Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (283)

Search Parameters:
Keywords = multi-strategy ensemble

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4487 KB  
Article
Evaluating the Risk of Population Exposure and Socio-Cultural Shifts in Ethnic Tibetan Areas Under Future Extreme Climate Change
by Junqiu Chen, Xinqiang Zhou, Tingting Liu, Guo Lin and Bing Chen
Sustainability 2025, 17(21), 9437; https://doi.org/10.3390/su17219437 - 23 Oct 2025
Abstract
Under global warming, the frequency and intensity of extreme climate events have markedly increased. As one of the most climate-sensitive and ecologically fragile regions in the world, the Tibetan Plateau faces mounting environmental and demographic challenges. This study integrates multi-model ensemble simulations from [...] Read more.
Under global warming, the frequency and intensity of extreme climate events have markedly increased. As one of the most climate-sensitive and ecologically fragile regions in the world, the Tibetan Plateau faces mounting environmental and demographic challenges. This study integrates multi-model ensemble simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) with population projection data from the Shared Socioeconomic Pathways (SSPs) under the high-emission scenario (SSP5-8.5). Three extreme climate indices—very wet days precipitation (R95p), warm days (TX90p), and consecutive dry days (CDDs)—were analyzed to assess future changes in climate extremes (2021–2100) and their relationships with demographic dynamics across Tibetan ethnic areas. The results indicate that, under high-emission conditions, both R95p and TX90p increase significantly, while CDDs slightly decreases, though drought risks remain pronounced in central regions. Over the same period, the total population is projected to decline by nearly 60%, with substantial differences in climate risk exposure across groups: working-age adults and less-educated individuals experience the highest exposure before mid-century, followed by a decline, whereas the elderly and highly educated populations will show continuously increasing exposure, stabilizing by the end of the century. The transformation of population patterns is reshaping socio-cultural structures, highlighting the need for culturally adaptive governance to ensure the sustainability of Tibetan ethnic communities. These findings enhance our understanding of the coupled interactions among climate change, population dynamics, and cultural transitions, providing a scientific basis for integrated adaptation strategies to promote sustainable development across the Tibetan Plateau. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

29 pages, 4329 KB  
Article
Using Machine Learning for the Discovery and Development of Multitarget Flavonoid-Based Functional Products in MASLD
by Maksim Kuznetsov, Evgeniya Klein, Daria Velina, Sherzodkhon Mutallibzoda, Olga Orlovtseva, Svetlana Tefikova, Dina Klyuchnikova and Igor Nikitin
Molecules 2025, 30(21), 4159; https://doi.org/10.3390/molecules30214159 - 22 Oct 2025
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a multifactorial condition requiring multi-target therapeutic strategies beyond traditional single-marker approaches. In this work, we present a fully in silico nutraceutical screening pipeline that integrates molecular prediction, systemic aggregation, and technological design. A curated panel of [...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) represents a multifactorial condition requiring multi-target therapeutic strategies beyond traditional single-marker approaches. In this work, we present a fully in silico nutraceutical screening pipeline that integrates molecular prediction, systemic aggregation, and technological design. A curated panel of ten MASLD-relevant targets, spanning nuclear receptors (FXR, PPAR-α/γ, THR-β), lipogenic and cholesterogenic enzymes (ACC1, FASN, DGAT2, HMGCR), and transport/regulatory proteins (LIPG, FABP4), was assembled from proteomic evidence. Bioactivity records were extracted from ChEMBL, structurally standardized, and converted into RDKit descriptors. Predictive modeling employed a stacked ensemble of Random Forest, XGBoost, and CatBoost with isotonic calibration, yielding robust performance (mean cross-validated ROC-AUC 0.834; independent test ROC-AUC 0.840). Calibrated probabilities were aggregated into total activity (TA) and weighted TA metrics, combined with structural clustering (six structural clusters, twelve MOA clusters) to ensure chemical diversity. We used physiologically based pharmacokinetic (PBPK) modeling to translate probabilistic profiles into minimum simulated doses (MSDs) and chrono-specific exposure (%T>IC50) for three prototype concepts: HepatoBlend (morning powder), LiverGuard Tea (evening aqueous form), and HDL-Chews (postprandial chew). Integration of physicochemical descriptors (MW, logP, TPSA) guided carrier and encapsulation choices, addressing stability and sensory constraints. The results demonstrate that a computationally integrated pipeline can rationally generate multi-target nutraceutical formulations, linking molecular predictions with systemic coverage and practical formulation specifications, and thus provides a transferable framework for MASLD and related metabolic conditions. Full article
(This article belongs to the Special Issue Analytical Technologies and Intelligent Applications in Future Food)
Show Figures

Figure 1

15 pages, 5425 KB  
Article
Pre-Processing Ensemble Modeling Based on Faster Covariate Selection Calibration for Near-Infrared Spectroscopy
by Yonghong Wu, Yukun Zhou, Xiaojing Chen, Zhonghao Xie, Shujat Ali, Guangzao Huang, Leiming Yuan, Wen Shi, Xin Wang and Lechao Zhang
Appl. Sci. 2025, 15(21), 11325; https://doi.org/10.3390/app152111325 - 22 Oct 2025
Abstract
Ensemble techniques are crucial for preprocessing near-infrared (NIR) data, yet effectively integrating information from multiple preprocessing methods remains challenging. While multi-block approaches have been introduced to optimize preprocessing selection, they face issues such as block order dependency, slow optimization, and limited interpretability. This [...] Read more.
Ensemble techniques are crucial for preprocessing near-infrared (NIR) data, yet effectively integrating information from multiple preprocessing methods remains challenging. While multi-block approaches have been introduced to optimize preprocessing selection, they face issues such as block order dependency, slow optimization, and limited interpretability. This study proposes PFCOVSC—a fast, order-independent, and interpretable ensemble preprocessing strategy integrating multi-block fusion and variable selection. The method combines diverse preprocessed data into a unified matrix and employs the efficient fCovsel technique to select informative variables and construct an ensemble model. Evaluated against SPORT and PROSAC on three public datasets, PFCOVSC substantially reduced prediction root mean squared error (RMSE) on wheat and meat datasets by 17%, 13% and 49%, 20%, respectively, while performing comparably on tablet data. The method also demonstrated advantages in computational speed and model interpretability, offering a promising new direction for preprocessing ensemble strategies. Full article
Show Figures

Figure 1

21 pages, 7603 KB  
Article
Non-Invasive Inversion and Characteristic Analysis of Soil Moisture in 0–300 cm Agricultural Soil Layers
by Shujie Jia, Yaoyu Li, Boxin Cao, Yuwei Cheng, Abdul Sattar Mashori, Zheyu Bai, Mingyi Cui, Zhimin Zhang, Linqiang Deng and Wuping Zhang
Agriculture 2025, 15(20), 2143; https://doi.org/10.3390/agriculture15202143 - 15 Oct 2025
Viewed by 271
Abstract
Accurate profiling of deep (20–300 cm) soil moisture is crucial for precision irrigation but remains technically challenging and costly at operational scales. We systematically benchmark eight regression algorithms—including linear regression, Lasso, Ridge, elastic net, support vector regression, multi-layer perceptron (MLP), random forest (RF), [...] Read more.
Accurate profiling of deep (20–300 cm) soil moisture is crucial for precision irrigation but remains technically challenging and costly at operational scales. We systematically benchmark eight regression algorithms—including linear regression, Lasso, Ridge, elastic net, support vector regression, multi-layer perceptron (MLP), random forest (RF), and gradient boosting trees (GBDT)—that use easily accessible inputs of 0–20 cm surface soil moisture (SSM) and ten meteorological variables to non-invasively infer soil moisture at fourteen 20 cm layers. Data from a typical agricultural site in Wenxi, Shanxi (2020–2022), were divided into training and testing datasets based on temporal order (2020–2021 for training, 2022 for testing) and standardized prior to modeling. Across depths, non-linear ensemble models significantly outperform linear baselines. Ridge Regression achieves the highest accuracy at 0–20 cm, SVR performs best at 20–40 cm, and MLP yields consistently optimal performance across deep layers from 60 cm to 300 cm (R2 = 0.895–0.978, KGE = 0.826–0.985). Although ensemble models like RF and GBDT exhibit strong fitting ability, their generalization performance under temporal validation is relatively limited. Model interpretability combining SHAP, PDP, and ALE shows that surface soil moisture is the dominant predictor across all depths, with a clear attenuation trend and a critical transition zone between 160 and 200 cm. Precipitation and humidity primarily drive shallow to mid-layers (20–140 cm), whereas temperature variables gain relative importance in deeper profiles (200–300 cm). ALE analysis eliminates feature correlation biases while maintaining high predictive accuracy, confirming surface-to-deep information transmission mechanisms. We propose a depth-adaptive modeling strategy by assigning the best-performing model at each soil layer, enabling practical non-invasive deep soil moisture prediction for precision irrigation and water resource management. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 4569 KB  
Article
NeuroNet-AD: A Multimodal Deep Learning Framework for Multiclass Alzheimer’s Disease Diagnosis
by Saeka Rahman, Md Motiur Rahman, Smriti Bhatt, Raji Sundararajan and Miad Faezipour
Bioengineering 2025, 12(10), 1107; https://doi.org/10.3390/bioengineering12101107 - 15 Oct 2025
Viewed by 487
Abstract
Alzheimer’s disease (AD) is the most prevalent form of dementia. This disease significantly impacts cognitive functions and daily activities. Early and accurate diagnosis of AD, including the preliminary stage of mild cognitive impairment (MCI), is critical for effective patient care and treatment development. [...] Read more.
Alzheimer’s disease (AD) is the most prevalent form of dementia. This disease significantly impacts cognitive functions and daily activities. Early and accurate diagnosis of AD, including the preliminary stage of mild cognitive impairment (MCI), is critical for effective patient care and treatment development. Although advancements in deep learning (DL) and machine learning (ML) models improve diagnostic precision, the lack of large datasets limits further enhancements, necessitating the use of complementary data. Existing convolutional neural networks (CNNs) effectively process visual features but struggle to fuse multimodal data effectively for AD diagnosis. To address these challenges, we propose NeuroNet-AD, a novel multimodal CNN framework designed to enhance AD classifcation accuracy. NeuroNet-AD integrates Magnetic Resonance Imaging (MRI) images with clinical text-based metadata, including psychological test scores, demographic information, and genetic biomarkers. In NeuroNet-AD, we incorporate Convolutional Block Attention Modules (CBAMs) within the ResNet-18 backbone, enabling the model to focus on the most informative spatial and channel-wise features. We introduce an attention computation and multimodal fusion module, named Meta Guided Cross Attention (MGCA), which facilitates effective cross-modal alignment between images and meta-features through a multi-head attention mechanism. Additionally, we employ an ensemble-based feature selection strategy to identify the most discriminative features from the textual data, improving model generalization and performance. We evaluate NeuroNet-AD on the Alzheimer’s Disease Neuroimaging Initiative (ADNI1) dataset using subject-level 5-fold cross-validation and a held-out test set to ensure robustness. NeuroNet-AD achieved 98.68% accuracy in multiclass classification of normal control (NC), MCI, and AD and 99.13% accuracy in the binary setting (NC vs. AD) on the ADNI dataset, outperforming state-of-the-art models. External validation on the OASIS-3 dataset further confirmed the model’s generalization ability, achieving 94.10% accuracy in the multiclass setting and 98.67% accuracy in the binary setting, despite variations in demographics and acquisition protocols. Further extensive evaluation studies demonstrate the effectiveness of each component of NeuroNet-AD in improving the performance. Full article
Show Figures

Graphical abstract

23 pages, 5645 KB  
Article
Analysis and Optimization of Coagulation Efficiency for Brackish Water Reverse Osmosis Brine Based on Ensemble Approach
by Dayoung Wi, Sangho Lee, Seoyeon Lee, Song Lee, Juyoung Lee and Yongjun Choi
Water 2025, 17(20), 2928; https://doi.org/10.3390/w17202928 - 10 Oct 2025
Viewed by 303
Abstract
Reuse of wastewater through brackish water reverse osmosis presents a major challenge due to the generation of brine, which contains organic and inorganic compounds to be removed. This study focuses on analyzing and optimizing coagulation conditions for brackish reverse osmosis brine treatment by [...] Read more.
Reuse of wastewater through brackish water reverse osmosis presents a major challenge due to the generation of brine, which contains organic and inorganic compounds to be removed. This study focuses on analyzing and optimizing coagulation conditions for brackish reverse osmosis brine treatment by evaluating pollutant removal efficiencies under various scenarios and leveraging advanced modeling techniques. Jar tests were performed using polyaluminum chloride and ferric chloride, evaluating the removal of total organic carbon, turbidity, UV524, and phosphorus. Models were developed using response surface methodology, support vector machines, and random forest. Although the same data sets were used, the characteristics of these models were found to be different: Response surface methodology delivered high-fidelity, smooth response surfaces (R2 > 0.92), support vector machine pinpointed sharp threshold regions, and random forest defined robust operating plateaus. By overlaying model-specific optimum contours, the consensus regions were identified for reliable removal across total organic carbon, turbidity, and phosphate. This ensemble strategy enhanced predictive reliability and provided a comprehensive decision-support tool for multi-objective optimization. The findings underscore the potential of ensemble-based modeling to improve the design and control of brackish reverse osmosis brine treatment processes, offering a data-driven pathway for addressing one of the most critical bottlenecks in wastewater reuse systems. Full article
(This article belongs to the Topic Membrane Separation Technology Research)
Show Figures

Figure 1

19 pages, 7053 KB  
Article
Investigating the Therapeutic Mechanisms of Shen-Ling-Bai-Zhu-San in Type 2 Diabetes and Ulcerative Colitis Comorbidity: A Network Pharmacology and Molecular Simulation Approach
by Qian Yu, Shijie Sun, Tao Han, Haishui Li, Fan Yao, Dongsheng Zong and Zuojing Li
Pharmaceuticals 2025, 18(10), 1516; https://doi.org/10.3390/ph18101516 - 10 Oct 2025
Viewed by 421
Abstract
Objectives: Shen-Ling-Bai-Zhu-San (SLBZS) is a classical traditional Chinese herbal formula with spleen-invigorating and dampness-resolving properties. Recent pharmacological studies suggest its potential to regulate immune and metabolic disorders. Type 2 diabetes mellitus (T2D) and ulcerative colitis (UC) often coexist as comorbidities characterized by [...] Read more.
Objectives: Shen-Ling-Bai-Zhu-San (SLBZS) is a classical traditional Chinese herbal formula with spleen-invigorating and dampness-resolving properties. Recent pharmacological studies suggest its potential to regulate immune and metabolic disorders. Type 2 diabetes mellitus (T2D) and ulcerative colitis (UC) often coexist as comorbidities characterized by chronic inflammation, microbial imbalance, and insulin dysregulation, yet effective therapies remain limited. This study aimed to investigate the molecular mechanisms through which SLBZS may benefit T2D–UC comorbidity. Methods: An integrative multi-omics strategy was applied, combining network pharmacology, structural bioinformatics, and ensemble molecular docking–dynamics simulations. These complementary approaches were used to identify SLBZS bioactive compounds, predict their putative targets, and examine their interactions with disease-related biological networks. Results: The analyses revealed that flavonoids in SLBZS act on the SLC6A14/PI3K–AKT signaling axis, thereby modulating immune responses and improving insulin sensitivity. In addition, SLBZS was predicted to regulate the NF-κB/MAPK signaling pathways, key hubs linking inflammation and metabolic dysfunction in T2D–UC. These dual actions suggest that SLBZS can intervene in both inflammatory and metabolic processes. Conclusions: SLBZS demonstrates promising therapeutic potential for T2D–UC by targeting interconnected immune–metabolic networks. These findings not only provide mechanistic insights bridging traditional therapeutic concepts with modern pharmacology but also establish a theoretical basis for future experimental validation and clinical application. Full article
(This article belongs to the Special Issue Emerging Therapies for Diabetes and Obesity)
Show Figures

Figure 1

29 pages, 4532 KB  
Article
Exploring the Potential of Multi-Hydrological Model Weighting Schemes to Reduce Uncertainty in Runoff Projections
by Zeynep Beril Ersoy, Okan Fistikoglu and Umut Okkan
Water 2025, 17(20), 2919; https://doi.org/10.3390/w17202919 - 10 Oct 2025
Viewed by 377
Abstract
While weighted multi-model approaches are widely used to improve predictive capability, hydrological models (HMs) and their weighted combinations that perform well under past conditions may not guarantee robustness under future climate scenarios. Furthermore, the extent to which weighting schemes influence the propagation of [...] Read more.
While weighted multi-model approaches are widely used to improve predictive capability, hydrological models (HMs) and their weighted combinations that perform well under past conditions may not guarantee robustness under future climate scenarios. Furthermore, the extent to which weighting schemes influence the propagation of runoff projection uncertainty remains insufficiently explored. Therefore, this study evaluates the capacity of strategies that weight monthly scale HMs to narrow runoff projection uncertainty. Since standard approaches rely only on historical simulation skill and offer static weighting, this study introduces a refined framework, the Uncertainty Optimizing Multi-Model Ensemble (UO-MME), which dynamically considers the trade-offs between calibration performance and projection uncertainty. In performing the uncertainty decomposition, a total of 140 ensemble runoff projections, generated through a modelling chain comprising five GCMs, two emission scenarios, two downscaling methods, and seven HMs, were analyzed for Beydag and Tahtali watersheds in Türkiye. Results indicate that standard techniques, such as Bayesian model averaging, ordered weighted averaging, and Granger–Ramanathan averaging, led to either marginal reductions or noticeable increases in projection uncertainty, depending on the case and projection period. Conversely, the UO-MME achieved average reductions in projection uncertainty of around 30% across the two watersheds by balancing the influences of climate signals produced by GCMs that are reflected in the projections through HMs while maintaining high simulation accuracy, as indicated by Nash–Sutcliffe efficiency values exceeding 0.75. Although not designed to eliminate inherently irreducible uncertainty, the UO-MME framework helps temper the inflation of noisy GCM signals in runoff responses, providing more balanced hydrological projections for water resources planning. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

28 pages, 1558 KB  
Article
Multi-Fidelity Neural Network-Aided Multi-Objective Optimization Framework for Shell Structure Dynamic Analysis
by Bartosz Miller and Leonard Ziemiański
Appl. Sci. 2025, 15(19), 10783; https://doi.org/10.3390/app151910783 - 7 Oct 2025
Viewed by 441
Abstract
We address surrogate-assisted multi-objective optimization for computationally expensive structural designs. The testbed is an axisymmetric laminated composite shell whose geometry, ply angles, and plywise materials are optimized to simultaneously (i) maximize separation of selected natural frequencies from a known excitation and (ii) minimize [...] Read more.
We address surrogate-assisted multi-objective optimization for computationally expensive structural designs. The testbed is an axisymmetric laminated composite shell whose geometry, ply angles, and plywise materials are optimized to simultaneously (i) maximize separation of selected natural frequencies from a known excitation and (ii) minimize material cost. To reduce high-fidelity (HF) finite element evaluations, we develop a deep neural network surrogate framework with three variants: an HF-only baseline; a multi-fidelity (MF) pipeline using an auxiliary refinement network to convert abundant low-fidelity (LF) data into pseudo-HF labels for a single-fidelity evaluator; and a cascaded ensemble that emulates HF responses and then maps them to pseudo-experimental targets. During optimization, only surrogates are queried—no FEM calls—while final designs are verified by FEM. Pareto-front quality is quantified primarily by a normalized relative hypervolume indicator computed against an envelope approximation of the True Pareto Front, complemented where appropriate by standard indicators. A controlled training protocol and common validation regime isolate the effect of fidelity strategy from architectural choices. Results show that MF variants markedly reduce HF data requirements and improve Pareto-front quality over the HF-only baseline, offering a practical route to scalable, accurate design under strict computational budgets. Full article
(This article belongs to the Special Issue Innovations in Artificial Neural Network Applications)
Show Figures

Figure 1

32 pages, 2827 KB  
Article
Understanding Post-COVID-19 Household Vehicle Ownership Dynamics Through Explainable Machine Learning
by Mahbub Hassan, Saikat Sarkar Shraban, Ferdoushi Ahmed, Mohammad Bin Amin and Zoltán Nagy
Future Transp. 2025, 5(4), 136; https://doi.org/10.3390/futuretransp5040136 - 2 Oct 2025
Viewed by 327
Abstract
Understanding household vehicle ownership dynamics in the post-COVID-19 era is critical for designing equitable, resilient, and sustainable transportation policies. This study employs an interpretable machine learning framework to model household vehicle ownership using data from the 2022 National Household Travel Survey (NHTS)—the first [...] Read more.
Understanding household vehicle ownership dynamics in the post-COVID-19 era is critical for designing equitable, resilient, and sustainable transportation policies. This study employs an interpretable machine learning framework to model household vehicle ownership using data from the 2022 National Household Travel Survey (NHTS)—the first nationally representative U.S. dataset collected after the onset of the pandemic. A binary classification task distinguishes between single- and multi-vehicle households, applying an ensemble of algorithms, including Random Forest, XGBoost, Support Vector Machines (SVM), and Naïve Bayes. The Random Forest model achieved the highest predictive accuracy (86.9%). To address the interpretability limitations of conventional machine learning approaches, SHapley Additive exPlanations (SHAP) were applied to extract global feature importance and directionality. Results indicate that the number of drivers, household income, and vehicle age are the most influential predictors of multi-vehicle ownership, while contextual factors such as housing tenure, urbanicity, and household lifecycle stage also exert substantial influence highlighting the spatial and demographic heterogeneity in ownership behavior. Policy implications include the design of equity-sensitive strategies such as targeted mobility subsidies, vehicle scrappage incentives, and rural transit innovations. By integrating explainable artificial intelligence into national-scale transportation modeling, this research bridges the gap between predictive accuracy and interpretability, contributing to adaptive mobility strategies aligned with the United Nations Sustainable Development Goals (SDGs), particularly SDG 11 (Sustainable Cities), SDG 10 (Reduced Inequalities), and SDG 13 (Climate Action). Full article
Show Figures

Figure 1

18 pages, 7125 KB  
Article
Development of Fruit-Specific Spectral Indices and Endmember-Based Analysis for Apple Cultivar Classification Using Hyperspectral Imaging
by Ye-Jin Lee, HwangWeon Jeong, Seoyeon Lee, Eunji Ga, JeongHo Baek, Song Lim Kim, Sang-Ho Kang, Youn-Il Park, Kyung-Hwan Kim and Jae Il Lyu
Horticulturae 2025, 11(10), 1177; https://doi.org/10.3390/horticulturae11101177 - 2 Oct 2025
Viewed by 339
Abstract
Hyperspectral imaging (HSI) has emerged as a powerful tool for non-destructive phenotyping, yet fruit crop applications remain underexplored. We propose a methodological framework to enhance the spectral characterization of apple fruits by identifying robust vegetation indices (VIs) and interpretable endmembers. We screened 284 [...] Read more.
Hyperspectral imaging (HSI) has emerged as a powerful tool for non-destructive phenotyping, yet fruit crop applications remain underexplored. We propose a methodological framework to enhance the spectral characterization of apple fruits by identifying robust vegetation indices (VIs) and interpretable endmembers. We screened 284 Vis, which were evaluated using four feature selection algorithms (Boruta, MI+Lasso, RFE, and ensemble voting), generalizing across red, yellow, green, and purple apple cultivars. An ensemble criterion (≥2 algorithms) yielded 50 selected VIs from the NDSI/DSI/RSI families, preserving > 95% classification accuracy and capturing cultivar-specific variation. Pigment-sensitive wavelength bands were identified via PLS-DA VIP scores and one-vs-rest ANOVA. Using these bands, we formulated a new normalized-difference, ratio, and difference spectral indices tailored to cultivar-specific pigmentation. Several indices achieved >89% classification accuracy and showed patterns consistent with those of anthocyanin, carotenoid, and chlorophyll. A two-stage spectral unmixing pipeline (K-Means → N-FINDR) achieved the lowest reconstruction RMSE (0.043%). This multi-level strategy provides a scalable, interpretable framework for enhancing phenotypic resolution in apple hyperspectral data, contributing to fruit index development and generalized spectral analysis methods for horticultural applications. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

18 pages, 3163 KB  
Article
A Multi-Stage Deep Learning Framework for Antenna Array Synthesis in Satellite IoT Networks
by Valliammai Arunachalam, Luke Rosen, Mojisola Rachel Akinsiku, Shuvashis Dey, Rahul Gomes and Dipankar Mitra
AI 2025, 6(10), 248; https://doi.org/10.3390/ai6100248 - 1 Oct 2025
Viewed by 559
Abstract
This paper presents an innovative end-to-end framework for conformal antenna array design and beam steering in Low Earth Orbit (LEO) satellite-based IoT communication systems. We propose a multi-stage learning architecture that integrates machine learning (ML) for antenna parameter prediction with reinforcement learning (RL) [...] Read more.
This paper presents an innovative end-to-end framework for conformal antenna array design and beam steering in Low Earth Orbit (LEO) satellite-based IoT communication systems. We propose a multi-stage learning architecture that integrates machine learning (ML) for antenna parameter prediction with reinforcement learning (RL) for adaptive beam steering. The ML module predicts optimal geometric and material parameters for conformal antenna arrays based on mission-specific performance requirements such as frequency, gain, coverage angle, and satellite constraints with an accuracy of 99%. These predictions are then passed to a Deep Q-Network (DQN)-based offline RL model, which learns beamforming strategies to maximize gain toward dynamic ground terminals, without requiring real-time interaction. To enable this, a synthetic dataset grounded in statistical principles and a static dataset is generated using CST Studio Suite and COMSOL Multiphysics simulations, capturing the electromagnetic behavior of various conformal geometries. The results from both the machine learning and reinforcement learning models show that the predicted antenna designs and beam steering angles closely align with simulation benchmarks. Our approach demonstrates the potential of combining data-driven ensemble models with offline reinforcement learning for scalable, efficient, and autonomous antenna synthesis in resource-constrained space environments. Full article
Show Figures

Figure 1

23 pages, 17838 KB  
Article
Integrating Multi-Temporal Sentinel-1/2 Vegetation Signatures with Machine Learning for Enhanced Soil Salinity Mapping Accuracy in Coastal Irrigation Zones: A Case Study of the Yellow River Delta
by Junyong Zhang, Tao Liu, Wenjie Feng, Lijing Han, Rui Gao, Fei Wang, Shuang Ma, Dongrui Han, Zhuoran Zhang, Shuai Yan, Jie Yang, Jianfei Wang and Meng Wang
Agronomy 2025, 15(10), 2292; https://doi.org/10.3390/agronomy15102292 - 27 Sep 2025
Viewed by 375
Abstract
Soil salinization poses a severe threat to agricultural sustainability in the Yellow River Delta, where conventional spectral indices are limited by vegetation interference and seasonal dynamics in coastal saline-alkali landscapes. To address this, we developed an inversion framework integrating spectral indices and vegetation [...] Read more.
Soil salinization poses a severe threat to agricultural sustainability in the Yellow River Delta, where conventional spectral indices are limited by vegetation interference and seasonal dynamics in coastal saline-alkali landscapes. To address this, we developed an inversion framework integrating spectral indices and vegetation temporal features, combining multi-temporal Sentinel-2 optical data (January 2024–March 2025), Sentinel-1 SAR data, and terrain covariates. The framework employs Savitzky–Golay (SG) filtering to extract vegetation temporal indices—including NDVI temporal extremum and principal component features, capturing salt stress response mechanisms beyond single-temporal spectral indices. Based on 119 field samples and Variable Importance in Projection (VIP) feature selection, three ensemble models (XGBoost, CatBoost, LightGBM) were constructed under two strategies: single spectral features versus fused spectral and vegetation temporal features. The key results demonstrate the following: (1) The LightGBM model with fused features achieved optimal validation accuracy (R2 = 0.77, RMSE = 0.26 g/kg), outperforming single-feature models by 13% in R2. (2) SHAP analysis identified vegetation-related factors as key predictors, revealing a negative correlation between peak biomass and salinity accumulation, and the summer crop growth process affects soil salinization in the following spring. (3) The fused strategy reduced overestimation in low-salinity zones, enhanced model robustness, and significantly improved spatial gradient continuity. This study confirms that vegetation phenological features effectively mitigate agricultural interference (e.g., tillage-induced signal noise) and achieve high-resolution salinity mapping in areas where traditional spectral indices fail. The multi-temporal integration framework provides a replicable methodology for monitoring coastal salinization under complex land cover conditions. Full article
Show Figures

Figure 1

35 pages, 3558 KB  
Article
Realistic Performance Assessment of Machine Learning Algorithms for 6G Network Slicing: A Dual-Methodology Approach with Explainable AI Integration
by Sümeye Nur Karahan, Merve Güllü, Deniz Karhan, Sedat Çimen, Mustafa Serdar Osmanca and Necaattin Barışçı
Electronics 2025, 14(19), 3841; https://doi.org/10.3390/electronics14193841 - 27 Sep 2025
Viewed by 471
Abstract
As 6G networks become increasingly complex and heterogeneous, effective classification of network slicing is essential for optimizing resources and managing quality of service. While recent advances demonstrate high accuracy under controlled laboratory conditions, a critical gap exists between algorithm performance evaluation under idealized [...] Read more.
As 6G networks become increasingly complex and heterogeneous, effective classification of network slicing is essential for optimizing resources and managing quality of service. While recent advances demonstrate high accuracy under controlled laboratory conditions, a critical gap exists between algorithm performance evaluation under idealized conditions and their actual effectiveness in realistic deployment scenarios. This study presents a comprehensive comparative analysis of two distinct preprocessing methodologies for 6G network slicing classification: Pure Raw Data Analysis (PRDA) and Literature-Validated Realistic Transformations (LVRTs). We evaluate the impact of these strategies on algorithm performance, resilience characteristics, and practical deployment feasibility to bridge the laboratory–reality gap in 6G network optimization. Our experimental methodology involved testing eleven machine learning algorithms—including traditional ML, ensemble methods, and deep learning approaches—on a dataset comprising 10,000 network slicing samples (expanded to 21,033 through realistic transformations) across five network slice types. The LVRT methodology incorporates realistic operational impairments including market-driven class imbalance (9:1 ratio), multi-layer interference patterns, and systematic missing data reflecting authentic 6G deployment challenges. The experimental results revealed significant differences in algorithm behavior between the two preprocessing approaches. Under PRDA conditions, deep learning models achieved perfect accuracy (100% for CNN and FNN), while traditional algorithms ranged from 60.9% to 89.0%. However, LVRT results exposed dramatic performance variations, with accuracies spanning from 58.0% to 81.2%. Most significantly, we discovered that algorithms achieving excellent laboratory performance experience substantial degradation under realistic conditions, with CNNs showing an 18.8% accuracy loss (dropping from 100% to 81.2%), FNNs experiencing an 18.9% loss (declining from 100% to 81.1%), and Naive Bayes models suffering a 34.8% loss (falling from 89% to 58%). Conversely, SVM (RBF) and Logistic Regression demonstrated counter-intuitive resilience, improving by 14.1 and 10.3 percentage points, respectively, under operational stress, demonstrating superior adaptability to realistic network conditions. This study establishes a resilience-based classification framework enabling informed algorithm selection for diverse 6G deployment scenarios. Additionally, we introduce a comprehensive explainable artificial intelligence (XAI) framework using SHAP analysis to provide interpretable insights into algorithm decision-making processes. The XAI analysis reveals that Packet Loss Budget emerges as the dominant feature across all algorithms, while Slice Jitter and Slice Latency constitute secondary importance features. Cross-scenario interpretability consistency analysis demonstrates that CNN, LSTM, and Naive Bayes achieve perfect or near-perfect consistency scores (0.998–1.000), while SVM and Logistic Regression maintain high consistency (0.988–0.997), making them suitable for regulatory compliance scenarios. In contrast, XGBoost shows low consistency (0.106) despite high accuracy, requiring intensive monitoring for deployment. This research contributes essential insights for bridging the critical gap between algorithm development and deployment success in next-generation wireless networks, providing evidence-based guidelines for algorithm selection based on accuracy, resilience, and interpretability requirements. Our findings establish quantitative resilience boundaries: algorithms achieving >99% laboratory accuracy exhibit 58–81% performance under realistic conditions, with CNN and FNN maintaining the highest absolute accuracy (81.2% and 81.1%, respectively) despite experiencing significant degradation from laboratory conditions. Full article
Show Figures

Figure 1

25 pages, 7348 KB  
Article
Intelligent Segmentation of Urban Building Roofs and Solar Energy Potential Estimation for Photovoltaic Applications
by Junsen Zeng, Minglong Yang, Xiujuan Tang, Xiaotong Guan and Tingting Ma
J. Imaging 2025, 11(10), 334; https://doi.org/10.3390/jimaging11100334 - 25 Sep 2025
Viewed by 282
Abstract
To support dual-carbon objectives and enhance the accuracy of rooftop distributed photovoltaic (PV) planning, this study proposes a multidimensional coupled evaluation framework that integrates an improved rooftop segmentation network (CESW-TransUNet), a residual-fusion ensemble, and physics-based shading and performance simulations, thereby correcting the bias [...] Read more.
To support dual-carbon objectives and enhance the accuracy of rooftop distributed photovoltaic (PV) planning, this study proposes a multidimensional coupled evaluation framework that integrates an improved rooftop segmentation network (CESW-TransUNet), a residual-fusion ensemble, and physics-based shading and performance simulations, thereby correcting the bias of conventional 2-D area–based methods. First, CESW-TransUNet, equipped with convolution-enhanced modules, achieves robust multi-scale rooftop extraction and reaches an IoU of 78.50% on the INRIA benchmark, representing a 2.27 percentage point improvement over TransUNet. Second, the proposed residual fusion strategy adaptively integrates multiple models, including DeepLabV3+ and PSPNet, further improving the IoU to 79.85%. Finally, by coupling Ecotect-based shadow analysis with PVsyst performance modeling, the framework systematically quantifies dynamic inter-building shading, rooftop equipment occupancy, and installation suitability. A case study demonstrates that the method reduces the systematic overestimation of annual generation by 27.7% compared with traditional 2-D assessments. The framework thereby offers a quantitative, end-to-end decision tool for urban rooftop PV planning, enabling more reliable evaluation of generation and carbon-mitigation potential. Full article
Show Figures

Figure 1

Back to TopTop