Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = multi-bit decimator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5487 KB  
Article
Optimization of Rate of Penetration and Mechanical Specific Energy Using Response Surface Methodology and Multi-Objective Optimization
by Diunay Zuliani Mantegazini, Andreas Nascimento, Mauro Hugo Mathias, Oldrich Joel Romero Guzman and Matthias Reich
Appl. Sci. 2025, 15(3), 1390; https://doi.org/10.3390/app15031390 - 29 Jan 2025
Cited by 3 | Viewed by 2554
Abstract
Optimizing the drilling process is critical for the exploration of natural resources. However, there are several mechanic parameters that continuously interact with formation properties, hindering the optimization process. Rate of penetration (ROP) and mechanical specific energy (MSE) are considered two key performance indicators [...] Read more.
Optimizing the drilling process is critical for the exploration of natural resources. However, there are several mechanic parameters that continuously interact with formation properties, hindering the optimization process. Rate of penetration (ROP) and mechanical specific energy (MSE) are considered two key performance indicators that allow the identification of ideal conditions to enhance the drilling process. Thus, the goal of this research was to analyze field data from pre-salt layer operations, using a 2D analysis of parameters as a function of depth, response surface methodology (RSM), and multi-objective optimization. The results show that the RSM method and multi-objective optimization provide better results when compared with 2D analysis of parameters as a function of depth. The RSM method can be used as a tool to analyze the effects of the independent drilling mechanical parameters (WOB, RPM, FLOW, and TOR) on the response variables (ROP and MSE) with a 95% confidence level. Through multi-objective optimization, it was possible to concomitantly achieve an ROP of approximately 22 ft/h and MSE of nearly 11 kpsi using the values of WOB, RPM, FLOW, and TOR of about 11 klb, 109 rev/min, 803 gpm, and 3 klb-ft, respectively. Using high WOB values, i.e., from the mean value up to the maximum value of approximately 43 klb, reflects a low ROP and most likely indicates an operation beyond the foundering point. High FLOW promotes a more efficient hole cleaning and higher rates of cuttings transport, thus preventing eventual in situ drill-bit sticking. Flow adjustment also ensures an adequate balance of dynamic bottom hole pressure, in addition to controlling the force impact force of the drilling fluid in contact with the rock being drilled, expressing importance in terms of efficiency and rock penetration. Finally, it is important to mention that the results of this research are not only applicable to hydrocarbon exploration but also to geothermal and natural hydrogen exploration. Values analyzed and presented with decimal precision should be logically focused as integers when in industrial application. Full article
Show Figures

Figure 1

21 pages, 1618 KB  
Article
Efficient Sigma–Delta Sensor Array Beamforming
by Sammy Johnatan Carbajal Ipenza and Bruno Sanches Masiero
Sensors 2023, 23(17), 7577; https://doi.org/10.3390/s23177577 - 31 Aug 2023
Viewed by 2368
Abstract
Nowadays, sensors with built-in sigma–delta modulators (ΣΔMs) are widely used in consumer, industrial, automotive, and medical applications, as they have become a cost-effective and convenient way to deliver data to digital processors. This is the case for micro-electro-mechanical system (MEMS), digital microphones that [...] Read more.
Nowadays, sensors with built-in sigma–delta modulators (ΣΔMs) are widely used in consumer, industrial, automotive, and medical applications, as they have become a cost-effective and convenient way to deliver data to digital processors. This is the case for micro-electro-mechanical system (MEMS), digital microphones that convert analog audio to a pulse-density modulated (PDM) bitstream. However, as the ΣΔMs output a PDM signal, sensors require either built-in or external high-order decimation filters to demodulate the PDM signal to a baseband multi-bit pulse-code modulated (PCM) signal. Because of this extra circuit requirement, the implementation of sensor array algorithms, such as beamforming in embedded systems (where the processing resources are critical) or in very large-scale integration (VLSI) circuits (where the power and area are crucial) becomes especially expensive as a large number of parallel decimation filters are required. This article proposes a novel architecture for beamforming algorithm implementation that fuses delay and decimation operations based on maximally flat (MAXFLAT) filters to make array processing more affordable. As proof of concept, we present an implementation example of a delay-and-sum (DAS) beamformer at given spatial and frequency requirements using this novel approach. Under these specifications, the proposed architecture requires 52% lower storage resources and 19% lower computational resources than the most efficient state-of-the-art architecture. Full article
(This article belongs to the Special Issue Energy-Efficient Communication Networks and Systems)
Show Figures

Figure 1

12 pages, 881 KB  
Article
Analysis of Distinguishable Security between the One-Time Password Extraction Function Family and Random Function Family
by Hyunki Kim and Okyeon Yi
Appl. Sci. 2023, 13(15), 8761; https://doi.org/10.3390/app13158761 - 28 Jul 2023
Viewed by 2122
Abstract
A one-time password is a security system that uses a password that is only used once for authentication, and it is commonly used in multi-factor authentication systems. The process of generating an OTP is very similar to generating pseudorandom sequences in cryptography. However, [...] Read more.
A one-time password is a security system that uses a password that is only used once for authentication, and it is commonly used in multi-factor authentication systems. The process of generating an OTP is very similar to generating pseudorandom sequences in cryptography. However, since only a part of the bit string is used in OTP, an algorithm is needed to extract that part. In addition, the OTP process also includes converting the value of the bit string value into decimal form for human perception. This paper focuses on analyzing the extraction function, which is the step before the hexadecimal is reprocessed into the decimal form. We analyze a function family, which includes functions used in the process of extracting a bit string in terms of distinguishable security. As a result, we conclude that the OTP extraction function family is vulnerable in terms of distinguishable security compared to the random function family. Full article
(This article belongs to the Topic Cyber Security and Critical Infrastructures)
Show Figures

Figure 1

20 pages, 2623 KB  
Article
HBCA: A Toolchain for High-Accuracy Branch-Fused CNN Accelerator on FPGA with Dual-Decimal-Fused Technique
by Zhengjie Li, Lingli Hou, Xinxuan Tao, Jian Wang and Jinmei Lai
Electronics 2023, 12(1), 192; https://doi.org/10.3390/electronics12010192 - 30 Dec 2022
Cited by 2 | Viewed by 2399
Abstract
The programmability of FPGA suits the constantly changing convolutional neural network (CNN). However, several challenges arise when the previous FPGA-based accelerators update CNN. Firstly, although the model of RepVGG can balance accuracy and speed, it solely supports two types of kernels. Meanwhile, 8-bit [...] Read more.
The programmability of FPGA suits the constantly changing convolutional neural network (CNN). However, several challenges arise when the previous FPGA-based accelerators update CNN. Firstly, although the model of RepVGG can balance accuracy and speed, it solely supports two types of kernels. Meanwhile, 8-bit integer-only quantization of PyTorch which can support various CNNs is seldom successfully supported by the FPGA-based accelerators. In addition, Winograd F(4 × 4, 3 × 3) uses less multiplication, but its transformation matrix contains irregular decimals, which could lead to accuracy problems. To tackle these issues, this paper proposes High-accuracy Branch-fused CNN Accelerator (HBCA): a toolchain and corresponding FPGA-based accelerator. The toolchain proposes inception-based branch–fused technique, which can support more types of kernels. Meanwhile, the accelerator proposes Winograd-quantization dual decimal–fuse techniques to balance accuracy and speed. In addition, this accelerator supports multi-types of kernels and proposes Winograd decomposed-part reuse, multi-mode BRAM & DSP and data reuse to increase power efficiency. Experiments show that HBCA is capable of supporting seven CNNs with different types of kernels and more branches. The accuracy loss is within 0.1% when compared to the quantized model. Furthermore, the power efficiency (GOPS/W) of Inception, ResNet and VGG is up to 226.6, 188.1 and 197.7, which are better than other FPGA-based CNN accelerators. Full article
(This article belongs to the Special Issue Convolutional Neural Networks and Vision Applications, Volume II)
Show Figures

Figure 1

16 pages, 1618 KB  
Article
A Referenceless Digital CDR with a Half-Rate Jitter-Tolerant FD and a Multi-Bit Decimator
by Jaekwon Kim, Youngjun Ko, Jahoon Jin, Jaehyuk Choi and Jung-Hoon Chun
Electronics 2022, 11(4), 537; https://doi.org/10.3390/electronics11040537 - 11 Feb 2022
Cited by 1 | Viewed by 4584
Abstract
A referenceless digital clock and data recovery (D-CDR) circuit using a half-rate jitter-tolerant frequency detector (FD) and a multi-bit decimator is presented. For a referenceless configuration, we introduced a half-rate jitter-tolerant digital quadricorrelator frequency detector (JT-DQFD). Additionally, we proposed a multi-bit decimator circuit [...] Read more.
A referenceless digital clock and data recovery (D-CDR) circuit using a half-rate jitter-tolerant frequency detector (FD) and a multi-bit decimator is presented. For a referenceless configuration, we introduced a half-rate jitter-tolerant digital quadricorrelator frequency detector (JT-DQFD). Additionally, we proposed a multi-bit decimator circuit that losslessly down-samples up/down data from a phase detector to reduce the recovered clock jitter. The down-sampled multi-bit phase information is processed by a digital loop filter to adjust the phase of the recovered clock. Fabricated in a 28-nm CMOS technology, the test chip achieves a power efficiency of 1.3 pJ/bit at 10 Gb/s. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

12 pages, 20988 KB  
Article
FPGA Implementation of the Range-Doppler Algorithm for Real-Time Synthetic Aperture Radar Imaging
by Yeongung Choi, Dongmin Jeong, Myeongjin Lee, Wookyung Lee and Yunho Jung
Electronics 2021, 10(17), 2133; https://doi.org/10.3390/electronics10172133 - 2 Sep 2021
Cited by 11 | Viewed by 6264
Abstract
In this paper, we propose a range-Doppler algorithm (RDA)-based synthetic aperture radar (SAR) processor for real-time SAR imaging and present FPGA-based implementation results. The processing steps for the RDA include range compression, range cell migration correction (RCMC), and azimuth compression. A matched filtering [...] Read more.
In this paper, we propose a range-Doppler algorithm (RDA)-based synthetic aperture radar (SAR) processor for real-time SAR imaging and present FPGA-based implementation results. The processing steps for the RDA include range compression, range cell migration correction (RCMC), and azimuth compression. A matched filtering unit (MFU) and an RCMC processing unit (RPU) are required for real-time processing. Therefore, the proposed RDA-based SAR processor contains an MFU that uses the mixed-radix multi-path delay commutator (MRMDC) FFT and an RPU. The MFU reduces the memory requirements by applying a decimation-in-frequency (DIF) FFT and decimation-in-time (DIT) IFFT. The RPU provides a variable tap size and variable interpolation kernel. In addition, the MFU and RPU are designed to enable parallel processing of four 32-bit which are transferred via a 128-bit AXI bus. The proposed RDA-based SAR processor was designed using Verilog-HDL and implemented in a Xilinx UltraScale+ MPSoC FPGA device. After comparing the execution time taken by the proposed SAR processor with that taken by an ARM cortex-A53 microprocessor, we observed a 85-fold speedup for a 2048 × 2048 pixel image. A performance evaluation based on related studies indicated that the proposed processor achieved an execution time that was approximately 6.5 times less than those of previous FPGA implementations of RDA processors. Full article
(This article belongs to the Special Issue System-on-Chip (SoC) Design and Its Applications)
Show Figures

Figure 1

16 pages, 5969 KB  
Article
A 100 Gb/s Quad-Lane SerDes Receiver with a PI-Based Quarter-Rate All-Digital CDR
by Heejae Hwang and Jongsun Kim
Electronics 2020, 9(7), 1113; https://doi.org/10.3390/electronics9071113 - 9 Jul 2020
Cited by 10 | Viewed by 14249
Abstract
A 100 Gb/s quad-lane SerDes receiver with a phase-interpolator (PI)-based quarter-rate all-digital clock and data recovery (CDR) is presented. The proposed CDR utilizes a multi-phase multiplying delay-locked loop (MDLL) to generate the eight-phase reference clocks, which achieves multi-phase frequency multiplication with a small [...] Read more.
A 100 Gb/s quad-lane SerDes receiver with a phase-interpolator (PI)-based quarter-rate all-digital clock and data recovery (CDR) is presented. The proposed CDR utilizes a multi-phase multiplying delay-locked loop (MDLL) to generate the eight-phase reference clocks, which achieves multi-phase frequency multiplication with a small area and less power consumption. The shared MDLL generates and distributes eight-phase clocks to each CDR. The proposed CDR uses a new initial phase tracker that uses a preamble to achieve a fast lock time of about 12 ns and to provide a constant output data sequence. The CDR utilizes quarter-rate 2x-oversampling architecture, and the PI controller is designed full custom to minimize the loop latency. To improve the dithering jitter performance of the recovered clock, the decimation factor of the CDR can be adjustable. Also, a new continuous-time linear equalizer (CTLE) receiver was adopted to reduce power consumption and achieved a data rate of 25 Gb/s/lane. The proposed SerDes receiver with a digital CDR is implemented in 40 nm CMOS technology. The 100 Gb/s four-channel SerDes receiver (4 CTLEs + 4 CDRs + MDLL) occupies an active area of only 0.351 mm2 and consumes 241.8 mW, which achieves a high energy efficiency of 2.418 pJ/bit. Full article
(This article belongs to the Special Issue Mixed-Signal VLSI Design)
Show Figures

Figure 1

15 pages, 1080 KB  
Article
Analysis of Vulnerabilities That Can Occur When Generating One-Time Password
by Hyunki Kim, Juhong Han, Chanil Park and Okyeon Yi
Appl. Sci. 2020, 10(8), 2961; https://doi.org/10.3390/app10082961 - 24 Apr 2020
Cited by 11 | Viewed by 6288
Abstract
A one-time password (OTP) is a password that is valid for only one login session or transaction, in IT systems or digital devices. This is one of the human-centered security services and is commonly used for multi-factor authentication. This is very similar to [...] Read more.
A one-time password (OTP) is a password that is valid for only one login session or transaction, in IT systems or digital devices. This is one of the human-centered security services and is commonly used for multi-factor authentication. This is very similar to generating pseudo-random bit streams in cryptography. However, it is only part of what is used as OTP in the bit stream. Therefore, the OTP mechanism requires an algorithm to extract portions. It is also necessary to convert hexadecimal to decimal so that the values of the bit strings are familiar to human. In this paper, we classify three algorithms for extracting the final data from the pseudo random bit sequence. We also analyze the fact that a vulnerability occurs during the extraction process, resulting in a high frequency of certain numbers; even if cryptographically secure generation algorithms are used. Full article
Show Figures

Figure 1

Back to TopTop