Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = multi-scale hypergraph convolutional network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 19790 KB  
Article
HSF-DETR: A Special Vehicle Detection Algorithm Based on Hypergraph Spatial Features and Bipolar Attention
by Kaipeng Wang, Guanglin He and Xinmin Li
Sensors 2025, 25(14), 4381; https://doi.org/10.3390/s25144381 - 13 Jul 2025
Cited by 1 | Viewed by 1342
Abstract
Special vehicle detection in intelligent surveillance, emergency rescue, and reconnaissance faces significant challenges in accuracy and robustness under complex environments, necessitating advanced detection algorithms for critical applications. This paper proposes HSF-DETR (Hypergraph Spatial Feature DETR), integrating four innovative modules: a Cascaded Spatial Feature [...] Read more.
Special vehicle detection in intelligent surveillance, emergency rescue, and reconnaissance faces significant challenges in accuracy and robustness under complex environments, necessitating advanced detection algorithms for critical applications. This paper proposes HSF-DETR (Hypergraph Spatial Feature DETR), integrating four innovative modules: a Cascaded Spatial Feature Network (CSFNet) backbone with Cross-Efficient Convolutional Gating (CECG) for enhanced long-range detection through hybrid state-space modeling; a Hypergraph-Enhanced Spatial Feature Modulation (HyperSFM) network utilizing hypergraph structures for high-order feature correlations and adaptive multi-scale fusion; a Dual-Domain Feature Encoder (DDFE) combining Bipolar Efficient Attention (BEA) and Frequency-Enhanced Feed-Forward Network (FEFFN) for precise feature weight allocation; and a Spatial-Channel Fusion Upsampling Block (SCFUB) improving feature fidelity through depth-wise separable convolution and channel shift mixing. Experiments conducted on a self-built special vehicle dataset containing 2388 images demonstrate that HSF-DETR achieves mAP50 and mAP50-95 of 96.6% and 70.6%, respectively, representing improvements of 3.1% and 4.6% over baseline RT-DETR while maintaining computational efficiency at 59.7 GFLOPs and 18.07 M parameters. Cross-domain validation on VisDrone2019 and BDD100K datasets confirms the method’s generalization capability and robustness across diverse scenarios, establishing HSF-DETR as an effective solution for special vehicle detection in complex environments. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

13 pages, 2285 KB  
Article
STHFD: Spatial–Temporal Hypergraph-Based Model for Aero-Engine Bearing Fault Diagnosis
by Panfeng Bao, Wenjun Yi, Yue Zhu, Yufeng Shen and Boon Xian Chai
Aerospace 2025, 12(7), 612; https://doi.org/10.3390/aerospace12070612 - 7 Jul 2025
Cited by 4 | Viewed by 1106
Abstract
Accurate fault diagnosis in aerospace transmission systems is essential for ensuring equipment reliability and operational safety, especially for aero-engine bearings. However, current approaches relying on Convolutional Neural Networks (CNNs) for Euclidean data and Graph Convolutional Networks (GCNs) for non-Euclidean structures struggle to simultaneously [...] Read more.
Accurate fault diagnosis in aerospace transmission systems is essential for ensuring equipment reliability and operational safety, especially for aero-engine bearings. However, current approaches relying on Convolutional Neural Networks (CNNs) for Euclidean data and Graph Convolutional Networks (GCNs) for non-Euclidean structures struggle to simultaneously capture heterogeneous data properties and complex spatio-temporal dependencies. To address these limitations, we propose a novel Spatial–Temporal Hypergraph Fault Diagnosis framework (STHFD). Unlike conventional graphs that model pairwise relations, STHFD employs hypergraphs to represent high-order spatial–temporal correlations more effectively. Specifically, it constructs distinct spatial and temporal hyperedges to capture multi-scale relationships among fault signals. A type-aware hypergraph learning strategy is then applied to encode these correlations into discriminative embeddings. Extensive experiments on aerospace fault datasets demonstrate that STHFD achieves superior classification performance compared to state-of-the-art diagnostic models, highlighting its potential for enhancing intelligent fault detection in complex aerospace systems. Full article
Show Figures

Figure 1

19 pages, 2771 KB  
Article
Dynamic Hypergraph Convolutional Networks for Hand Motion Gesture Sequence Recognition
by Dong-Xing Jing, Kui Huang, Shi-Jian Liu, Zheng Zou and Chih-Yu Hsu
Technologies 2025, 13(6), 257; https://doi.org/10.3390/technologies13060257 - 19 Jun 2025
Viewed by 941
Abstract
This paper introduces a novel approach to hand motion gesture recognition by integrating the Fourier transform with hypergraph convolutional networks (HGCNs). Traditional recognition methods often struggle to capture the complex spatiotemporal dynamics of hand gestures. HGCNs, which are capable of modeling intricate relationships [...] Read more.
This paper introduces a novel approach to hand motion gesture recognition by integrating the Fourier transform with hypergraph convolutional networks (HGCNs). Traditional recognition methods often struggle to capture the complex spatiotemporal dynamics of hand gestures. HGCNs, which are capable of modeling intricate relationships among joints, are enhanced by Fourier transform to analyze gesture features in the frequency domain. A hypergraph is constructed to represent the interdependencies among hand joints, allowing for dynamic adjustments based on joint movements. Hypergraph convolution is applied to update node features, while the Fourier transform facilitates frequency-domain analysis. The T-Module, a multiscale temporal convolution module, aggregates features from multiple frames to capture gesture dynamics across different time scales. Experiments on the dynamic hypergraph (DHG14/28) and shape retrieval contest (SHREC’17) datasets demonstrate the effectiveness of the proposed method, achieving accuracies of 96.4% and 97.6%, respectively, and outperforming traditional gesture recognition algorithms. Ablation studies further validate the contributions of each component in enhancing recognition performance. Full article
Show Figures

Graphical abstract

21 pages, 9991 KB  
Article
Hypergraph Convolution Network Classification for Hyperspectral and LiDAR Data
by Lei Wang and Shiwen Deng
Sensors 2025, 25(10), 3092; https://doi.org/10.3390/s25103092 - 14 May 2025
Cited by 3 | Viewed by 1878
Abstract
Conventional remote sensing classification approaches based on single-source data exhibit inherent limitations, driving significant research interest in improved multimodal data fusion techniques. Although deep learning methods based on convolutional neural networks (CNNs), transformers, and graph convolutional networks (GCNs) have demonstrated promising results in [...] Read more.
Conventional remote sensing classification approaches based on single-source data exhibit inherent limitations, driving significant research interest in improved multimodal data fusion techniques. Although deep learning methods based on convolutional neural networks (CNNs), transformers, and graph convolutional networks (GCNs) have demonstrated promising results in fusing complementary multi-source data, existing methodologies demonstrate limited efficacy in capturing the intricate higher-order spatial–spectral dependencies among pixels. To overcome these limitations, we propose HGCN-HL, a novel multimodal deep learning framework that integrates hypergraph convolutional networks (HGCNs) with lightweight CNNs. Specifically, an adaptive weight mechanism is first designed to preliminarily fuse the spectral features of hyperspectral imaging (HSI) and Light Detection and Ranging (LiDAR), enhancing the feature representation ability. Then, superpixel-based dynamic hyperedge construction enables the joint characterization of homogeneous regions across both modalities, significantly boosting large-scale object recognition accuracy. Finally, local detail features are captured through a parallel CNN branch, complementing the global relationship modeling of the HGCN. Comprehensive experiments conducted on three benchmark datasets demonstrate the superior performance of our method compared to existing state-of-the-art approaches. Notably, the proposed framework achieves significant improvements in both training efficiency and inference speed while maintaining competitive accuracy. Full article
(This article belongs to the Collection Machine Learning and AI for Sensors)
Show Figures

Figure 1

19 pages, 970 KB  
Article
A Method for the Predictive Maintenance Resource Scheduling of Aircraft Based on Heterogeneous Hypergraphs
by Long Kang, Muhua He, Jiahui Zhou, Yiran Hou, Bo Xu and Haifeng Liu
Electronics 2025, 14(4), 782; https://doi.org/10.3390/electronics14040782 - 17 Feb 2025
Viewed by 1538
Abstract
The resource scheduling optimization problem in predictive maintenance is a complex operational research challenge involving reasoning about stochastic failure models and the dynamic allocation of repair resources. In recent years, resource scheduling methods based on deep learning have been increasingly applied in this [...] Read more.
The resource scheduling optimization problem in predictive maintenance is a complex operational research challenge involving reasoning about stochastic failure models and the dynamic allocation of repair resources. In recent years, resource scheduling methods based on deep learning have been increasingly applied in this field, demonstrating promising performances. Among these, resource scheduling algorithms based on heterogeneous graphs have shown exceptional results in multi-objective optimization tasks. However, conventional graph neural networks primarily operate on binary relational graphs, which struggle to effectively utilize data in multi-relational settings, thereby limiting the scheduler’s performance. To address this limitation, this paper proposes a heterogeneous hypergraph-based resource scheduling algorithm for aircraft maintenance tasks to tackle the challenges of higher-order and many-to-many relationship processing inherent in traditional graph neural networks. Specifically, the proposed algorithm defines aircraft nodes and maintenance personnel nodes while introducing decision nodes and state nodes to construct hyperedges. It employs hypergraph convolution with a multi-head attention mechanism to learn the long-term value of decisions, followed by policy selection based on a Markov decision process. This method offers a lightweight, non-parametric dynamic scheduling solution capable of robust learning in highly stochastic environments. Comparative experiments conducted on three datasets of varying scales demonstrate that the proposed method outperforms both heuristic algorithms and existing deep learning methods in terms of its optimization performance on M1 and M2 metrics. Furthermore, it surpasses resource scheduling algorithms based on heterogeneous graph neural networks across multiple metrics. Full article
(This article belongs to the Special Issue Advances in Algorithm Optimization and Computational Intelligence)
Show Figures

Figure 1

21 pages, 6072 KB  
Article
Human Motion Prediction Based on a Multi-Scale Hypergraph for Intangible Cultural Heritage Dance Videos
by Xingquan Cai, Pengyan Cheng, Shike Liu, Haoyu Zhang and Haiyan Sun
Electronics 2023, 12(23), 4830; https://doi.org/10.3390/electronics12234830 - 29 Nov 2023
Cited by 6 | Viewed by 1911
Abstract
Compared to traditional dance, intangible cultural heritage dance often involves the isotropic extension of choreographic actions, utilizing both upper and lower limbs. This characteristic choreography style makes the remote joints lack interaction, consequently reducing accuracy in existing human motion prediction methods. Therefore, we [...] Read more.
Compared to traditional dance, intangible cultural heritage dance often involves the isotropic extension of choreographic actions, utilizing both upper and lower limbs. This characteristic choreography style makes the remote joints lack interaction, consequently reducing accuracy in existing human motion prediction methods. Therefore, we propose a human motion prediction method based on the multi-scale hypergraph convolutional network of the intangible cultural heritage dance video. Firstly, this method inputs the 3D human posture sequence from intangible cultural heritage dance videos. The hypergraph is designed according to the synergistic relationship of the human joints in the intangible cultural heritage dance video, which is used to represent the spatial correlation of the 3D human posture. Then, a multi-scale hypergraph convolutional network is constructed, utilizing multi-scale transformation operators to segment the human skeleton into different scales. This network adopts a graph structure to represent the 3D human posture at different scales, which is then used by the single-scalar fusion operator to spatial features in the 3D human posture sequence are extracted by fusing the feature information of the hypergraph and the multi-scale graph. Finally, the Temporal Graph Transformer network is introduced to capture the temporal dependence among adjacent frames within the time domain. This facilitates the extraction of temporal features from the 3D human posture sequence, ultimately enabling the prediction of future 3D human posture sequences. Experiments show that we achieve the best performance in both short-term and long-term human motion prediction when compared to Motion-Mixer and Motion-Attention algorithms on Human3.6M and 3DPW datasets. In addition, ablation experiments show that our method can predict more precise 3D human pose sequences, even in the presence of isotropic extensions of upper and lower limbs in intangible cultural heritage dance videos. This approach effectively addresses the issue of missing segments in intangible cultural heritage dance videos. Full article
(This article belongs to the Special Issue Advances in Computer Vision and Multimedia Information Processing)
Show Figures

Figure 1

24 pages, 10438 KB  
Article
A Dual Neighborhood Hypergraph Neural Network for Change Detection in VHR Remote Sensing Images
by Junzheng Wu, Ruigang Fu, Qiang Liu, Weiping Ni, Kenan Cheng, Biao Li and Yuli Sun
Remote Sens. 2023, 15(3), 694; https://doi.org/10.3390/rs15030694 - 24 Jan 2023
Cited by 9 | Viewed by 3826
Abstract
The very high spatial resolution (VHR) remote sensing images have been an extremely valuable source for monitoring changes occurring on the Earth’s surface. However, precisely detecting relevant changes in VHR images still remains a challenge, due to the complexity of the relationships among [...] Read more.
The very high spatial resolution (VHR) remote sensing images have been an extremely valuable source for monitoring changes occurring on the Earth’s surface. However, precisely detecting relevant changes in VHR images still remains a challenge, due to the complexity of the relationships among ground objects. To address this limitation, a dual neighborhood hypergraph neural network is proposed in this article, which combines multiscale superpixel segmentation and hypergraph convolution to model and exploit the complex relationships. First, the bi-temporal image pairs are segmented under two scales and fed to a pre-trained U-net to obtain node features by treating each object under the fine scale as a node. The dual neighborhood is then defined using the father-child and adjacent relationships of the segmented objects to construct the hypergraph, which permits models to represent higher-order structured information far more complex than the conventional pairwise relationships. The hypergraph convolutions are conducted on the constructed hypergraph to propagate the label information from a small amount of labeled nodes to the other unlabeled ones by the node-edge-node transformation. Moreover, to alleviate the problem of imbalanced sampling, the focal loss function is adopted to train the hypergraph neural network. The experimental results on optical, SAR and heterogeneous optical/SAR data sets demonstrate that the proposed method offersbetter effectiveness and robustness compared to many state-of-the-art methods. Full article
Show Figures

Figure 1

Back to TopTop