Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = multisubunit RNA polymerase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1885 KiB  
Article
Modified Crosstalk between Phytohormones in Arabidopsis Mutants for PEP-Associated Proteins
by Ivan A. Bychkov, Aleksandra A. Andreeva, Radomira Vankova, Jozef Lacek, Natalia V. Kudryakova and Victor V. Kusnetsov
Int. J. Mol. Sci. 2024, 25(3), 1586; https://doi.org/10.3390/ijms25031586 - 27 Jan 2024
Viewed by 1547
Abstract
Plastid-encoded RNA polymerase (PEP) forms a multisubunit complex in operating chloroplasts, where PEP subunits and a sigma factor are tightly associated with 12 additional nuclear-encoded proteins. Mutants with disrupted genes encoding PEP-associated proteins (PAPs) provide unique tools for deciphering mutual relationships among phytohormones. [...] Read more.
Plastid-encoded RNA polymerase (PEP) forms a multisubunit complex in operating chloroplasts, where PEP subunits and a sigma factor are tightly associated with 12 additional nuclear-encoded proteins. Mutants with disrupted genes encoding PEP-associated proteins (PAPs) provide unique tools for deciphering mutual relationships among phytohormones. A block of chloroplast biogenesis in Arabidopsis pap mutants specifying highly altered metabolism in white tissues induced dramatic fluctuations in the content of major phytohormones and their metabolic genes, whereas hormone signaling circuits mostly remained functional. Reprogramming of the expression of biosynthetic and metabolic genes contributed to a greatly increased content of salicylic acid (SA) and a concomitant decrease in 1-aminocyclopropane-1-carboxylic acid (ACC) and oxophytodienoic acid (OPDA), precursors of ethylene and jasmonic acid, respectively, in parallel to reduced levels of abscisic acid (ABA). The lack of differences in the free levels of indole-3-acetic acid (IAA) between the pap mutants and wild-type plants was accompanied by fluctuations in the contents of IAA precursors and conjugated forms as well as multilayered changes in the expression of IAA metabolic genes. Along with cytokinin (CK) overproduction, all of these compensatory changes aim to balance plant growth and defense systems to ensure viability under highly modulated conditions. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

12 pages, 3393 KiB  
Article
Isolation, Characterization and Genomic Analysis of a Novel Jumbo Phage, AerS_266, That Infects Aeromonas salmonicida
by Vera Morozova, Igor Babkin, Yuliya Kozlova, Artem Tikunov, Tatiana Ushakova, Alevtina Bardasheva, Valeria Fedorets, Elena Zhirakovskaya and Nina Tikunova
Microorganisms 2023, 11(11), 2649; https://doi.org/10.3390/microorganisms11112649 - 28 Oct 2023
Cited by 3 | Viewed by 1950
Abstract
Aeromonas salmonicida is the causative agent of septicemia in fish, and it is associated with significant economic losses in the aquaculture industry. While piscine Aeromonas infections are mainly treated with antibiotics, the emergence of resistance in bacterial populations requires the development of alternative [...] Read more.
Aeromonas salmonicida is the causative agent of septicemia in fish, and it is associated with significant economic losses in the aquaculture industry. While piscine Aeromonas infections are mainly treated with antibiotics, the emergence of resistance in bacterial populations requires the development of alternative methods of treatment. The use of phages can be one of them. A novel A. salmonicida jumbo phage, AerS_266, was isolated and characterized. This phage infects only mesophilic A. salmonicida strains and demonstrates a slow lytic life cycle. Its genome contains 243,674 bp and 253 putative genes: 84 encode proteins with predicted functions, and 3 correspond to tRNAs. Genes encoding two multisubunit RNA polymerases, chimallin and PhuZ, were identified, and AerS_266 was thus defined as a phiKZ-like phage. While similar phages with genomes >200 kb specific to Aeromonas hydrophila and Aeromonas veronii have been previously described, AerS_266 is the first phiKZ-like phage found to infect A. salmonicida. Full article
(This article belongs to the Special Issue Bacteriophage Genomics 2.0)
Show Figures

Figure 1

23 pages, 1700 KiB  
Review
Genetically Engineered Mice Unveil In Vivo Roles of the Mediator Complex
by Leonid A. Ilchuk, Marina V. Kubekina, Yulia D. Okulova, Yulia Yu. Silaeva, Victor V. Tatarskiy, Maxim A. Filatov and Alexandra V. Bruter
Int. J. Mol. Sci. 2023, 24(11), 9330; https://doi.org/10.3390/ijms24119330 - 26 May 2023
Cited by 7 | Viewed by 3038
Abstract
The Mediator complex is a multi-subunit protein complex which plays a significant role in the regulation of eukaryotic gene transcription. It provides a platform for the interaction of transcriptional factors and RNA polymerase II, thus coupling external and internal stimuli with transcriptional programs. [...] Read more.
The Mediator complex is a multi-subunit protein complex which plays a significant role in the regulation of eukaryotic gene transcription. It provides a platform for the interaction of transcriptional factors and RNA polymerase II, thus coupling external and internal stimuli with transcriptional programs. Molecular mechanisms underlying Mediator functioning are intensively studied, although most often using simple models such as tumor cell lines and yeast. Transgenic mouse models are required to study the role of Mediator components in physiological processes, disease, and development. As constitutive knockouts of most of the Mediator protein coding genes are embryonically lethal, conditional knockouts and corresponding activator strains are needed for these studies. Recently, they have become more easily available with the development of modern genetic engineering techniques. Here, we review existing mouse models for studying the Mediator, and data obtained in corresponding experiments. Full article
(This article belongs to the Special Issue Transgenic and Genetically Engineered Animal and Cell Culture Models)
Show Figures

Figure 1

23 pages, 1782 KiB  
Review
On the Role of TATA Boxes and TATA-Binding Protein in Arabidopsis thaliana
by L. K. Savinkova, E. B. Sharypova and N. A. Kolchanov
Plants 2023, 12(5), 1000; https://doi.org/10.3390/plants12051000 - 22 Feb 2023
Cited by 11 | Viewed by 9582
Abstract
For transcription initiation by RNA polymerase II (Pol II), all eukaryotes require assembly of basal transcription machinery on the core promoter, a region located approximately in the locus spanning a transcription start site (−50; +50 bp). Although Pol II is a complex multi-subunit [...] Read more.
For transcription initiation by RNA polymerase II (Pol II), all eukaryotes require assembly of basal transcription machinery on the core promoter, a region located approximately in the locus spanning a transcription start site (−50; +50 bp). Although Pol II is a complex multi-subunit enzyme conserved among all eukaryotes, it cannot initiate transcription without the participation of many other proteins. Transcription initiation on TATA-containing promoters requires the assembly of the preinitiation complex; this process is triggered by an interaction of TATA-binding protein (TBP, a component of the general transcription factor TFIID (transcription factor II D)) with a TATA box. The interaction of TBP with various TATA boxes in plants, in particular Arabidopsis thaliana, has hardly been investigated, except for a few early studies that addressed the role of a TATA box and substitutions in it in plant transcription systems. This is despite the fact that the interaction of TBP with TATA boxes and their variants can be used to regulate transcription. In this review, we examine the roles of some general transcription factors in the assembly of the basal transcription complex, as well as functions of TATA boxes of the model plant A. thaliana. We review examples showing not only the involvement of TATA boxes in the initiation of transcription machinery assembly but also their indirect participation in plant adaptation to environmental conditions in responses to light and other phenomena. Examples of an influence of the expression levels of A. thaliana TBP1 and TBP2 on morphological traits of the plants are also examined. We summarize available functional data on these two early players that trigger the assembly of transcription machinery. This information will deepen the understanding of the mechanisms underlying transcription by Pol II in plants and will help to utilize the functions of the interaction of TBP with TATA boxes in practice. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

19 pages, 5843 KiB  
Article
Investigation of Multi-Subunit Mycobacterium tuberculosis DNA-Directed RNA Polymerase and Its Rifampicin Resistant Mutants
by Mokgerwa Zacharia Monama, Fisayo Olotu and Özlem Tastan Bishop
Int. J. Mol. Sci. 2023, 24(4), 3313; https://doi.org/10.3390/ijms24043313 - 7 Feb 2023
Cited by 10 | Viewed by 3032
Abstract
Emerging Mycobacterium tuberculosis (Mtb) resistant strains have continued to limit the efficacies of existing antitubercular therapies. More specifically, mutations in the RNA replicative machinery of Mtb, RNA polymerase (RNAP), have been widely linked to rifampicin (RIF) resistance, which has led [...] Read more.
Emerging Mycobacterium tuberculosis (Mtb) resistant strains have continued to limit the efficacies of existing antitubercular therapies. More specifically, mutations in the RNA replicative machinery of Mtb, RNA polymerase (RNAP), have been widely linked to rifampicin (RIF) resistance, which has led to therapeutic failures in many clinical cases. Moreover, elusive details on the underlying mechanisms of RIF-resistance caused by Mtb-RNAP mutations have hampered the development of new and efficient drugs that are able to overcome this challenge. Therefore, in this study we attempt to resolve the molecular and structural events associated with RIF-resistance in nine clinically reported missense Mtb RNAP mutations. Our study, for the first time, investigated the multi-subunit Mtb RNAP complex and findings revealed that the mutations commonly disrupted structural–dynamical attributes that may be essential for the protein’s catalytic functions, particularly at the βfork loop 2, β’zinc-binding domain, the β’ trigger loop and β’jaw, which in line with previous experimental reports, are essential for RNAP processivity. Complementarily, the mutations considerably perturbed the RIF-BP, which led to alterations in the active orientation of RIF needed to obstruct RNA extension. Consequentially, essential interactions with RIF were lost due to the mutation-induced repositioning with corresponding reductions in the binding affinity of the drug observed in majority of the mutants. We believe these findings will significantly aid future efforts in the discovery of new treatment options with the potential to overcome antitubercular resistance. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

12 pages, 2295 KiB  
Review
How to Shut Down Transcription in Archaea during Virus Infection
by Simona Pilotto and Finn Werner
Microorganisms 2022, 10(9), 1824; https://doi.org/10.3390/microorganisms10091824 - 13 Sep 2022
Cited by 2 | Viewed by 2270
Abstract
Multisubunit RNA polymerases (RNAPs) carry out transcription in all domains of life; during virus infection, RNAPs are targeted by transcription factors encoded by either the cell or the virus, resulting in the global repression of transcription with distinct outcomes for different host–virus combinations. [...] Read more.
Multisubunit RNA polymerases (RNAPs) carry out transcription in all domains of life; during virus infection, RNAPs are targeted by transcription factors encoded by either the cell or the virus, resulting in the global repression of transcription with distinct outcomes for different host–virus combinations. These repressors serve as versatile molecular probes to study RNAP mechanisms, as well as aid the exploration of druggable sites for the development of new antibiotics. Here, we review the mechanisms and structural basis of RNAP inhibition by the viral repressor RIP and the crenarchaeal negative regulator TFS4, which follow distinct strategies. RIP operates by occluding the DNA-binding channel and mimicking the initiation factor TFB/TFIIB. RIP binds tightly to the clamp and locks it into one fixed position, thereby preventing conformational oscillations that are critical for RNAP function as it progresses through the transcription cycle. TFS4 engages with RNAP in a similar manner to transcript cleavage factors such as TFS/TFIIS through the NTP-entry channel; TFS4 interferes with the trigger loop and bridge helix within the active site by occlusion and allosteric mechanisms, respectively. The conformational changes in RNAP described above are universally conserved and are also seen in inactive dimers of eukaryotic RNAPI and several inhibited RNAP complexes of both bacterial and eukaryotic RNA polymerases, including inactive states that precede transcription termination. A comparison of target sites and inhibitory mechanisms reveals that proteinaceous repressors and RNAP-specific antibiotics use surprisingly common ways to inhibit RNAP function. Full article
Show Figures

Figure 1

14 pages, 3158 KiB  
Article
ScRpb4, Encoding an RNA Polymerase Subunit from Sugarcane, Is Ubiquitously Expressed and Resilient to Changes in Response to Stress Conditions
by Taehoon Kim, Fábio Ometto Dias, Agustina Gentile, Marcelo Menossi and Kevin Begcy
Agriculture 2022, 12(1), 81; https://doi.org/10.3390/agriculture12010081 - 9 Jan 2022
Cited by 3 | Viewed by 2284
Abstract
RNA polymerase II is an essential multiprotein complex that transcribes thousands of genes, being a fundamental component of the transcription initiation complex. In eukaryotes, RNA polymerase II is formed by a 10-multisubunit conserved core complex, and two additional peripheral subunits, Rpb4 and Rpb7, [...] Read more.
RNA polymerase II is an essential multiprotein complex that transcribes thousands of genes, being a fundamental component of the transcription initiation complex. In eukaryotes, RNA polymerase II is formed by a 10-multisubunit conserved core complex, and two additional peripheral subunits, Rpb4 and Rpb7, form the Rpb4/7 subcomplex. Although transcription is vital for cell and organismal viability, little is known about the transcription initiation complex in sugarcane. An initial characterization of the sugarcane RNA polymerase subunit IV (ScRpb4) was performed. Our results demonstrate that ScRpb4 is evolutionarily conserved across kingdoms. At the molecular level, ScRpb4 expression was found in vegetative and reproductive tissues. Furthermore, the expression of ScRpb4 remained stable under various stress conditions, most likely to ensure a proper transcriptional response. Optimal conditions to express ScRpb4 in vitro for further studies were also identified. In this study, an initial characterization of the sugarcane polymerase II subunit IV is presented. Our results open the window to more specific experiments to study ScRpb4 function, for instance, crystal structure determination and pull-down assays as well as their function under biotic and abiotic stresses. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stresses in Crop Plants)
Show Figures

Figure 1

24 pages, 2244 KiB  
Review
Cdk8 Kinase Module: A Mediator of Life and Death Decisions in Times of Stress
by Brittany Friedson and Katrina F. Cooper
Microorganisms 2021, 9(10), 2152; https://doi.org/10.3390/microorganisms9102152 - 15 Oct 2021
Cited by 14 | Viewed by 7221
Abstract
The Cdk8 kinase module (CKM) of the multi-subunit mediator complex plays an essential role in cell fate decisions in response to different environmental cues. In the budding yeast S. cerevisiae, the CKM consists of four conserved subunits (cyclin C and its cognate [...] Read more.
The Cdk8 kinase module (CKM) of the multi-subunit mediator complex plays an essential role in cell fate decisions in response to different environmental cues. In the budding yeast S. cerevisiae, the CKM consists of four conserved subunits (cyclin C and its cognate cyclin-dependent kinase Cdk8, Med13, and Med12) and predominantly negatively regulates a subset of stress responsive genes (SRG’s). Derepression of these SRG’s is accomplished by disassociating the CKM from the mediator, thus allowing RNA polymerase II-directed transcription. In response to cell death stimuli, cyclin C translocates to the mitochondria where it induces mitochondrial hyper-fission and promotes regulated cell death (RCD). The nuclear release of cyclin C requires Med13 destruction by the ubiquitin-proteasome system (UPS). In contrast, to protect the cell from RCD following SRG induction induced by nutrient deprivation, cyclin C is rapidly destroyed by the UPS before it reaches the cytoplasm. This enables a survival response by two mechanisms: increased ATP production by retaining reticular mitochondrial morphology and relieving CKM-mediated repression on autophagy genes. Intriguingly, nitrogen starvation also stimulates Med13 destruction but through a different mechanism. Rather than destruction via the UPS, Med13 proteolysis occurs in the vacuole (yeast lysosome) via a newly identified Snx4-assisted autophagy pathway. Taken together, these findings reveal that the CKM regulates cell fate decisions by both transcriptional and non-transcriptional mechanisms, placing it at a convergence point between cell death and cell survival pathways. Full article
Show Figures

Figure 1

27 pages, 3695 KiB  
Review
Composition of Transcription Machinery and Its Crosstalk with Nucleoid-Associated Proteins and Global Transcription Factors
by Georgi Muskhelishvili, Patrick Sobetzko, Sanja Mehandziska and Andrew Travers
Biomolecules 2021, 11(7), 924; https://doi.org/10.3390/biom11070924 - 22 Jun 2021
Cited by 10 | Viewed by 3715
Abstract
The coordination of bacterial genomic transcription involves an intricate network of interdependent genes encoding nucleoid-associated proteins (NAPs), DNA topoisomerases, RNA polymerase subunits and modulators of transcription machinery. The central element of this homeostatic regulatory system, integrating the information on cellular physiological state and [...] Read more.
The coordination of bacterial genomic transcription involves an intricate network of interdependent genes encoding nucleoid-associated proteins (NAPs), DNA topoisomerases, RNA polymerase subunits and modulators of transcription machinery. The central element of this homeostatic regulatory system, integrating the information on cellular physiological state and producing a corresponding transcriptional response, is the multi-subunit RNA polymerase (RNAP) holoenzyme. In this review article, we argue that recent observations revealing DNA topoisomerases and metabolic enzymes associated with RNAP supramolecular complex support the notion of structural coupling between transcription machinery, DNA topology and cellular metabolism as a fundamental device coordinating the spatiotemporal genomic transcription. We analyse the impacts of various combinations of RNAP holoenzymes and global transcriptional regulators such as abundant NAPs, on genomic transcription from this viewpoint, monitoring the spatiotemporal patterns of couplons—overlapping subsets of the regulons of NAPs and RNAP sigma factors. We show that the temporal expression of regulons is by and large, correlated with that of cognate regulatory genes, whereas both the spatial organization and temporal expression of couplons is distinctly impacted by the regulons of NAPs and sigma factors. We propose that the coordination of the growth phase-dependent concentration gradients of global regulators with chromosome configurational dynamics determines the spatiotemporal patterns of genomic expression. Full article
Show Figures

Figure 1

16 pages, 4160 KiB  
Article
Remdesivir and Ledipasvir among the FDA-Approved Antiviral Drugs Have Potential to Inhibit SARS-CoV-2 Replication
by Rameez Hassan Pirzada, Muhammad Haseeb, Maria Batool, MoonSuk Kim and Sangdun Choi
Cells 2021, 10(5), 1052; https://doi.org/10.3390/cells10051052 - 29 Apr 2021
Cited by 32 | Viewed by 5904
Abstract
The rapid spread of the virus, the surge in the number of deaths, and the unavailability of specific SARS-CoV-2 drugs thus far necessitate the identification of drugs with anti-COVID-19 activity. SARS-CoV-2 enters the host cell and assembles a multisubunit RNA-dependent RNA polymerase (RdRp) [...] Read more.
The rapid spread of the virus, the surge in the number of deaths, and the unavailability of specific SARS-CoV-2 drugs thus far necessitate the identification of drugs with anti-COVID-19 activity. SARS-CoV-2 enters the host cell and assembles a multisubunit RNA-dependent RNA polymerase (RdRp) complex of viral nonstructural proteins that plays a substantial role in the transcription and replication of the viral genome. Therefore, RdRp is among the most suitable targets in RNA viruses. Our aim was to investigate the FDA approved antiviral drugs having potential to inhibit the viral replication. The methodology adopted was virtual screening and docking of FDA-approved antiviral drugs into the RdRp protein. Top hits were selected and subjected to molecular dynamics simulations to understand the dynamics of RdRp in complex with these drugs. The antiviral activity of the drugs against SARS-CoV-2 was assessed in Vero E6 cells. Notably, both remdesivir (half-maximal effective concentration (EC50) 6.6 μM, 50% cytotoxicity concentration (CC50) > 100 µM, selectivity index (SI) = 15) and ledipasvir (EC50 34.6 μM, CC50 > 100 µM, SI > 2.9) exerted antiviral action. This study highlights the use of direct-acting antiviral drugs, alone or in combination, for better treatments of COVID-19. Full article
(This article belongs to the Special Issue Computational Modeling on Immune Cells in Infectious Diseases)
Show Figures

Figure 1

11 pages, 1358 KiB  
Review
Validation of Omega Subunit of RNA Polymerase as a Functional Entity
by Unnatiben Rajeshbhai Patel, Sudhanshu Gautam and Dipankar Chatterji
Biomolecules 2020, 10(11), 1588; https://doi.org/10.3390/biom10111588 - 23 Nov 2020
Cited by 9 | Viewed by 3866
Abstract
The bacterial RNA polymerase (RNAP) is a multi-subunit protein complex (α2ββ’ω σ) containing the smallest subunit, ω. Although identified early in RNAP research, its function remained ambiguous and shrouded with controversy for a considerable period. It was shown before that the protein has [...] Read more.
The bacterial RNA polymerase (RNAP) is a multi-subunit protein complex (α2ββ’ω σ) containing the smallest subunit, ω. Although identified early in RNAP research, its function remained ambiguous and shrouded with controversy for a considerable period. It was shown before that the protein has a structural role in maintaining the conformation of the largest subunit, β’, and its recruitment in the enzyme assembly. Despite evolutionary conservation of ω and its role in the assembly of RNAP, E. coli mutants lacking rpoZ (codes for ω) are viable due to the association of the global chaperone protein GroEL with RNAP. To get a better insight into the structure and functional role of ω during transcription, several dominant lethal mutants of ω were isolated. The mutants showed higher binding affinity compared to that of native ω to the α2ββ’ subassembly. We observed that the interaction between α2ββ’ and these lethal mutants is driven by mostly favorable enthalpy and a small but unfavorable negative entropy term. However, during the isolation of these mutants we isolated a silent mutant serendipitously, which showed a lethal phenotype. Silent mutant of a given protein is defined as a protein having the same sequence of amino acids as that of wild type but having mutation in the gene with alteration in base sequence from more frequent code to less frequent one due to codon degeneracy. Eventually, many silent mutants were generated to understand the role of rare codons at various positions in rpoZ. We observed that the dominant lethal mutants of ω having either point mutation or silent in nature are more structured in comparison to the native ω. However, the silent code’s position in the reading frame of rpoZ plays a role in the structural alteration of the translated protein. This structural alteration in ω makes it more rigid, which affects the plasticity of the interacting domain formed by ω and α2ββ’. Here, we attempted to describe how the conformational flexibility of the ω helps in maintaining the plasticity of the active site of RNA polymerase. The dominant lethal mutant of ω has a suppressor mapped near the catalytic center of the β’ subunit, and it is the same for both types of mutants. Full article
Show Figures

Figure 1

13 pages, 2009 KiB  
Review
Multisubunit RNA Polymerases of Jumbo Bacteriophages
by Maria L. Sokolova, Inna Misovetc and Konstantin V. Severinov
Viruses 2020, 12(10), 1064; https://doi.org/10.3390/v12101064 - 23 Sep 2020
Cited by 27 | Viewed by 5580
Abstract
Prokaryotic viruses with DNA genome longer than 200 kb are collectively referred to as “jumbo phages”. Some representatives of this phylogenetically diverse group encode two DNA-dependent RNA polymerases (RNAPs)—a virion RNAP and a non-virion RNAP. In contrast to most other phage-encoded RNAPs, the [...] Read more.
Prokaryotic viruses with DNA genome longer than 200 kb are collectively referred to as “jumbo phages”. Some representatives of this phylogenetically diverse group encode two DNA-dependent RNA polymerases (RNAPs)—a virion RNAP and a non-virion RNAP. In contrast to most other phage-encoded RNAPs, the jumbo phage RNAPs are multisubunit enzymes related to RNAPs of cellular organisms. Unlike all previously characterized multisubunit enzymes, jumbo phage RNAPs lack the universally conserved alpha subunits required for enzyme assembly. The mechanism of promoter recognition is also different from those used by cellular enzymes. For example, the AR9 phage non-virion RNAP requires uracils in its promoter and is able to initiate promoter-specific transcription from single-stranded DNA. Jumbo phages encoding multisubunit RNAPs likely have a common ancestor allowing making them a separate subgroup within the very diverse group of jumbo phages. In this review, we describe transcriptional strategies used by RNAP-encoding jumbo phages and describe the properties of characterized jumbo phage RNAPs. Full article
(This article belongs to the Special Issue Giant or Jumbo Phages)
Show Figures

Figure 1

12 pages, 2094 KiB  
Review
Enzymatic Protein Biopolymers as a Tool to Synthetize Eukaryotic Messenger Ribonucleic Acid (mRNA) with Uses in Vaccination, Immunotherapy and Nanotechnology
by Fabiola Urbina, Sebastián Morales-Pison and Edio Maldonado
Polymers 2020, 12(8), 1633; https://doi.org/10.3390/polym12081633 - 23 Jul 2020
Cited by 9 | Viewed by 3998
Abstract
Multi-subunit enzymes are protein biopolymers that are involved in many cellular processes. The enzyme that carries out the process of transcription of mRNAs is RNA polymerase II (RNAPII), which is a multi-subunit enzyme in eukaryotes. This protein biopolymer starts the transcription from specific [...] Read more.
Multi-subunit enzymes are protein biopolymers that are involved in many cellular processes. The enzyme that carries out the process of transcription of mRNAs is RNA polymerase II (RNAPII), which is a multi-subunit enzyme in eukaryotes. This protein biopolymer starts the transcription from specific sites and is positioned by transcription factors, which form a preinitiation complex (PIC) on gene promoters. To recognize and position the RNAPII and the transcription factors on the gene promoters are needed specific DNA sequences in the gene promoters, which are named promoter elements. Those gene promoter elements can vary and therefore several kinds of promoters exist, however, it appears that all promoters can use a similar pathway for PIC formation. Those pathways are discussed in this review. The in vitro transcribed mRNA can be used as vaccines to fight infectious diseases, e.g., in immunotherapy against cancer and in nanotechnology to deliver mRNA for a missing protein into the cell. We have outlined a procedure to produce an mRNA vaccine against the SARS-CoV-2 virus, which is the causing agent of the big pandemic, COVID-19, affecting human beings all over the world. The potential advantages of using eukaryotic RNAPII to synthetize large transcripts are outlined and discussed. In addition, we suggest a method to cap the mRNA at the 5′ terminus by using enzymes, which might be more effective than cap analogs. Finally, we suggest the construction of a future multi-talented RNAPII, which would be able to synthetize large mRNA and cap them in the test tube. Full article
(This article belongs to the Special Issue Protein Biopolymer II)
Show Figures

Graphical abstract

10 pages, 1966 KiB  
Communication
Mapping the Gene Expression Spectrum of Mediator Subunits in Response to Viroid Infection in Plants
by Vishnu Sukumari Nath, Ankita Shrestha, Praveen Awasthi, Ajay Kumar Mishra, Tomáš Kocábek, Jaroslav Matoušek, Andrej Sečnik, Jernej Jakše, Sebastjan Radišek and Vipin Hallan
Int. J. Mol. Sci. 2020, 21(7), 2498; https://doi.org/10.3390/ijms21072498 - 3 Apr 2020
Cited by 12 | Viewed by 4260
Abstract
The mediator (MED) represents a large, conserved, multi-subunit protein complex that regulates gene expression through interactions with RNA polymerase II and enhancer-bound transcription factors. Expanding research accomplishments suggest the predominant role of plant MED subunits in the regulation of various physiological and developmental [...] Read more.
The mediator (MED) represents a large, conserved, multi-subunit protein complex that regulates gene expression through interactions with RNA polymerase II and enhancer-bound transcription factors. Expanding research accomplishments suggest the predominant role of plant MED subunits in the regulation of various physiological and developmental processes, including the biotic stress response against bacterial and fungal pathogens. However, the involvement of MED subunits in virus/viroid pathogenesis remains elusive. In this study, we investigated for the first time the gene expression modulation of selected MED subunits in response to five viroid species (Apple fruit crinkle viroid (AFCVd), Citrus bark cracking viroid (CBCVd), Hop latent viroid (HLVd), Hop stunt viroid (HSVd), and Potato spindle tuber viroid (PSTVd)) in two model plant species (Nicotiana tabacum and N. benthamiana) and a commercially important hop (Humulus lupulus) cultivar. Our results showed a differential expression pattern of MED subunits in response to a viroid infection. The individual plant MED subunits displayed a differential and tailored expression pattern in response to different viroid species, suggesting that the MED expression is viroid- and plant species-dependent. The explicit evidence obtained from our results warrants further investigation into the association of the MED subunit with symptom development. Together, we provide a comprehensive portrait of MED subunit expression in response to viroid infection and a plausible involvement of MED subunits in fine-tuning transcriptional reprogramming in response to viroid infection, suggesting them as a potential candidate for rewiring the defense response network in plants against pathogens. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Viroids and Viroid Diseases)
Show Figures

Figure 1

23 pages, 2822 KiB  
Review
Cyclin C: The Story of a Non-Cycling Cyclin
by Jan Ježek, Daniel G. J. Smethurst, David C. Stieg, Z. A. C. Kiss, Sara E. Hanley, Vidyaramanan Ganesan, Kai-Ti Chang, Katrina F. Cooper and Randy Strich
Biology 2019, 8(1), 3; https://doi.org/10.3390/biology8010003 - 4 Jan 2019
Cited by 28 | Viewed by 10462
Abstract
The class I cyclin family is a well-studied group of structurally conserved proteins that interact with their associated cyclin-dependent kinases (Cdks) to regulate different stages of cell cycle progression depending on their oscillating expression levels. However, the role of class II cyclins, which [...] Read more.
The class I cyclin family is a well-studied group of structurally conserved proteins that interact with their associated cyclin-dependent kinases (Cdks) to regulate different stages of cell cycle progression depending on their oscillating expression levels. However, the role of class II cyclins, which primarily act as transcription factors and whose expression remains constant throughout the cell cycle, is less well understood. As a classic example of a transcriptional cyclin, cyclin C forms a regulatory sub-complex with its partner kinase Cdk8 and two accessory subunits Med12 and Med13 called the Cdk8-dependent kinase module (CKM). The CKM reversibly associates with the multi-subunit transcriptional coactivator complex, the Mediator, to modulate RNA polymerase II-dependent transcription. Apart from its transcriptional regulatory function, recent research has revealed a novel signaling role for cyclin C at the mitochondria. Upon oxidative stress, cyclin C leaves the nucleus and directly activates the guanosine 5’-triphosphatase (GTPase) Drp1, or Dnm1 in yeast, to induce mitochondrial fragmentation. Importantly, cyclin C-induced mitochondrial fission was found to increase sensitivity of both mammalian and yeast cells to apoptosis. Here, we review and discuss the biology of cyclin C, focusing mainly on its transcriptional and non-transcriptional roles in tumor promotion or suppression. Full article
(This article belongs to the Special Issue Top 35 of Biology Travel Awards 2018)
Show Figures

Figure 1

Back to TopTop