Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (262)

Search Parameters:
Keywords = moving vehicle targets

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6588 KiB  
Article
Path Planning for Unmanned Aerial Vehicle: A-Star-Guided Potential Field Method
by Jaewan Choi and Younghoon Choi
Drones 2025, 9(8), 545; https://doi.org/10.3390/drones9080545 - 1 Aug 2025
Viewed by 340
Abstract
The utilization of Unmanned Aerial Vehicles (UAVs) in missions such as reconnaissance and surveillance has grown rapidly, underscoring the need for efficient path planning algorithms that ensure both optimality and collision avoidance. The A-star algorithm is widely used for global path planning due [...] Read more.
The utilization of Unmanned Aerial Vehicles (UAVs) in missions such as reconnaissance and surveillance has grown rapidly, underscoring the need for efficient path planning algorithms that ensure both optimality and collision avoidance. The A-star algorithm is widely used for global path planning due to its ability to generate optimal routes; however, its high computational cost makes it unsuitable for real-time applications, particularly in unknown or dynamic environments. For local path planning, the Artificial Potential Field (APF) algorithm enables real-time navigation by attracting the UAV toward the target while repelling it from obstacles. Despite its efficiency, APF suffers from local minima and limited performance in dynamic settings. To address these challenges, this paper proposes the A-star-Guided Potential Field (AGPF) algorithm, which integrates the strengths of A-star and APF to achieve robust performance in both global and local path planning. The AGPF algorithm was validated through simulations conducted in the Robot Operating System (ROS) environment. Simulation results demonstrate that AGPF produces smoother and more optimal paths than A-star, while avoiding the local minima issues inherent in APF. Furthermore, AGPF effectively handles moving and previously unknown obstacles by generating real-time avoidance trajectories, demonstrating strong adaptability in dynamic and uncertain environments. Full article
Show Figures

Figure 1

26 pages, 31908 KiB  
Article
Dynamic Bearing–Angle for Vision-Based UAV Target Motion Analysis
by Yu Luo, Hongwei Fu, Tingting Fu, Hao Cha, Bing Tian, Huatao Tang and Feng Liu
Sensors 2025, 25(14), 4396; https://doi.org/10.3390/s25144396 - 14 Jul 2025
Viewed by 342
Abstract
The Bearing–Angle algorithm effectively improves the observability of vision-based motion estimation for moving targets by combining the dimensional information of target detection frames. However, the robustness of this algorithm will be significantly reduced when the observation error increases due to sudden changes in [...] Read more.
The Bearing–Angle algorithm effectively improves the observability of vision-based motion estimation for moving targets by combining the dimensional information of target detection frames. However, the robustness of this algorithm will be significantly reduced when the observation error increases due to sudden changes in the target motion state. To address this shortcoming, this paper proposes a visual target motion estimation algorithm called the Dynamic Bearing–Angle, which aims to improve the accuracy and robustness of target motion analysis in dynamic scenarios such as unmanned aerial vehicle (UAV). The algorithm innovatively introduces a dual robustness mechanism of dynamic noise intensity adaptation and outlier suppression based on M-estimation. By adjusting the noise covariance matrix in real time and assigning low weights to the outlier observations using the Huber weight function, the Dynamic Bearing–Angle algorithm is able to effectively cope with non-Gaussian noise and sudden target maneuvers. We validate the performance of the proposed algorithm with numerical simulations and real sensor data, and the results show that the Dynamic Bearing–Angle maintains good robustness and accuracy under different noise intensities. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

23 pages, 4420 KiB  
Article
A Control Strategy for Autonomous Approaching and Coordinated Landing of UAV and USV
by Yongguo Li, Ruiqing Lv and Jiangdong Wang
Drones 2025, 9(7), 480; https://doi.org/10.3390/drones9070480 - 7 Jul 2025
Viewed by 420
Abstract
Unmanned aerial vehicles (UAVs) autonomous landing plays a key role in cooperative work with other heterogeneous agents. A neglected aspect of UAV autonomous landing on a moving platform is addressed in this study. The landing process is divided into three stages: positioning, tracking, [...] Read more.
Unmanned aerial vehicles (UAVs) autonomous landing plays a key role in cooperative work with other heterogeneous agents. A neglected aspect of UAV autonomous landing on a moving platform is addressed in this study. The landing process is divided into three stages: positioning, tracking, and landing. In the tracking phase, MPCs are designed to implement tracking of the target landing platform. In the landing phase, we adopt a nested Apriltags collaboration identifier combined with the Aprilatags algorithm to design a PID speed controller, thereby improving the dynamic tracking accuracy of UAVs and completing the landing. The experimental data suggested that the method enables the UAV to perform dynamic tracking and autonomous landing on a moving platform. The experimental results show that the success rate of UAV autonomous landing is as high as 90%, providing a highly feasible solution for UAV autonomous landing. Full article
Show Figures

Figure 1

24 pages, 8079 KiB  
Article
Enhancing the Scale Adaptation of Global Trackers for Infrared UAV Tracking
by Zicheng Feng, Wenlong Zhang, Erting Pan, Donghui Liu and Qifeng Yu
Drones 2025, 9(7), 469; https://doi.org/10.3390/drones9070469 - 1 Jul 2025
Viewed by 358
Abstract
Tracking unmanned aerial vehicles (UAVs) in infrared video is an essential technology for the anti-UAV task. Given frequent UAV target disappearances caused by occlusion or moving out of view, global trackers, which have the unique ability to recapture targets, are widely used in [...] Read more.
Tracking unmanned aerial vehicles (UAVs) in infrared video is an essential technology for the anti-UAV task. Given frequent UAV target disappearances caused by occlusion or moving out of view, global trackers, which have the unique ability to recapture targets, are widely used in infrared UAV tracking. However, global trackers perform poorly when dealing with large target scale variation because they cannot maintain approximate consistency between target sizes in the template and the search region. To enhance the scale adaptation of global trackers, we propose a plug-and-play scale adaptation enhancement module (SAEM). This can generate a scale adaptation enhancement kernel according to the target size in the previous frame, and then perform implicit scale adaptation enhancement on the extracted target template features. To optimize training, we introduce an auxiliary branch to supervise the learning of SAEM and add Gaussian noise to the input size to improve its robustness. In addition, we propose a one-stage anchor-free global tracker (OSGT), which has a more concise structure than other global trackers to meet the real-time requirement. Extensive experiments on three Anti-UAV Challenge datasets and the Anti-UAV410 dataset demonstrate the superior performance of our method and verify that our proposed SAEM can effectively enhance the scale adaptation of existing global trackers. Full article
(This article belongs to the Special Issue UAV Detection, Classification, and Tracking)
Show Figures

Figure 1

68 pages, 10407 KiB  
Review
Bioinspired Morphing in Aerodynamics and Hydrodynamics: Engineering Innovations for Aerospace and Renewable Energy
by Farzeen Shahid, Maqusud Alam, Jin-Young Park, Young Choi, Chan-Jeong Park, Hyung-Keun Park and Chang-Yong Yi
Biomimetics 2025, 10(7), 427; https://doi.org/10.3390/biomimetics10070427 - 1 Jul 2025
Viewed by 1338
Abstract
Bioinspired morphing offers a powerful route to higher aerodynamic and hydrodynamic efficiency. Birds reposition feathers, bats extend compliant membrane wings, and fish modulate fin stiffness, tailoring lift, drag, and thrust in real time. To capture these advantages, engineers are developing airfoils, rotor blades, [...] Read more.
Bioinspired morphing offers a powerful route to higher aerodynamic and hydrodynamic efficiency. Birds reposition feathers, bats extend compliant membrane wings, and fish modulate fin stiffness, tailoring lift, drag, and thrust in real time. To capture these advantages, engineers are developing airfoils, rotor blades, and hydrofoils that actively change shape, reducing drag, improving maneuverability, and harvesting energy from unsteady flows. This review surveys over 296 studies, with primary emphasis on literature published between 2015 and 2025, distilling four biological archetypes—avian wing morphing, bat-wing elasticity, fish-fin compliance, and tubercled marine flippers—and tracing their translation into morphing aircraft, ornithopters, rotorcraft, unmanned aerial vehicles, and tidal or wave-energy converters. We compare experimental demonstrations and numerical simulations, identify consensus performance gains (up to 30% increase in lift-to-drag ratio, 4 dB noise reduction, and 15% boost in propulsive or power-capture efficiency), and analyze materials, actuation, control strategies, certification, and durability as the main barriers to deployment. Advances in multifunctional composites, electroactive polymers, and model-based adaptive control have moved prototypes from laboratory proof-of-concept toward field testing. Continued collaboration among biology, materials science, control engineering, and fluid dynamics is essential to unlock robust, scalable morphing technologies that meet future efficiency and sustainability targets. Full article
Show Figures

Figure 1

25 pages, 3468 KiB  
Article
Distributed Monitoring of Moving Thermal Targets Using Unmanned Aerial Vehicles and Gaussian Mixture Models
by Yuanji Huang, Pavithra Sripathanallur Murali and Gustavo Vejarano
Robotics 2025, 14(7), 85; https://doi.org/10.3390/robotics14070085 - 22 Jun 2025
Viewed by 326
Abstract
This paper contributes a two-step approach to monitor clusters of thermal targets on the ground using unmanned aerial vehicles (UAVs) and Gaussian mixture models (GMMs) in a distributed manner. The approach is tailored to networks of UAVs that establish a flying ad hoc [...] Read more.
This paper contributes a two-step approach to monitor clusters of thermal targets on the ground using unmanned aerial vehicles (UAVs) and Gaussian mixture models (GMMs) in a distributed manner. The approach is tailored to networks of UAVs that establish a flying ad hoc network (FANET) and operate without central command. The first step is a monitoring algorithm that determines if the GMM corresponds to the current spatial distribution of clusters of thermal targets on the ground. UAVs make this determination using local data and a sequence of data exchanges with UAVs that are one-hop neighbors in the FANET. The second step is the calculation of a new GMM when the current GMM is found to be unfit, i.e., the GMM no longer corresponds to the new distribution of clusters on the ground due to the movement of thermal targets. A distributed expectation-maximization algorithm is developed for this purpose, and it operates on local data and data exchanged with one-hop neighbors only. Simulation results evaluate the performance of both algorithms in terms of the number of communication exchanges. This evaluation is completed for an increasing number of clusters of thermal targets and an increasing number of UAVs. The performance is compared with well-known solutions to the monitoring and GMM calculation problems, demonstrating convergence with a lower number of communication exchanges. Full article
(This article belongs to the Special Issue Multi-Robot Systems for Environmental Monitoring and Intervention)
Show Figures

Figure 1

22 pages, 22557 KiB  
Article
Depth from 2D Images: Development and Metrological Evaluation of System Uncertainty Applied to Agricultural Scenarios
by Bernardo Lanza, Cristina Nuzzi and Simone Pasinetti
Sensors 2025, 25(12), 3790; https://doi.org/10.3390/s25123790 - 17 Jun 2025
Viewed by 352
Abstract
This article describes the development, experimental validation, and uncertainty analysis of a simple-to-use model for monocular depth estimation based on optical flow. The idea is deeply rooted in the agricultural scenario, for which vehicles that move around the field are equipped with low-cost [...] Read more.
This article describes the development, experimental validation, and uncertainty analysis of a simple-to-use model for monocular depth estimation based on optical flow. The idea is deeply rooted in the agricultural scenario, for which vehicles that move around the field are equipped with low-cost cameras. In the experiment, the camera was mounted on a robot moving linearly at five different constant speeds looking at the target measurands (ArUco markers) positioned at different depths. The acquired data was processed and filtered with a moving average window-based filter to reduce noise in the estimated apparent depths of the ArUco markers and in the estimated optical flow image speeds. Two methods are proposed for model validation: a generalized approach and a complete approach that separates the input data according to their image speed to account for the exponential nature of the proposed model. The practical result obtained by the two analyses is that, to reduce the impact of uncertainty on depth estimates, it is best to have image speeds higher than 500–800 px/s. This is obtained by either moving the camera faster or by increasing the camera’s frame rate. The best-case scenario is achieved when the camera moves at 0.50–0.75 m/s and the frame rate is set to 60 fps (effectively reduced to 20 fps after filtering). As a further contribution, two practical examples are provided to offer guidance for untrained personnel in selecting the camera’s speed and camera characteristics. The developed code is made publicly available on GitHub. Full article
Show Figures

Figure 1

22 pages, 1336 KiB  
Article
Linear Pseudo-Measurements Filtering for Tracking a Moving Underwater Target by Observations with Random Delays
by Alexey Bosov
Sensors 2025, 25(12), 3757; https://doi.org/10.3390/s25123757 - 16 Jun 2025
Viewed by 329
Abstract
The linear pseudo-measurements filter is adapted for use in a stochastic observation system with random time delays between the arrival of observations and the actual state of a moving object. The observation model is characterized by limited prior knowledge of the measurement errors [...] Read more.
The linear pseudo-measurements filter is adapted for use in a stochastic observation system with random time delays between the arrival of observations and the actual state of a moving object. The observation model is characterized by limited prior knowledge of the measurement errors distribution, specified only by its first two moments. Furthermore, the proposed model allows for a multiplicative dependence of errors on the state of the moving object. The filter incorporates direction angles and range measurements generated by several independent measurement complexes. As a practical application, the method is used for tracking an autonomous underwater vehicle moving toward a stationary target. The vehicle’s velocity is influenced by continuous random disturbances and periodic abrupt changes. Observations are performed by two stationary acoustic beacons. Full article
Show Figures

Figure 1

34 pages, 10176 KiB  
Article
Study of Multi-Objective Tracking Method to Extract Multi-Vehicle Motion Tracking State in Dynamic Weighing Region
by Yan Zhao, Chengliang Ren, Shuanfeng Zhao, Jian Yao, Xiaoyu Li and Maoquan Wang
Sensors 2025, 25(10), 3105; https://doi.org/10.3390/s25103105 - 14 May 2025
Viewed by 450
Abstract
Dynamic weighing systems, an advanced technology for traffic management, are designed to measure the weight of moving vehicles without obstructing traffic flow. These systems play a critical role in monitoring freight vehicle overloading, collecting weight-based tolls, and assessing the structural health of roads [...] Read more.
Dynamic weighing systems, an advanced technology for traffic management, are designed to measure the weight of moving vehicles without obstructing traffic flow. These systems play a critical role in monitoring freight vehicle overloading, collecting weight-based tolls, and assessing the structural health of roads and bridges. However, due to the complex road traffic environment in real-world applications of dynamic weighing systems, some vehicles cannot be accurately weighed, even though precise parameter calibration was conducted prior to the system’s official use. The variation in driving behaviors among different drivers contributes to this issue. When different types and sizes of vehicles pass through the dynamic weighing area simultaneously, changes in the vehicles’ motion states are the main factors affecting weighing accuracy. This study proposes an improved SSD vehicle detection model to address the high sensitivity to vehicle occlusion and frequent vehicle ID changes in current multi-target tracking methods. The goal is to reduce detection omissions caused by vehicle occlusion. Additionally, to obtain more stable trajectory and speed data, a Gaussian Smoothing Interpolation (GSI) method is introduced into the DeepSORT algorithm. The fusion of dynamic weighing data is used to analyze the impact of changes in vehicle size and motion states on weighing accuracy, followed by compensation and experimental validation. A compensation strategy is implemented to address the impact of speed fluctuations on the weighing accuracy of vehicles approximately 12.5 m in length. This is completed to verify the feasibility of the compensation method proposed in this paper, which is based on vehicle information. A dataset containing vehicle length, width, height, and speed fluctuation information in the dynamic weighing area is constructed, followed by an analysis of the key factors influencing dynamic weighing accuracy. Finally, the improved dynamic weighing model for extracting vehicle motion state information is validated using a real dataset. The results demonstrate that the model can accurately detect vehicle targets in video footage and shows strong robustness under varying road illumination conditions. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

35 pages, 111295 KiB  
Article
A Visual Guidance and Control Method for Autonomous Landing of a Quadrotor UAV on a Small USV
by Ziqing Guo, Jianhua Wang, Xiang Zheng, Yuhang Zhou and Jiaqing Zhang
Drones 2025, 9(5), 364; https://doi.org/10.3390/drones9050364 - 12 May 2025
Viewed by 1317
Abstract
Unmanned Surface Vehicles (USVs) are commonly used as mobile docking stations for Unmanned Aerial Vehicles (UAVs) to ensure sustained operational capabilities. Conventional vision-based techniques based on horizontally-placed fiducial markers for autonomous landing are not only susceptible to interference from lighting and shadows but [...] Read more.
Unmanned Surface Vehicles (USVs) are commonly used as mobile docking stations for Unmanned Aerial Vehicles (UAVs) to ensure sustained operational capabilities. Conventional vision-based techniques based on horizontally-placed fiducial markers for autonomous landing are not only susceptible to interference from lighting and shadows but are also restricted by the limited Field of View (FOV) of the visual system. This study proposes a method that integrates an improved minimum snap trajectory planning algorithm with an event-triggered vision-based technique to achieve autonomous landing on a small USV. The trajectory planning algorithm ensures trajectory smoothness and controls deviations from the target flight path, enabling the UAV to approach the USV despite the visual system’s limited FOV. To avoid direct contact between the UAV and the fiducial marker while mitigating the interference from lighting and shadows on the marker, a landing platform with a vertically placed fiducial marker is designed to separate the UAV landing area from the fiducial marker detection region. Additionally, an event-triggered mechanism is used to limit excessive yaw angle adjustment of the UAV to improve its autonomous landing efficiency and stability. Experiments conducted in both terrestrial and river environments demonstrate that the UAV can successfully perform autonomous landing on a small USV in both stationary and moving scenarios. Full article
Show Figures

Figure 1

21 pages, 13911 KiB  
Article
A Graph-Based Method for Tactical Planning of Lane-Level Driving Tasks in the Outlook Region
by Qiang Zhang and Hsin Guan
Appl. Sci. 2025, 15(9), 4946; https://doi.org/10.3390/app15094946 - 29 Apr 2025
Viewed by 383
Abstract
Road traffic regulations usually require that a vehicle can only move one lane during one lane change and must turn on the turn signal before changing lanes. Under such constraints, if automated vehicles can plan multiple lane-change maneuvers at one time, then not [...] Read more.
Road traffic regulations usually require that a vehicle can only move one lane during one lane change and must turn on the turn signal before changing lanes. Under such constraints, if automated vehicles can plan multiple lane-change maneuvers at one time, then not only adjacent lanes but also farther lanes can be selected as target lanes when making decisions. This would help improve the driving performance in multi-lane scenarios. Many current lane-selection or lane-change methods focus on the surrounding region of the ego vehicle, usually only considering adjacent lanes as potential target lanes. This paper proposes a new tactical functional model that attempts to perform lane-level driving task planning and decision-making over a road area far beyond the surrounding region of the ego vehicle. We refer to this road area as the “outlook region”. In this functional model, the decision-making of lane-level driving tasks will take the overall performance within the outlook region as the goal, rather than pursuing the optimal single lane-change maneuver. The proposed method is implemented using a directed graph-based approach and simulation tests are conducted. The results show that the proposed method helps improve the driving performance of automated vehicles in multi-lane scenarios. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

16 pages, 10876 KiB  
Article
Study on Collision Avoidance Behavior in the Social Force-Based Pedestrian–Vehicle Interaction Simulation Model at Unsignalized Intersections
by Xuwei Wang, Tingting Liu and Zhen Liu
Appl. Sci. 2025, 15(9), 4885; https://doi.org/10.3390/app15094885 - 28 Apr 2025
Cited by 1 | Viewed by 676
Abstract
Modeling pedestrian–vehicle interaction behaviors not only helps better predict the intentions and actions of traffic participants but also contributes to generating more realistic pedestrian trajectories for testing autonomous vehicles. Most existing pedestrian–vehicle interaction models use repulsive forces toward target directions to avoid collisions. [...] Read more.
Modeling pedestrian–vehicle interaction behaviors not only helps better predict the intentions and actions of traffic participants but also contributes to generating more realistic pedestrian trajectories for testing autonomous vehicles. Most existing pedestrian–vehicle interaction models use repulsive forces toward target directions to avoid collisions. However, pedestrian agents in these models lack the ability to plan avoidance routes based on their positions when facing conflicting vehicles, leading to poor simulation effects at unsignalized intersections. By analyzing the crossing trajectories of pedestrians at unsignalized intersections through video data, we observed that when participants reject a current vehicle gap, they may tend to move toward the vehicle’s rear to start crossing the traffic flow earlier, thereby obtaining a safer opportunity to cross the road. In contrast, most previous pedestrian–vehicle interaction models only simulated pedestrians’ avoidance by moving away from vehicles. In response, we propose a pedestrian–vehicle interaction model incorporating pedestrian avoidance tendencies, which is based on the social force framework. Our improvements include refining the vehicle’s influence on pedestrians in lateral and longitudinal dimensions. The pedestrian agents in this model can make appropriate crossing decisions and select collision avoidance paths according to traffic conditions. This model can simulate pedestrian–vehicle interaction scenarios at unsignalized intersections and can be extended to pedestrian safety testing for autonomous vehicles. Full article
Show Figures

Figure 1

22 pages, 121478 KiB  
Article
Ground-Moving Target Relocation for a Lightweight Unmanned Aerial Vehicle-Borne Radar System Based on Doppler Beam Sharpening Image Registration
by Wencheng Liu, Zhen Chen, Zhiyu Jiang, Yanlei Li, Yunlong Liu, Xiangxi Bu and Xingdong Liang
Electronics 2025, 14(9), 1760; https://doi.org/10.3390/electronics14091760 - 25 Apr 2025
Viewed by 368
Abstract
With the rapid development of lightweight unmanned aerial vehicles (UAVs), the combination of UAVs and ground-moving target indication (GMTI) radar systems has received great interest. However, because of size, weight, and power (SWaP) limitations, the UAV may not be able to equip a [...] Read more.
With the rapid development of lightweight unmanned aerial vehicles (UAVs), the combination of UAVs and ground-moving target indication (GMTI) radar systems has received great interest. However, because of size, weight, and power (SWaP) limitations, the UAV may not be able to equip a highly accurate inertial navigation system (INS), which leads to reduced accuracy in the moving target relocation. To solve this issue, we propose using an image registration algorithm, which matches a Doppler beam sharpening (DBS) image of detected moving targets to a synthetic aperture radar (SAR) image containing coordinate information. However, when using conventional SAR image registration algorithms such as the SAR scale-invariant feature transform (SIFT) algorithm, additional difficulties arise. To overcome these difficulties, we developed a new image-matching algorithm, which first estimates the errors of the UAV platform to compensate for geometric distortions in the DBS image. In addition, to showcase the relocation improvement achieved with the new algorithm, we compared it with the affine transformation and second-order polynomial algorithms. The findings of simulated and real-world experiments demonstrate that our proposed image transformation method offers better moving target relocation results under low-accuracy INS conditions. Full article
(This article belongs to the Special Issue New Challenges in Remote Sensing Image Processing)
Show Figures

Figure 1

17 pages, 9440 KiB  
Article
RACFME: Object Tracking in Satellite Videos by Rotation Adaptive Correlation Filters with Motion Estimations
by Xiongzhi Wu, Haifeng Zhang, Chao Mei, Jiaxin Wu and Han Ai
Symmetry 2025, 17(4), 608; https://doi.org/10.3390/sym17040608 - 16 Apr 2025
Viewed by 381
Abstract
Video satellites provide high-temporal-resolution remote sensing images that enable continuous monitoring of the ground for applications such as target tracking and airport traffic detection. In this paper, we address the problems of object occlusion and the tracking of rotating objects in satellite videos [...] Read more.
Video satellites provide high-temporal-resolution remote sensing images that enable continuous monitoring of the ground for applications such as target tracking and airport traffic detection. In this paper, we address the problems of object occlusion and the tracking of rotating objects in satellite videos by introducing a rotation-adaptive tracking algorithm for correlation filters with motion estimation (RACFME). Our algorithm proposes the following improvements over the KCF method: (a) A rotation-adaptive feature enhancement module (RA) is proposed to obtain the rotated image block by affine transformation combined with the target rotation direction prior, which overcomes the disadvantage of HOG features lacking rotation adaptability, improves tracking accuracy while ensuring real-time performance, and solves the problem of tracking failure due to insufficient valid positive samples when tracking rotating targets. (b) Based on the correlation between peak response and occlusion, an occlusion detection method for vehicles and ships in satellite video is proposed. (c) Motion estimations are achieved by combining Kalman filtering with motion trajectory averaging, which solves the problem of tracking failure in the case of object occlusion. The experimental results show that the proposed RACFME algorithm can track a moving target with a 95% success score, and the RA module and ME both play an effective role. Full article
(This article belongs to the Special Issue Advances in Image Processing with Symmetry/Asymmetry)
Show Figures

Figure 1

11 pages, 387 KiB  
Article
Tracking of Moving Targets Through Asynchronous Measures
by Alberto Facheris and Luca Reggiani
Signals 2025, 6(2), 19; https://doi.org/10.3390/signals6020019 - 10 Apr 2025
Viewed by 587
Abstract
Unmanned Aerial Vehicles (UAVs) have progressively gained interest in recent years due to the wide range of related applications, from aerial communications and autonomous flight to agriculture and logistics. However, accurate 3D localization is crucial for enabling these kinds of applications, and commonly [...] Read more.
Unmanned Aerial Vehicles (UAVs) have progressively gained interest in recent years due to the wide range of related applications, from aerial communications and autonomous flight to agriculture and logistics. However, accurate 3D localization is crucial for enabling these kinds of applications, and commonly used tracking algorithms are often performing unsatisfactorily in critical scenarios like urban canyons and environments, characterized by dense multipath and line of sight obstruction. In this work we derive a novel 3D tracking algorithm which, despite its mathematical simplicity, can efficiently track moving targets handling asynchronous arrival of the anchor measurements or obstructions of line-of-sight links and outperforming commonly used algorithms like the Extended Kalman Filter (EKF) and the Particle Filter (PF). The proposed algorithm tracks the 3D position, velocity, and acceleration of a moving target through the combination of range measurements, between the target and different anchors, which become available in numbers and time instants not necessarily ordered as usually assumed in these applications. We denote this condition as asynchronous measurements, meaning that the ranging measurements are not available from all the anchors and they refer to different positions of the UAV during the tracking. We also show that our estimator is optimal among the linear ones, meaning that within this class, it minimizes the estimation error variance. Finally, we explore the accuracy that can be achieved in simulated scenarios defined by realistic UAV altitudes, velocities, and trajectories, as well as typical ranging errors of wideband localization systems. Full article
Show Figures

Figure 1

Back to TopTop