figures

Figure 1

16 pages, 7510 KiB  
Article
Brown Adipose Stem Cell-Loaded Resilin Elastic Hydrogel Rebuilds Cardiac Function after Myocardial Infarction via Collagen I/III Reorganisation
by Le Zhao, Huaying Liu, Rui Gao, Kaihui Zhang, Yuxuan Gong, Yaya Cui, Shen Ke, Jing Wang and Haibin Wang
Gels 2024, 10(9), 568; https://doi.org/10.3390/gels10090568 - 31 Aug 2024
Viewed by 1460
Abstract
Irreversible fibrosis following myocardial infarction (MI) stiffens the infarcted myocardium, which remains challenging to restore. This study aimed to investigate whether the injectable RLP12 hydrogel, derived from recombinant resilin protein, could serve as a vehicle for stem cells to enhance the function of [...] Read more.
Irreversible fibrosis following myocardial infarction (MI) stiffens the infarcted myocardium, which remains challenging to restore. This study aimed to investigate whether the injectable RLP12 hydrogel, derived from recombinant resilin protein, could serve as a vehicle for stem cells to enhance the function of the infarcted myocardium. The RLP12 hydrogel was prepared and injected into the myocardium of rats with MI, and brown adipose-derived mesenchymal stem cells (BADSCs) were loaded. The survival and differentiation of BADSCs in vivo were investigated using immunofluorescence one week and four weeks after treatment, respectively. The heart function, MI area, collagen deposition, and microvessel density were further assessed four weeks after treatment through echocardiography, histology, immunohistochemistry, and immunofluorescence. The RLP12 hydrogel was prepared with a shear modulus of 10–15 kPa. Four weeks after transplantation, the RLP12 hydrogel significantly improved cardiac function by increasing microvessel density and reducing infarct area size and collagen deposition in MI rats. Furthermore, the distribution ratio of collagen III to I increased in both the centre and edge areas of the MI, indicating the improved compliance of the infarct heart. Moreover, the RLP12 hydrogel also promoted the survival and differentiation of BADSCs into cardiac troponin T- and α-smooth muscle-positive cells. The RLP12 hydrogel can be utilised as an injectable vehicle of BADSCs for treating MI and regulating collagen I and III expression profiles to improve the mechanical microenvironment of the infarct site, thereby restoring heart function. The study provides novel insights into the mechanical interactions between the hydrogel and the infarct microenvironment. Full article
(This article belongs to the Special Issue Gel-Based Materials for Biomedical Engineering)
Show Figures

Figure 1

Back to TopTop