Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = multi-input–multi-output synthetic aperture radar (MIMO-SAR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5507 KB  
Article
A Novel Space–Time Coding Echo Separation Scheme with Orthogonal Frequency Division Multiplexing Chirp Waveforms for Multi-Input Multi-Output Synthetic Aperture Radar
by Kai Yao and Chang Liu
Sensors 2025, 25(6), 1717; https://doi.org/10.3390/s25061717 - 10 Mar 2025
Viewed by 1091
Abstract
Multi-input Multi-output Synthetic Aperture Radar (MIMO-SAR) systems significantly improve the performance of traditional SAR systems by providing more system freedom. However, in the working mode of the simultaneous transceiver, each receiving antenna will receive the scattered echoes of all transmitting antennas, resulting in [...] Read more.
Multi-input Multi-output Synthetic Aperture Radar (MIMO-SAR) systems significantly improve the performance of traditional SAR systems by providing more system freedom. However, in the working mode of the simultaneous transceiver, each receiving antenna will receive the scattered echoes of all transmitting antennas, resulting in the overlapping of echo data and serious related interference, which becomes the main obstacle to the further development and application of MIMO-SAR system. Therefore, achieving effective echo separation is the key technical challenge faced by the MIMO-SAR system. Space–time coding (STC) uses multiple dimensions, such as space, time, and frequency. Through the process of encoding and decoding in these dimensions, channel information can be obtained, and echo separation can be realized. STC is suitable for MIMO-SAR system on different platforms, such as airborne, and has wide applicability. When the traditional scheme uses STC as a coding scheme, it is generally limited by the two-dimensional sending and receiving matrix of Alamouti code. To solve this problem, a new STC scheme based on complex orthogonal matrix design is proposed in this paper. The scheme can form a multidimensional orthogonal STC matrix, recover the superposed signal by echo decoding, and improve the echo signal-to-noise ratio (SNR) of MIMO-SAR. In addition, the use of orthogonal frequency division multiplexing (OFDM) waveform can further reduce cross-correlation interference to achieve effective separation of MIMO-SAR echoes. The effectiveness of the waveform scheme is verified by numerical experiments. Full article
(This article belongs to the Special Issue Intelligent Massive-MIMO Systems and Wireless Communications)
Show Figures

Figure 1

17 pages, 904 KB  
Article
Apple Detection via Near-Field MIMO-SAR Imaging: A Multi-Scale and Context-Aware Approach
by Yuanping Shi, Yanheng Ma and Liang Geng
Sensors 2025, 25(5), 1536; https://doi.org/10.3390/s25051536 - 1 Mar 2025
Cited by 1 | Viewed by 1623
Abstract
Accurate fruit detection is of great importance for yield assessment, timely harvesting, and orchard management strategy optimization in precision agriculture. Traditional optical imaging methods are limited by lighting and meteorological conditions, making it difficult to obtain stable, high-quality data. Therefore, this study utilizes [...] Read more.
Accurate fruit detection is of great importance for yield assessment, timely harvesting, and orchard management strategy optimization in precision agriculture. Traditional optical imaging methods are limited by lighting and meteorological conditions, making it difficult to obtain stable, high-quality data. Therefore, this study utilizes near-field millimeter-wave MIMO-SAR (Multiple Input Multiple Output Synthetic Aperture Radar) technology, which is capable of all-day and all-weather imaging, to perform high-precision detection of apple targets in orchards. This paper first constructs a near-field millimeter-wave MIMO-SAR imaging system and performs multi-angle imaging on real fruit tree samples, obtaining about 150 sets of SAR-optical paired data, covering approximately 2000 accurately annotated apple targets. Addressing challenges such as weak scattering, low texture contrast, and complex backgrounds in SAR images, we propose an innovative detection framework integrating Dynamic Spatial Pyramid Pooling (DSPP), Recursive Feature Fusion Network (RFN), and Context-Aware Feature Enhancement (CAFE) modules. DSPP employs a learnable adaptive mechanism to dynamically adjust multi-scale feature representations, enhancing sensitivity to apple targets of varying sizes and distributions; RFN uses a multi-round iterative feature fusion strategy to gradually refine semantic consistency and stability, improving the robustness of feature representation under weak texture and high noise scenarios; and the CAFE module, based on attention mechanisms, explicitly models global and local associations, fully utilizing the scene context in texture-poor SAR conditions to enhance the discriminability of apple targets. Experimental results show that the proposed method achieves significant improvements in average precision (AP), recall rate, and F1 score on the constructed near-field millimeter-wave SAR apple dataset compared to various classic and mainstream detectors. Ablation studies confirm the synergistic effect of DSPP, RFN, and CAFE. Qualitative analysis demonstrates that the detection framework proposed in this paper can still stably locate apple targets even under conditions of leaf occlusion, complex backgrounds, and weak scattering. This research provides a beneficial reference and technical basis for using SAR data in fruit detection and yield estimation in precision agriculture. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

15 pages, 5966 KB  
Article
Research on a Near-Field Millimeter Wave Imaging Algorithm and System Based on Multiple-Input Multiple-Output Sparse Sampling
by He Zhang, Hua Zong and Jinghui Qiu
Photonics 2024, 11(8), 698; https://doi.org/10.3390/photonics11080698 - 27 Jul 2024
Cited by 2 | Viewed by 2427
Abstract
In order to reduce the hardware cost and data acquisition time in near-field scenarios, such as airport security imaging systems, this paper discusses the layout of a multiple-input multiple-output (MIMO) radar array. In view of the existing multi-input multiple-output imaging algorithm, the reconstructed [...] Read more.
In order to reduce the hardware cost and data acquisition time in near-field scenarios, such as airport security imaging systems, this paper discusses the layout of a multiple-input multiple-output (MIMO) radar array. In view of the existing multi-input multiple-output imaging algorithm, the reconstructed image artifacts and aliasing problems caused by sparse sampling are discussed. In this paper, a multi-station radar array and a corresponding sparse MIMO imaging algorithm based on combined sparse sub-channels are proposed. By studying the wave–number spectrum of backscattered MIMO synthetic aperture radar (SAR) data, the nonlinear relationship between the wave number spectrum and reconstructed image is established. By selecting a complex gain vector, multiple channels are coherently combined effectively, thus eliminating aliasing and artifacts in the reconstructed image. At the same time, the algorithm can be used for the MIMO–SAR configuration of arbitrarily distributed transmitting and receiving arrays. A new multi-station millimeter wave imaging system is designed by using a frequency-modulated continuous wave (FMCW) chip and sliding rail platform as a planar SAR. The combination of the hardware system provides reconfiguration, convenience and economy for the combination of millimeter wave imaging systems in multiple scenes. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

18 pages, 9781 KB  
Article
A Novel Intrapulse Beamsteering SAR Imaging Mode Based on OFDM-Chirp Signals
by Shenjing Wang, Feng He and Zhen Dong
Remote Sens. 2024, 16(1), 126; https://doi.org/10.3390/rs16010126 - 28 Dec 2023
Cited by 4 | Viewed by 1683
Abstract
The multiple-input multiple-output synthetic aperture radar (MIMO SAR) system has developed rapidly since its discovery. At the same time, the low-disturbance and high-gain requirements of the MIMO system are continuing to increase. Through the application of digital beamforming (DBF) techniques, the multidimensional waveform [...] Read more.
The multiple-input multiple-output synthetic aperture radar (MIMO SAR) system has developed rapidly since its discovery. At the same time, the low-disturbance and high-gain requirements of the MIMO system are continuing to increase. Through the application of digital beamforming (DBF) techniques, the multidimensional waveform encoding (MWE) technique can play a key role in MIMO systems, which can greatly improve the system’s performance, especially the multi-mission capability of radar. Intrapulse beamsteering in elevation is a typical form of multi-dimensional waveform encoding which can greatly improve the transmitting efficiency and multi-mission performance of radar. However, because of the high sensitivity of the DBF technique to height, there is significant deterioration in performance in the presence of terrain undulations. The OFDM (Orthogonal Frequency Division Multiplexing) technique is widely used in communication. Due to the similarity of radar and communication systems and the great waveform diversity of OFDM signals, the OFDM radar has recently begun to emerge as a new radar system, simultaneously, the orthogonality of OFDM signals is in the time and frequency domains, and is not affected by terrain undulation. So, this paper proposes a novel radar mode combining intrapulse beamsteering in elevation and OFDM-Chirp signals, that is, the combination of “beam orthogonality” and “waveform orthogonality”, which can greatly improve the performance and fault tolerance to interference signals. In this manuscript, the system working mode and signal processing flow are introduced in detail, and simulations for both point targets and distributed targets are carried out to verify the feasibility of the proposed mode. Simultaneously, a comparison experiment is carried out, which shows the high level of fault tolerance to terrain undulation and the high potential of the proposed radar mode in Earth observation. Full article
(This article belongs to the Special Issue Radar and Sonar Imaging and Processing IV)
Show Figures

Graphical abstract

15 pages, 6054 KB  
Article
A Millimeter-Wave 3D Imaging Algorithm for MIMO Synthetic Aperture Radar
by Bo Lin, Chao Li, Yicai Ji, Xiaojun Liu and Guangyou Fang
Sensors 2023, 23(13), 5979; https://doi.org/10.3390/s23135979 - 27 Jun 2023
Cited by 12 | Viewed by 3957
Abstract
Multiple-input-multiple-output synthetic aperture radar (MIMO-SAR) is being studied and applied in more and more scenarios. However, there is still a certain distance away from real-time imaging using advanced algorithms. The traditional backpropagation algorithm (BPA) multi-accumulation integration is unsuitable for dealing with large-size scanning [...] Read more.
Multiple-input-multiple-output synthetic aperture radar (MIMO-SAR) is being studied and applied in more and more scenarios. However, there is still a certain distance away from real-time imaging using advanced algorithms. The traditional backpropagation algorithm (BPA) multi-accumulation integration is unsuitable for dealing with large-size scanning data, and the wavenumber domain algorithm requires the array to satisfy Nyquist sampling law in azimuth to avoid aliasing in imaging reconstruction. Based on these issues, a novel 3D imaging method is proposed for MIMO-SAR. An appropriate transformation and inverse Fourier transform (FT) is carried out for the frequency domain; thus, accumulation in the wavenumber domain is not required, which is easy to implement. The computational complexity of the algorithm is much lower than BPA and has better generalizability than the wavenumber domain algorithm. Coherence factor (CF) is also introduced to achieve sidelobe suppression. Proof-of-principle experiments were also carried out in the 92.5 GHz band based on the MIMO-SAR prototype system. Both simulation and experimental results of different distributed targets show good performance of imaging and do not lose the quality of image reconstruction. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

23 pages, 9025 KB  
Article
A Novel MIMO-SAR System Based on Simultaneous Digital Beam Forming of Both Transceiver and Receiver
by Yuzhen Zhao, Longyong Chen, Fubo Zhang, Yanlei Li and Yirong Wu
Sensors 2020, 20(22), 6604; https://doi.org/10.3390/s20226604 - 18 Nov 2020
Cited by 5 | Viewed by 3607
Abstract
Orthogonal frequency division multiplexing (OFDM) chirp waveform, which is composed of two or more successive identical linear frequency modulated sub pulses, is a newly proposed orthogonal waveform scheme for multi-input multi-output (MIMO) synthetic aperture radar (SAR) systems. However, according to the waveform model, [...] Read more.
Orthogonal frequency division multiplexing (OFDM) chirp waveform, which is composed of two or more successive identical linear frequency modulated sub pulses, is a newly proposed orthogonal waveform scheme for multi-input multi-output (MIMO) synthetic aperture radar (SAR) systems. However, according to the waveform model, there will be range ambiguity if the mapping width exceeds the maximum unambiguous width determined by the transmitted signal. This greatly limits its application in high-resolution wide-swath (HRWS) remote sensing. The traditional system divides the echoes by digital beam forming (DBF) to solve this problem, but the energy utilization rate is low. A MIMO-SAR system using simultaneous digital beam forming of both transceiver and receiver to avoid range ambiguity is designed in this paper. Compared with traditional system, the novel system designed in this paper obtain higher energy utilization and waveform orthogonality. Full article
(This article belongs to the Special Issue Synthetic Aperture Radar (SAR) Simulation and Processing)
Show Figures

Figure 1

12 pages, 6537 KB  
Article
Time-Varying Kelvin Wake Model and Microwave Velocity Observation
by Jie Niu, Xingdong Liang and Xin Zhang
Sensors 2020, 20(6), 1575; https://doi.org/10.3390/s20061575 - 12 Mar 2020
Cited by 4 | Viewed by 3915
Abstract
In the synthetic aperture radar (SAR) imaging of ship-induced wakes, it is difficult to obtain the Doppler velocity of a Kelvin wake due to the lack of time-varying wake models and suitable radar equipment. The conventional Kelvin wake investigation based on the static [...] Read more.
In the synthetic aperture radar (SAR) imaging of ship-induced wakes, it is difficult to obtain the Doppler velocity of a Kelvin wake due to the lack of time-varying wake models and suitable radar equipment. The conventional Kelvin wake investigation based on the static Kelvin wake model failed to reflect time-varying characteristics, which are significant in the application of the Kelvin wake model. Therefore, a time-varying Kelvin wake model with consideration of geometric time-varying characteristics and the hydrodynamic equation is proposed in this paper, which reflects the wake’s time-varying change lacking in the conventional Kelvin wake investigation. The Doppler velocity measurement, measured by a specially designed radar, can be exploited to verify the time-varying model by the comparison of velocity fields. Ground-based multi-input multi-output (MIMO) millimeter wave radar imaging through the simultaneous switching of transceiver channels was used to obtain the Doppler velocity for the first time. Finally, promising results have been achieved, which are in good agreement with our proposed model in consideration of the experimental scene. The proposed time-varying model and radar equipment provide velocity measurements for the Kelvin wake observation, which contains huge application potential. Full article
(This article belongs to the Special Issue Advances in Marine Applications of Synthetic Aperture Radar (SAR))
Show Figures

Figure 1

12 pages, 7300 KB  
Article
A Novel Orthogonal Waveform Separation Scheme for Airborne MIMO-SAR Systems
by Jie Wang, Ke-Hong Zhu, Li-Na Wang, Xing-Dong Liang and Long-Yong Chen
Sensors 2018, 18(10), 3580; https://doi.org/10.3390/s18103580 - 22 Oct 2018
Cited by 6 | Viewed by 4042
Abstract
In recent years, multi-input multi-output (MIMO) synthetic aperture radar (SAR) systems, which can promote the performance of 3D imaging, high-resolution wide-swath remote sensing, and multi-baseline interferometry, have received considerable attention. Several papers on MIMO-SAR have been published, but the research of such systems [...] Read more.
In recent years, multi-input multi-output (MIMO) synthetic aperture radar (SAR) systems, which can promote the performance of 3D imaging, high-resolution wide-swath remote sensing, and multi-baseline interferometry, have received considerable attention. Several papers on MIMO-SAR have been published, but the research of such systems is seriously limited. This is mainly because the superposed echoes of the multiple transmitted orthogonal waveforms cannot be separated perfectly. The imperfect separation will introduce ambiguous energy and degrade SAR images dramatically. In this paper, a novel orthogonal waveform separation scheme based on echo-compression is proposed for airborne MIMO-SAR systems. Specifically, apart from the simultaneous transmissions, the transmitters are required to radiate several times alone in a synthetic aperture to sense their private inner-aperture channels. Since the channel responses at the neighboring azimuth positions are relevant, the energy of the solely radiated orthogonal waveforms in the superposed echoes will be concentrated. To this end, the echoes of the multiple transmitted orthogonal waveforms can be separated by cancelling the peaks. In addition, the cleaned echoes, along with original superposed one, can be used to reconstruct the unambiguous echoes. The proposed scheme is validated by simulations. Full article
Show Figures

Figure 1

12 pages, 2568 KB  
Article
A Novel Scheme for MIMO-SAR Systems Using Rotational Orbital Angular Momentum
by Xiangxi Bu, Zhuo Zhang, Xingdong Liang, Longyong Chen, Haibo Tang, Zheng Zeng and Jie Wang
Sensors 2018, 18(10), 3511; https://doi.org/10.3390/s18103511 - 18 Oct 2018
Cited by 17 | Viewed by 4055
Abstract
The vortex electromagnetic (EM) wave with orbital angular momentum (OAM) brings a new degree of freedom for synthetic aperture radar (SAR) imaging, although to date, its application to multi-input multi-output (MIMO) SAR has not yet been widely reported. In this paper, an orbital [...] Read more.
The vortex electromagnetic (EM) wave with orbital angular momentum (OAM) brings a new degree of freedom for synthetic aperture radar (SAR) imaging, although to date, its application to multi-input multi-output (MIMO) SAR has not yet been widely reported. In this paper, an orbital angular momentum (OAM)-based MIMO-SAR system is proposed. The rotational Doppler Effect (RDE) of vortex EM waves offers a novel scheme for an OAM-based MIMO-SAR system. By transmitting the rotational vortex EM waves, echoes of different OAM modes can be discriminated by a bandpass filter in the range-Doppler domain. The performance of the proposed scheme is independent of the time-variant channel responses, and the wider beam width of the vortex EM waves delivers, for the same antenna aperture size, better performance in terms of swath width and azimuth resolution, in contrast to the plane EM waves. Moreover, the spatial diversity of vortex EM waves shows great potential to enhance the MIMO-SAR system applications, which involve high-resolution wide-swath remote sensing, 3-D imaging, and radar-communication integration. The proposed scheme is verified by proof-of-concept experiments. This work presents a new application of vortex EM waves, which facilitates the development of new-generation and forthcoming SAR systems. Full article
Show Figures

Figure 1

30 pages, 12423 KB  
Article
Signal Processing for a Multiple-Input, Multiple-Output (MIMO) Video Synthetic Aperture Radar (SAR) with Beat Frequency Division Frequency-Modulated Continuous Wave (FMCW)
by Seok Kim, Jiwoong Yu, Se-Yeon Jeon, Aulia Dewantari and Min-Ho Ka
Remote Sens. 2017, 9(5), 491; https://doi.org/10.3390/rs9050491 - 17 May 2017
Cited by 23 | Viewed by 12047
Abstract
In this paper, we present a novel signal processing method for video synthetic aperture radar (ViSAR) systems, which are suitable for operation in unmanned aerial vehicle (UAV) environments. The technique improves aspects of the system’s performance, such as the frame rate and image [...] Read more.
In this paper, we present a novel signal processing method for video synthetic aperture radar (ViSAR) systems, which are suitable for operation in unmanned aerial vehicle (UAV) environments. The technique improves aspects of the system’s performance, such as the frame rate and image size of the synthetic aperture radar (SAR) video. The new ViSAR system is based on a frequency-modulated continuous wave (FMCW) SAR structure that is combined with multiple-input multiple-output (MIMO) technology, and multi-channel azimuth processing techniques. FMCW technology is advantageous for use in low cost, small size, and lightweight systems, like small UAVs. MIMO technology is utilized for increasing the equivalent number of receiving channels in the azimuthal direction, and reducing aperture size. This effective increase is achieved using a co-array concept by means of beat frequency division (BFD) FMCW. A multi-channel azimuth processing technique is used for improving the frame rate and image size of SAR video, by suppressing the azimuth ambiguities in the receiving channels. This paper also provides analyses of the frame rate and image size of SAR video of ViSAR systems. The performance of the proposed system is evaluated using an exemplary system. The results of analyses are presented, and their validity is verified using numerical simulations. Full article
(This article belongs to the Special Issue Advances in SAR: Sensors, Methodologies, and Applications)
Show Figures

Graphical abstract

19 pages, 1256 KB  
Article
ASTC-MIMO-TOPS Mode with Digital Beam-Forming in Elevation for High-Resolution Wide-Swath Imaging
by Pingping Huang and Wei Xu
Remote Sens. 2015, 7(3), 2952-2970; https://doi.org/10.3390/rs70302952 - 13 Mar 2015
Cited by 7 | Viewed by 8523
Abstract
Future spaceborne synthetic aperture radar (SAR) missions require complete and frequent coverage of the earth with a high resolution. Terrain Observation by Progressive Scans (TOPS) is a novel wide swath mode but has impaired azimuth resolution. In this paper, an innovative extended TOPS [...] Read more.
Future spaceborne synthetic aperture radar (SAR) missions require complete and frequent coverage of the earth with a high resolution. Terrain Observation by Progressive Scans (TOPS) is a novel wide swath mode but has impaired azimuth resolution. In this paper, an innovative extended TOPS mode named Alamouti Space-time Coding multiple-input multiple-output TOPS (ASTC-MIMO-TOPS) mode combined with digital beam-forming (DBF) in elevation and multi-aperture SAR signal reconstruction in azimuth is proposed. This innovative mode achieves wide-swath coverage with a high geometric resolution and also overcomes major drawbacks in conventional MIMO SAR systems. The data processing scheme of this imaging scheme is presented in detail. The designed system example of the proposed ASTC-MIMO-TOPS mode, which has the imaging capacity of a 400 km wide swath with an azimuth resolution of 3 m, is given. Its system performance analysis results and simulated imaging results on point targets demonstrate the potential of the proposed novel spaceborne SAR mode for high-resolution wide-swath (HRWS) imaging. Full article
Show Figures

Graphical abstract

Back to TopTop