Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = multivesicular liposomes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1338 KB  
Review
Sustained-Release Intra-Articular Drug Delivery: PLGA Systems in Clinical Context and Evolving Strategies
by Jun Woo Lee, Ji Ho Park, Geon Woo Yu, Jae Won You, Min Ji Han, Myung Joo Kang and Myoung Jin Ho
Pharmaceutics 2025, 17(10), 1350; https://doi.org/10.3390/pharmaceutics17101350 - 20 Oct 2025
Cited by 3 | Viewed by 2517
Abstract
Poly(lactic-co-glycolic acid) (PLGA) sustained-release systems for intra-articular (IA) delivery aim to extend joint residence time and reduce the reinjection frequency of conventional IA therapies. This review synthesizes current understanding of PLGA degradation, the acidic microenvironment inside degrading microspheres, and release behavior in joints, [...] Read more.
Poly(lactic-co-glycolic acid) (PLGA) sustained-release systems for intra-articular (IA) delivery aim to extend joint residence time and reduce the reinjection frequency of conventional IA therapies. This review synthesizes current understanding of PLGA degradation, the acidic microenvironment inside degrading microspheres, and release behavior in joints, and surveys clinical experience with extended-release corticosteroid depots alongside emerging platforms for nonsteroidal and biologic agents. To situate PLGA within the broader IA field, we briefly summarize selected non-PLGA sustained-release approaches—such as multivesicular liposomes, hyaluronic acid conjugates, and hybrid matrices—to contextualize comparative performance and safety. For proteins and peptides, central barriers include acidification inside degrading microspheres, aggregation during fabrication and storage, and incomplete or delayed release, as illustrated by glucagon-like peptide-1 analog formulations. Mitigation strategies span pH buffering, excipient-based stabilization, and gentler manufacturing that improve encapsulation efficiency and preserve bioactivity. Translation hinges on manufacturing scale-up and quality systems that maintain critical particle attributes and enable informative in vitro–in vivo interpretation. Clinically, prolonged symptom relief after single dosing has been demonstrated for corticosteroid depots (e.g., ~50% pain reduction over 12 weeks with a single PLGA–triamcinolone injection), whereas repeat-dose safety and indication expansion beyond the knee remain active needs best addressed through multicenter trials incorporating imaging and patient-reported outcomes. Consistent real-world performance will depend on controlling batch-to-batch variability and implementing pharmacovigilance approaches suited to long dosing intervals, enabling broader clinical adoption. Full article
(This article belongs to the Special Issue Recent Advances in Injectable Formulations)
Show Figures

Figure 1

18 pages, 19280 KB  
Article
Sustained Delivery of Liraglutide Using Multivesicular Liposome Based on Mixed Phospholipids
by Runpeng Zhang, Xinyu Yao, Siqi Gao, Tingting Xu, Da Wang, Luping Sha and Li Yang
Pharmaceutics 2025, 17(2), 203; https://doi.org/10.3390/pharmaceutics17020203 - 6 Feb 2025
Viewed by 2397
Abstract
Background: Although peptides are widely used in the clinical treatment of various diseases due to their strong biological activity, they usually require frequent injections owing to their poor in vivo half-life. Therefore, there is a strong clinical need for sustained peptide formulations. Methods: [...] Read more.
Background: Although peptides are widely used in the clinical treatment of various diseases due to their strong biological activity, they usually require frequent injections owing to their poor in vivo half-life. Therefore, there is a strong clinical need for sustained peptide formulations. Methods: In this study, liraglutide (Lir) and biocompatible multivesicular liposomes (MVLs) were utilized as the model drug and sustained-release carriers, respectively. The drug release rate of Lir-MVLs was controlled by changing the ratio of SPC and DEPC with different phase transition temperatures (PTT, PTTSPC = −20 °C, PTTDEPC = 13 °C). Results: As the SPC ratio increased, Lir-MVLs had more flexible lipid membranes, poorer structural stabilization, and fewer internal vesicles with larger particle sizes, contributing to faster release of Lir. After subcutaneous injection of Lir-MVLs, the blood glucose concentration (BGC) of db/db mice decreased to different levels. When the SPC-DEPC ratio was greater than 85:15, the drug release rate was too fast; the BGC remained below 16 mM for only 2–4 days, while when the drug release rate was too slow, was the case when the SPC-DEPC ratio was less than 50:50, the BGC also remained below 16 mM for only 2–3 days. However, when the SPC-DEPC ratio was 75:25, the BGC could be maintained below 16 mM for 8 days, indicating that the release properties of this ratio best met the pharmacological requirements of Lir. Conclusions: This study investigated the effects of phospholipids with different PTT on the release characteristics of Lir-MVLs, and provided ideas for the design of sustained-release peptide preparations. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

12 pages, 2577 KB  
Article
Phosphatidic Acid Accumulates at Areas of Curvature in Tubulated Lipid Bilayers and Liposomes
by Broderick L. Bills and Michelle K. Knowles
Biomolecules 2022, 12(11), 1707; https://doi.org/10.3390/biom12111707 - 17 Nov 2022
Cited by 12 | Viewed by 3617
Abstract
Phosphatidic acid (PA) is a signaling lipid that is produced enzymatically from phosphatidylcholine (PC), lysophosphatidic acid, or diacylglycerol. Compared to PC, PA lacks a choline moiety on the headgroup, making the headgroup smaller than that of PC and PA, and PA has a [...] Read more.
Phosphatidic acid (PA) is a signaling lipid that is produced enzymatically from phosphatidylcholine (PC), lysophosphatidic acid, or diacylglycerol. Compared to PC, PA lacks a choline moiety on the headgroup, making the headgroup smaller than that of PC and PA, and PA has a net negative charge. Unlike the cylindrical geometry of PC, PA, with its small headgroup relative to the two fatty acid tails, is proposed to support negatively curved membranes. Thus, PA is thought to play a role in a variety of biological processes that involve bending membranes, such as the formation of intraluminal vesicles in multivesicular bodies and membrane fusion. Using supported tubulated lipid bilayers (STuBs), the extent to which PA localizes to curved membranes was determined. STuBs were created via liposome deposition with varying concentrations of NaCl (500 mM to 1 M) on glass to form supported bilayers with connected tubules. The location of fluorescently labeled lipids relative to tubules was determined by imaging with total internal reflection or confocal fluorescence microscopy. The accumulation of various forms of PA (with acyl chains of 16:0-6:0, 16:0-12:0, 18:1-12:0) were compared to PC and the headgroup labeled phosphatidylethanolamine (PE), a lipid that has been shown to accumulate at regions of curvature. PA and PE accumulated more at tubules and led to the formation of more tubules than PC. Using large unilamellar liposomes in a dye-quenching assay, the location of the headgroup labeled PE was determined to be mostly on the outer, positively curved leaflet, whereas the tail labeled PA was located more on the inner, negatively curved leaflet. This study demonstrates that PA localizes to regions of negative curvature in liposomes and supports the formation of curved, tubulated membranes. This is one way that PA could be involved with curvature formation during a variety of cell processes. Full article
(This article belongs to the Special Issue Recent Developments in Biophysical Studies of Cell Membranes)
Show Figures

Graphical abstract

22 pages, 46401 KB  
Article
Multivesicular Liposomes for Glucose-Responsive Insulin Delivery
by Guangqu Liu, Suping He, Yu Ding, Cai Chen, Qingchun Cai and Wei Zhou
Pharmaceutics 2022, 14(1), 21; https://doi.org/10.3390/pharmaceutics14010021 - 22 Dec 2021
Cited by 16 | Viewed by 6254
Abstract
An intelligent insulin delivery system is highly desirable for diabetes management. Herein, we developed a novel glucose-responsive multivesicular liposome (MVL) for self-regulated insulin delivery using the double emulsion method. Glucose-responsive MVLs could effectively regulate insulin release in response to fluctuating glucose concentrations in [...] Read more.
An intelligent insulin delivery system is highly desirable for diabetes management. Herein, we developed a novel glucose-responsive multivesicular liposome (MVL) for self-regulated insulin delivery using the double emulsion method. Glucose-responsive MVLs could effectively regulate insulin release in response to fluctuating glucose concentrations in vitro. Notably, in situ released glucose oxidase catalyzed glucose enrichment on the MVL surface, based on the combination of (3-fluoro-4-((octyloxy)carbonyl)phenyl)boronic acid and glucose. The outer MVL membrane was destroyed when triggered by the local acidic and H2O2-enriched microenvironment induced by glucose oxidase catalysis in situ, followed by the further release of entrapped insulin. Moreover, the Alizarin red probe and molecular docking were used to clarify the glucose-responsive mechanism of MVLs. Utilizing chemically induced type 1 diabetic rats, we demonstrated that the glucose-responsive MVLs could effectively regulate blood glucose levels within a normal range. Our findings suggest that glucose-responsive MVLs with good biocompatibility may have promising applications in diabetes treatment. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

13 pages, 1660 KB  
Review
Critical Review of the Evolution of Extracellular Vesicles’ Knowledge: From 1946 to Today
by Erica Bazzan, Mariaenrica Tinè, Alvise Casara, Davide Biondini, Umberto Semenzato, Elisabetta Cocconcelli, Elisabetta Balestro, Marco Damin, Claudia Maria Radu, Graziella Turato, Simonetta Baraldo, Paolo Simioni, Paolo Spagnolo, Marina Saetta and Manuel G. Cosio
Int. J. Mol. Sci. 2021, 22(12), 6417; https://doi.org/10.3390/ijms22126417 - 15 Jun 2021
Cited by 121 | Viewed by 8944
Abstract
Extracellular vesicles (EVs) are a family of particles/vesicles present in blood and body fluids, composed of phospholipid bilayers that carry a variety of molecules that can mediate cell communication, modulating crucial cell processes such as homeostasis, induction/dampening of inflammation, and promotion of repair. [...] Read more.
Extracellular vesicles (EVs) are a family of particles/vesicles present in blood and body fluids, composed of phospholipid bilayers that carry a variety of molecules that can mediate cell communication, modulating crucial cell processes such as homeostasis, induction/dampening of inflammation, and promotion of repair. Their existence, initially suspected in 1946 and confirmed in 1967, spurred a sharp increase in the number of scientific publications. Paradoxically, the increasing interest for EV content and function progressively reduced the relevance for a precise nomenclature in classifying EVs, therefore leading to a confusing scientific production. The aim of this review was to analyze the evolution of the progress in the knowledge and definition of EVs over the years, with an overview of the methodologies used for the identification of the vesicles, their cell of origin, and the detection of their cargo. The MISEV 2018 guidelines for the proper recognition nomenclature and ways to study EVs are summarized. The review finishes with a “more questions than answers” chapter, in which some of the problems we still face to fully understand the EV function and potential as a diagnostic and therapeutic tool are analyzed. Full article
(This article belongs to the Special Issue Thrombo-Inflammatory Extracellular Vesicles)
Show Figures

Figure 1

17 pages, 1922 KB  
Article
Liposomal Bupivacaine (Bupigel) Demonstrates Minimal Local Nerve Toxicity in a Rabbit Functional Model
by Yaelle Bavli, Malcolm Rabie, Yakov Fellig, Yoram Nevo and Yechezkel Barenholz
Pharmaceutics 2021, 13(2), 185; https://doi.org/10.3390/pharmaceutics13020185 - 1 Feb 2021
Cited by 8 | Viewed by 4118
Abstract
We previously reported the development of a novel formulation of an ultra-long-acting local anesthetic based on bupivacaine encapsulated in large multivesicular liposomes (Bupisomes) embedded in hydrogel. This formulation (Bupigel) prolonged bupivacaine release from the formulation in dissolution-like studies in vitro and analgesia in [...] Read more.
We previously reported the development of a novel formulation of an ultra-long-acting local anesthetic based on bupivacaine encapsulated in large multivesicular liposomes (Bupisomes) embedded in hydrogel. This formulation (Bupigel) prolonged bupivacaine release from the formulation in dissolution-like studies in vitro and analgesia in vivo in mouse, rat, and pig models. In this study we assessed Bupigel neurotoxicity on rabbit sciatic nerve using histopathology and electrophysiologic testing. Sciatic nerves of both hind limbs were injected dropwise with different formulations. Nerve conduction studies and needle electromyography two weeks after perineural administration showed signs of neural damage after injection of free lidocaine and bupivacaine, while there was no sign of neural damage after injection with saline, demonstrating the validity of the method. This test also did not show evidence of motor or sensory nerve damage after injection with liposomal bupivacaine at a dose 10-times higher than free bupivacaine. Histologically, signs of neural damage could be observed with lidocaine. Nerves injected with Bupigel showed mild signs of inflammation and small residues of hydrogel in granulomas, indicating a long residence time of the hydrogel at the site of injection, but no histopathological signs of nerve damage. This demonstrated that early signs of neural damage were detected electrophysiologically, showing the usefulness and sensitivity of electrodiagnostic testing in detection of neural damage from new formulations. Full article
(This article belongs to the Special Issue Nanolipid-Based Pharmaceutical Dosages Releasing Local Anesthetics)
Show Figures

Figure 1

13 pages, 2548 KB  
Article
Binding of RNA Aptamers to Membrane Lipid Rafts: Implications for Exosomal miRNAs Transfer from Cancer to Immune Cells
by Teresa Janas, Pawel Janas, Karolina Sapoń and Tadeusz Janas
Int. J. Mol. Sci. 2020, 21(22), 8503; https://doi.org/10.3390/ijms21228503 - 12 Nov 2020
Cited by 31 | Viewed by 3675
Abstract
Intraluminal vesicles (ILVs) are released into the extracellular space as exosomes after the fusion of multivesicular bodies (MVBs) with the plasma membrane. miRNAs are delivered to the raft-like region of MVB by RNA-binding proteins (RBPs). RNA loading into exosomes can be either through [...] Read more.
Intraluminal vesicles (ILVs) are released into the extracellular space as exosomes after the fusion of multivesicular bodies (MVBs) with the plasma membrane. miRNAs are delivered to the raft-like region of MVB by RNA-binding proteins (RBPs). RNA loading into exosomes can be either through direct interaction between RNA and the raft-like region of the MVB membrane, or through interaction between an RBP–RNA complex with this raft-like region. Selection of RNA aptamers that bind to lipid raft region of liposomal membranes was performed using the selection-amplification (SELEX) method. The pool of RNA aptamers was isolated, and the binding of this pool to lipid-raft regions was demonstrated. Sequencing of clones from rafted liposome-eluted RNAs showed sequences apparently of independent origin. Bioinformatics analysis revealed the most frequent raft-motifs present within these sequences. Four raft RNA motifs, one of them an EXO motif, have been identified. These motifs appear to be most frequent both in the case of raft RNA aptamers and in the case of exosomal pro-tumoral miRNAs transferred from cancer cells to macrophages, natural killer cells and dendritic cells, thus suggesting that the selection for incorporation of these miRNAs into ILVs is based on their affinity to the raft-like region of the MVB membrane. Full article
(This article belongs to the Special Issue EVs in Cross-Talk between Cancer and Immune Cells)
Show Figures

Figure 1

17 pages, 3028 KB  
Article
Preparation and Evaluation of Intraperitoneal Long-Acting Oxaliplatin-Loaded Multi-Vesicular Liposomal Depot for Colorectal Cancer Treatment
by Sharif Md Abuzar, Eun Jung Park, Yeji Seo, Juseung Lee, Seung Hyuk Baik and Sung-Joo Hwang
Pharmaceutics 2020, 12(8), 736; https://doi.org/10.3390/pharmaceutics12080736 - 5 Aug 2020
Cited by 49 | Viewed by 5493
Abstract
Colorectal cancer with peritoneal metastasis has a poor prognosis because of inadequate responses to systemic chemotherapy. Cytoreductive surgery followed by intraperitoneal (IP) chemotherapy using oxaliplatin has attracted attention; however, the short half-life of oxaliplatin and its rapid clearance from the peritoneal cavity limit [...] Read more.
Colorectal cancer with peritoneal metastasis has a poor prognosis because of inadequate responses to systemic chemotherapy. Cytoreductive surgery followed by intraperitoneal (IP) chemotherapy using oxaliplatin has attracted attention; however, the short half-life of oxaliplatin and its rapid clearance from the peritoneal cavity limit its clinical application. Here, a multivesicular liposomal (MVL) depot of oxaliplatin was prepared for IP administration, with an expected prolonged effect. After optimization, a combination of phospholipids, cholesterol, and triolein was used based on its ability to produce MVL depots of monomodal size distribution (1–20 µm; span 1.99) with high entrapment efficiency (EE) (92.16% ± 2.17%). An initial burst release followed by a long lag phase of drug release was observed for the MVL depots system in vitro. An in vivo pharmacokinetic study mimicking the early postoperative IP chemotherapy regimen in rats showed significantly improved bioavailability, and the mean residence time of oxaliplatin after IP administration revealed that slow and continuous erosion of the MVL particles yielded a sustained drug release. Thus, oxaliplatin-loaded MVL depots presented in this study have potential for use in the treatment of colorectal cancer. Full article
Show Figures

Graphical abstract

15 pages, 3269 KB  
Article
Multivesicular Liposomes for the Sustained Release of Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from Peanuts: Design, Characterization, and In Vitro Evaluation
by Ning Li, Aimin Shi, Qiang Wang and Guoquan Zhang
Molecules 2019, 24(9), 1746; https://doi.org/10.3390/molecules24091746 - 5 May 2019
Cited by 31 | Viewed by 5208
Abstract
The multivesicular liposome (MVL) provides a potential delivery approach to avoid the destruction of the structure of drugs by digestive enzymes of the oral cavity and gastrointestinal system. It also serves as a sustained-release drug delivery system. In this study, we aimed to [...] Read more.
The multivesicular liposome (MVL) provides a potential delivery approach to avoid the destruction of the structure of drugs by digestive enzymes of the oral cavity and gastrointestinal system. It also serves as a sustained-release drug delivery system. In this study, we aimed to incorporate a water-soluble substance into MVLs to enhance sustained release, prevent the destruction of drugs, and to expound the function of different components and their mechanism. MVLs were prepared using the spherical packing model. The morphology, structure, size distribution, and zeta potential of MVLs were examined using an optical microscope (OM), confocal microscopy (CLSM), transmission electron cryomicroscope (cryo-EM) micrograph, a Master Sizer 2000, and a zeta sizer, respectively. The digestion experiment was conducted using a bionic mouse digestive system model in vitro. An in vitro release and releasing mechanism were investigated using a dialysis method. The average particle size, polydispersity index, zeta potential, and encapsulation efficiency are 47.6 nm, 1.880, −70.5 ± 2.88 mV, and 82.00 ± 0.25%, respectively. The studies on the controlled release in vitro shows that MVLs have excellent controlled release and outstanding thermal stability. The angiotensin I-converting enzyme (ACE) inhibitory activity of ACE-inhibitory peptide (AP)-MVLs decreased only 2.84% after oral administration, and ACE inhibitory activity decreased by 5.03% after passing through the stomach. Therefore, it could serve as a promising sustained-release drug delivery system. Full article
Show Figures

Figure 1

Back to TopTop