Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (239)

Search Parameters:
Keywords = motor imagery BCI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4294 KiB  
Article
Post Hoc Event-Related Potential Analysis of Kinesthetic Motor Imagery-Based Brain-Computer Interface Control of Anthropomorphic Robotic Arms
by Miltiadis Spanos, Theodora Gazea, Vasileios Triantafyllidis, Konstantinos Mitsopoulos, Aristidis Vrahatis, Maria Hadjinicolaou, Panagiotis D. Bamidis and Alkinoos Athanasiou
Electronics 2025, 14(15), 3106; https://doi.org/10.3390/electronics14153106 - 4 Aug 2025
Abstract
Kinesthetic motor imagery (KMI), the mental rehearsal of a motor task without its actual performance, constitutes one of the most common techniques used for brain–computer interface (BCI) control for movement-related tasks. The effect of neural injury on motor cortical activity during execution and [...] Read more.
Kinesthetic motor imagery (KMI), the mental rehearsal of a motor task without its actual performance, constitutes one of the most common techniques used for brain–computer interface (BCI) control for movement-related tasks. The effect of neural injury on motor cortical activity during execution and imagery remains under investigation in terms of activations, processing of motor onset, and BCI control. The current work aims to conduct a post hoc investigation of the event-related potential (ERP)-based processing of KMI during BCI control of anthropomorphic robotic arms by spinal cord injury (SCI) patients and healthy control participants in a completed clinical trial. For this purpose, we analyzed 14-channel electroencephalography (EEG) data from 10 patients with cervical SCI and 8 healthy individuals, recorded through Emotiv EPOC BCI, as the participants attempted to move anthropomorphic robotic arms using KMI. EEG data were pre-processed by band-pass filtering (8–30 Hz) and independent component analysis (ICA). ERPs were calculated at the sensor space, and analysis of variance (ANOVA) was used to determine potential differences between groups. Our results showed no statistically significant differences between SCI patients and healthy control groups regarding mean amplitude and latency (p < 0.05) across the recorded channels at various time points during stimulus presentation. Notably, no significant differences were observed in ERP components, except for the P200 component at the T8 channel. These findings suggest that brain circuits associated with motor planning and sensorimotor processes are not disrupted due to anatomical damage following SCI. The temporal dynamics of motor-related areas—particularly in channels like F3, FC5, and F7—indicate that essential motor imagery (MI) circuits remain functional. Limitations include the relatively small sample size that may hamper the generalization of our findings, the sensor-space analysis that restricts anatomical specificity and neurophysiological interpretations, and the use of a low-density EEG headset, lacking coverage over key motor regions. Non-invasive EEG-based BCI systems for motor rehabilitation in SCI patients could effectively leverage intact neural circuits to promote neuroplasticity and facilitate motor recovery. Future work should include validation against larger, longitudinal, high-density, source-space EEG datasets. Full article
(This article belongs to the Special Issue EEG Analysis and Brain–Computer Interface (BCI) Technology)
Show Figures

Figure 1

20 pages, 1125 KiB  
Review
Brain-Computer Interfaces for Stroke Motor Rehabilitation
by Alessandro Tonin, Marianna Semprini, Pawel Kiper and Dante Mantini
Bioengineering 2025, 12(8), 820; https://doi.org/10.3390/bioengineering12080820 - 30 Jul 2025
Viewed by 455
Abstract
Brain–computer interface (BCI) technology holds promise for improving motor rehabilitation in stroke patients. This review explores the immediate and long-term effects of BCI training, shedding light on the potential benefits and challenges. Clinical studies have demonstrated that BCIs yield significant immediate improvements in [...] Read more.
Brain–computer interface (BCI) technology holds promise for improving motor rehabilitation in stroke patients. This review explores the immediate and long-term effects of BCI training, shedding light on the potential benefits and challenges. Clinical studies have demonstrated that BCIs yield significant immediate improvements in motor functions following stroke. Patients can engage in BCI training safely, making it a viable option for rehabilitation. Evidence from single-group studies consistently supports the effectiveness of BCIs in enhancing patients’ performance. Despite these promising findings, the evidence regarding long-term effects remains less robust. Further studies are needed to determine whether BCI-induced changes are permanent or only last for short durations. While evaluating the outcomes of BCI, one must consider that different BCI training protocols may influence functional recovery. The characteristics of some of the paradigms that we discuss are motor imagery-based BCIs, movement-attempt-based BCIs, and brain-rhythm-based BCIs. Finally, we examine studies suggesting that integrating BCIs with other devices, such as those used for functional electrical stimulation, has the potential to enhance recovery outcomes. We conclude that, while BCIs offer immediate benefits for stroke rehabilitation, addressing long-term effects and optimizing clinical implementation remain critical areas for further investigation. Full article
Show Figures

Figure 1

29 pages, 2830 KiB  
Article
BCINetV1: Integrating Temporal and Spectral Focus Through a Novel Convolutional Attention Architecture for MI EEG Decoding
by Muhammad Zulkifal Aziz, Xiaojun Yu, Xinran Guo, Xinming He, Binwen Huang and Zeming Fan
Sensors 2025, 25(15), 4657; https://doi.org/10.3390/s25154657 - 27 Jul 2025
Viewed by 365
Abstract
Motor imagery (MI) electroencephalograms (EEGs) are pivotal cortical potentials reflecting cortical activity during imagined motor actions, widely leveraged for brain-computer interface (BCI) system development. However, effectively decoding these MI EEG signals is often overshadowed by flawed methods in signal processing, deep learning methods [...] Read more.
Motor imagery (MI) electroencephalograms (EEGs) are pivotal cortical potentials reflecting cortical activity during imagined motor actions, widely leveraged for brain-computer interface (BCI) system development. However, effectively decoding these MI EEG signals is often overshadowed by flawed methods in signal processing, deep learning methods that are clinically unexplained, and highly inconsistent performance across different datasets. We propose BCINetV1, a new framework for MI EEG decoding to address the aforementioned challenges. The BCINetV1 utilizes three innovative components: a temporal convolution-based attention block (T-CAB) and a spectral convolution-based attention block (S-CAB), both driven by a new convolutional self-attention (ConvSAT) mechanism to identify key non-stationary temporal and spectral patterns in the EEG signals. Lastly, a squeeze-and-excitation block (SEB) intelligently combines those identified tempo-spectral features for accurate, stable, and contextually aware MI EEG classification. Evaluated upon four diverse datasets containing 69 participants, BCINetV1 consistently achieved the highest average accuracies of 98.6% (Dataset 1), 96.6% (Dataset 2), 96.9% (Dataset 3), and 98.4% (Dataset 4). This research demonstrates that BCINetV1 is computationally efficient, extracts clinically vital markers, effectively handles the non-stationarity of EEG data, and shows a clear advantage over existing methods, marking a significant step forward for practical BCI applications. Full article
(This article belongs to the Special Issue Advanced Biomedical Imaging and Signal Processing)
Show Figures

Figure 1

34 pages, 3704 KiB  
Article
Uncertainty-Aware Deep Learning for Robust and Interpretable MI EEG Using Channel Dropout and LayerCAM Integration
by Óscar Wladimir Gómez-Morales, Sofia Escalante-Escobar, Diego Fabian Collazos-Huertas, Andrés Marino Álvarez-Meza and German Castellanos-Dominguez
Appl. Sci. 2025, 15(14), 8036; https://doi.org/10.3390/app15148036 - 18 Jul 2025
Viewed by 298
Abstract
Motor Imagery (MI) classification plays a crucial role in enhancing the performance of brain–computer interface (BCI) systems, thereby enabling advanced neurorehabilitation and the development of intuitive brain-controlled technologies. However, MI classification using electroencephalography (EEG) is hindered by spatiotemporal variability and the limited interpretability [...] Read more.
Motor Imagery (MI) classification plays a crucial role in enhancing the performance of brain–computer interface (BCI) systems, thereby enabling advanced neurorehabilitation and the development of intuitive brain-controlled technologies. However, MI classification using electroencephalography (EEG) is hindered by spatiotemporal variability and the limited interpretability of deep learning (DL) models. To mitigate these challenges, dropout techniques are employed as regularization strategies. Nevertheless, the removal of critical EEG channels, particularly those from the sensorimotor cortex, can result in substantial spatial information loss, especially under limited training data conditions. This issue, compounded by high EEG variability in subjects with poor performance, hinders generalization and reduces the interpretability and clinical trust in MI-based BCI systems. This study proposes a novel framework integrating channel dropout—a variant of Monte Carlo dropout (MCD)—with class activation maps (CAMs) to enhance robustness and interpretability in MI classification. This integration represents a significant step forward by offering, for the first time, a dedicated solution to concurrently mitigate spatiotemporal uncertainty and provide fine-grained neurophysiologically relevant interpretability in motor imagery classification, particularly demonstrating refined spatial attention in challenging low-performing subjects. We evaluate three DL architectures (ShallowConvNet, EEGNet, TCNet Fusion) on a 52-subject MI-EEG dataset, applying channel dropout to simulate structural variability and LayerCAM to visualize spatiotemporal patterns. Results demonstrate that among the three evaluated deep learning models for MI-EEG classification, TCNet Fusion achieved the highest peak accuracy of 74.4% using 32 EEG channels. At the same time, ShallowConvNet recorded the lowest peak at 72.7%, indicating TCNet Fusion’s robustness in moderate-density montages. Incorporating MCD notably improved model consistency and classification accuracy, especially in low-performing subjects where baseline accuracies were below 70%; EEGNet and TCNet Fusion showed accuracy improvements of up to 10% compared to their non-MCD versions. Furthermore, LayerCAM visualizations enhanced with MCD transformed diffuse spatial activation patterns into more focused and interpretable topographies, aligning more closely with known motor-related brain regions and thereby boosting both interpretability and classification reliability across varying subject performance levels. Our approach offers a unified solution for uncertainty-aware, and interpretable MI classification. Full article
(This article belongs to the Special Issue EEG Horizons: Exploring Neural Dynamics and Neurocognitive Processes)
Show Figures

Figure 1

24 pages, 890 KiB  
Article
MCTGNet: A Multi-Scale Convolution and Hybrid Attention Network for Robust Motor Imagery EEG Decoding
by Huangtao Zhan, Xinhui Li, Xun Song, Zhao Lv and Ping Li
Bioengineering 2025, 12(7), 775; https://doi.org/10.3390/bioengineering12070775 - 17 Jul 2025
Viewed by 363
Abstract
Motor imagery (MI) EEG decoding is a key application in brain–computer interface (BCI) research. In cross-session scenarios, the generalization and robustness of decoding models are particularly challenging due to the complex nonlinear dynamics of MI-EEG signals in both temporal and frequency domains, as [...] Read more.
Motor imagery (MI) EEG decoding is a key application in brain–computer interface (BCI) research. In cross-session scenarios, the generalization and robustness of decoding models are particularly challenging due to the complex nonlinear dynamics of MI-EEG signals in both temporal and frequency domains, as well as distributional shifts across different recording sessions. While multi-scale feature extraction is a promising approach for generalized and robust MI decoding, conventional classifiers (e.g., multilayer perceptrons) struggle to perform accurate classification when confronted with high-order, nonstationary feature distributions, which have become a major bottleneck for improving decoding performance. To address this issue, we propose an end-to-end decoding framework, MCTGNet, whose core idea is to formulate the classification process as a high-order function approximation task that jointly models both task labels and feature structures. By introducing a group rational Kolmogorov–Arnold Network (GR-KAN), the system enhances generalization and robustness under cross-session conditions. Experiments on the BCI Competition IV 2a and 2b datasets demonstrate that MCTGNet achieves average classification accuracies of 88.93% and 91.42%, respectively, outperforming state-of-the-art methods by 3.32% and 1.83%. Full article
(This article belongs to the Special Issue Brain Computer Interfaces for Motor Control and Motor Learning)
Show Figures

Figure 1

22 pages, 4882 KiB  
Article
Dual-Branch Spatio-Temporal-Frequency Fusion Convolutional Network with Transformer for EEG-Based Motor Imagery Classification
by Hao Hu, Zhiyong Zhou, Zihan Zhang and Wenyu Yuan
Electronics 2025, 14(14), 2853; https://doi.org/10.3390/electronics14142853 - 17 Jul 2025
Viewed by 266
Abstract
The decoding of motor imagery (MI) electroencephalogram (EEG) signals is crucial for motor control and rehabilitation. However, as feature extraction is the core component of the decoding process, traditional methods, often limited to single-feature domains or shallow time-frequency fusion, struggle to comprehensively capture [...] Read more.
The decoding of motor imagery (MI) electroencephalogram (EEG) signals is crucial for motor control and rehabilitation. However, as feature extraction is the core component of the decoding process, traditional methods, often limited to single-feature domains or shallow time-frequency fusion, struggle to comprehensively capture the spatio-temporal-frequency characteristics of the signals, thereby limiting decoding accuracy. To address these limitations, this paper proposes a dual-branch neural network architecture with multi-domain feature fusion, the dual-branch spatio-temporal-frequency fusion convolutional network with Transformer (DB-STFFCNet). The DB-STFFCNet model consists of three modules: the spatiotemporal feature extraction module (STFE), the frequency feature extraction module (FFE), and the feature fusion and classification module. The STFE module employs a lightweight multi-dimensional attention network combined with a temporal Transformer encoder, capable of simultaneously modeling local fine-grained features and global spatiotemporal dependencies, effectively integrating spatiotemporal information and enhancing feature representation. The FFE module constructs a hierarchical feature refinement structure by leveraging the fast Fourier transform (FFT) and multi-scale frequency convolutions, while a frequency-domain Transformer encoder captures the global dependencies among frequency domain features, thus improving the model’s ability to represent key frequency information. Finally, the fusion module effectively consolidates the spatiotemporal and frequency features to achieve accurate classification. To evaluate the feasibility of the proposed method, experiments were conducted on the BCI Competition IV-2a and IV-2b public datasets, achieving accuracies of 83.13% and 89.54%, respectively, outperforming existing methods. This study provides a novel solution for joint time-frequency representation learning in EEG analysis. Full article
(This article belongs to the Special Issue Artificial Intelligence Methods for Biomedical Data Processing)
Show Figures

Figure 1

14 pages, 1563 KiB  
Article
High-Resolution Time-Frequency Feature Selection and EEG Augmented Deep Learning for Motor Imagery Recognition
by Mouna Bouchane, Wei Guo and Shuojin Yang
Electronics 2025, 14(14), 2827; https://doi.org/10.3390/electronics14142827 - 14 Jul 2025
Viewed by 300
Abstract
Motor Imagery (MI) based Brain Computer Interfaces (BCIs) have promising applications in neurorehabilitation for individuals who have lost mobility and control over parts of their body due to brain injuries, such as stroke patients. Accurately classifying MI tasks is essential for effective BCI [...] Read more.
Motor Imagery (MI) based Brain Computer Interfaces (BCIs) have promising applications in neurorehabilitation for individuals who have lost mobility and control over parts of their body due to brain injuries, such as stroke patients. Accurately classifying MI tasks is essential for effective BCI performance, but this task remains challenging due to the complex and non-stationary nature of EEG signals. This study aims to improve the classification of left and right-hand MI tasks by utilizing high-resolution time-frequency features extracted from EEG signals, enhanced with deep learning-based data augmentation techniques. We propose a novel deep learning framework named the Generalized Wavelet Transform-based Deep Convolutional Network (GDC-Net), which integrates multiple components. First, EEG signals recorded from the C3, C4, and Cz channels are transformed into detailed time-frequency representations using the Generalized Morse Wavelet Transform (GMWT). The selected features are then expanded using a Deep Convolutional Generative Adversarial Network (DCGAN) to generate additional synthetic data and address data scarcity. Finally, the augmented feature maps data are subsequently fed into a hybrid CNN-LSTM architecture, enabling both spatial and temporal feature learning for improved classification. The proposed approach is evaluated on the BCI Competition IV dataset 2b. Experimental results showed that the mean classification accuracy and Kappa value are 89.24% and 0.784, respectively, making them the highest compared to the state-of-the-art algorithms. The integration of GMWT and DCGAN significantly enhances feature quality and model generalization, thereby improving classification performance. These findings demonstrate that GDC-Net delivers superior MI classification performance by effectively capturing high-resolution time-frequency dynamics and enhancing data diversity. This approach holds strong potential for advancing MI-based BCI applications, especially in assistive and rehabilitation technologies. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

25 pages, 6826 KiB  
Article
Multi-Class Classification Methods for EEG Signals of Lower-Limb Rehabilitation Movements
by Shuangling Ma, Zijie Situ, Xiaobo Peng, Zhangyang Li and Ying Huang
Biomimetics 2025, 10(7), 452; https://doi.org/10.3390/biomimetics10070452 - 9 Jul 2025
Viewed by 381
Abstract
Brain–Computer Interfaces (BCIs) enable direct communication between the brain and external devices by decoding motor intentions from EEG signals. However, the existing multi-class classification methods for motor imagery EEG (MI-EEG) signals are hindered by low signal quality and limited accuracy, restricting their practical [...] Read more.
Brain–Computer Interfaces (BCIs) enable direct communication between the brain and external devices by decoding motor intentions from EEG signals. However, the existing multi-class classification methods for motor imagery EEG (MI-EEG) signals are hindered by low signal quality and limited accuracy, restricting their practical application. This study focuses on rehabilitation training scenarios, aiming to capture the motor intentions of patients with partial or complete motor impairments (such as stroke survivors) and provide feedforward control commands for exoskeletons. This study developed an EEG acquisition protocol specifically for use with lower-limb rehabilitation motor imagery (MI). It systematically explored preprocessing techniques, feature extraction strategies, and multi-classification algorithms for multi-task MI-EEG signals. A novel 3D EEG convolutional neural network (3D EEG-CNN) that integrates time/frequency features is proposed. Evaluations on a self-collected dataset demonstrated that the proposed model achieved a peak classification accuracy of 66.32%, substantially outperforming conventional approaches and demonstrating notable progress in the multi-class classification of lower-limb motor imagery tasks. Full article
(This article belongs to the Special Issue Advances in Brain–Computer Interfaces 2025)
Show Figures

Figure 1

17 pages, 879 KiB  
Article
Effect of EEG Electrode Numbers on Source Estimation in Motor Imagery
by Mustafa Yazıcı, Mustafa Ulutaş and Mukadder Okuyan
Brain Sci. 2025, 15(7), 685; https://doi.org/10.3390/brainsci15070685 - 26 Jun 2025
Viewed by 423
Abstract
The electroencephalogram (EEG) is one of the most popular neurophysiological methods in neuroscience. Scalp EEG measurements are obtained using various numbers of channels for both clinical and research applications. This pilot study explores the effect of EEG channel count on motor imagery classification [...] Read more.
The electroencephalogram (EEG) is one of the most popular neurophysiological methods in neuroscience. Scalp EEG measurements are obtained using various numbers of channels for both clinical and research applications. This pilot study explores the effect of EEG channel count on motor imagery classification using source analysis in brain–computer interface (BCI) applications. Different channel configurations are employed to evaluate classification performance. This study focuses on mu band signals, which are sensitive to motor imagery-related EEG changes. Common spatial patterns are utilized as a spatiotemporal filter to extract signal components relevant to the right hand and right foot extremities. Classification accuracies are obtained using configurations with 19, 30, 61, and 118 electrodes to determine the optimal number of electrodes in motor imagery studies. Experiments are conducted on the BCI Competition III Dataset Iva. The 19-channel configuration yields lower classification accuracy when compared to the others. The results from 118 channels are better than those from 19 channels but not as good as those from 30 and 61 channels. The best results are achieved when 61 channels are utilized. The average accuracy values are 83.63% with 19 channels, increasing to 84.70% with 30 channels, 84.73% with 61 channels, and decreasing to 83.95% when 118 channels are used. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

15 pages, 13180 KiB  
Article
Channel-Dependent Multilayer EEG Time-Frequency Representations Combined with Transfer Learning-Based Deep CNN Framework for Few-Channel MI EEG Classification
by Ziang Liu, Kang Fan, Qin Gu and Yaduan Ruan
Bioengineering 2025, 12(6), 645; https://doi.org/10.3390/bioengineering12060645 - 12 Jun 2025
Viewed by 494
Abstract
The study of electroencephalogram (EEG) signals is crucial for understanding brain function and has extensive applications in clinical diagnosis, neuroscience, and brain–computer interface technology. This paper addresses the challenge of recognizing motor imagery EEG signals with few channels, which is essential for portable [...] Read more.
The study of electroencephalogram (EEG) signals is crucial for understanding brain function and has extensive applications in clinical diagnosis, neuroscience, and brain–computer interface technology. This paper addresses the challenge of recognizing motor imagery EEG signals with few channels, which is essential for portable and real-time applications. A novel framework is proposed that applies a continuous wavelet transform to convert time-domain EEG signals into two-dimensional time-frequency representations. These images are then concatenated into channel-dependent multilayer EEG time-frequency representations (CDML-EEG-TFR), incorporating multidimensional information of time, frequency, and channels, allowing for a more comprehensive and enriched brain representation under the constraint of few channels. By adopting a deep convolutional neural network with EfficientNet as the backbone and utilizing pre-trained weights from natural image datasets for transfer learning, the framework can simultaneously learn temporal, spatial, and channel features embedded in the CDML-EEG-TFR. Moreover, the transfer learning strategy effectively addresses the issue of data sparsity in the context of a few channels. Our approach enhances the classification accuracy of motor imagery EEG signals in few-channel scenarios. Experimental results on the BCI Competition IV 2b dataset show a significant improvement in classification accuracy, reaching 80.21%. This study highlights the potential of CDML-EEG-TFR and the EfficientNet-based transfer learning strategy in few-channel EEG signal classification, laying a foundation for practical applications and further research in medical and sports fields. Full article
(This article belongs to the Special Issue Artificial Intelligence for Biomedical Signal Processing, 2nd Edition)
Show Figures

Graphical abstract

21 pages, 1134 KiB  
Article
Dynamic Ensemble Selection for EEG Signal Classification in Distributed Data Environments
by Małgorzata Przybyła-Kasperek and Jakub Sacewicz
Appl. Sci. 2025, 15(11), 6043; https://doi.org/10.3390/app15116043 - 27 May 2025
Viewed by 476
Abstract
This study presents a novel approach to EEG signal classification in distributed environments using dynamic ensemble selection. In scenarios where data dispersion arises due to privacy constraints or decentralized data collection, traditional global modelling is impractical. We propose a framework where classifiers are [...] Read more.
This study presents a novel approach to EEG signal classification in distributed environments using dynamic ensemble selection. In scenarios where data dispersion arises due to privacy constraints or decentralized data collection, traditional global modelling is impractical. We propose a framework where classifiers are trained locally on independent subsets of EEG data without requiring centralized access. A dynamic coalition-based ensemble strategy is employed to integrate the outputs of these local models, enabling adaptive and instance-specific decision-making. Coalitions are formed based on conflict analysis between model predictions, allowing either consensus (unified) or diversity (diverse) to guide the ensemble structure. Experiments were conducted on two benchmark datasets: an epilepsy EEG dataset comprising 150 segmented EEG time series from ten patients, and the BCI Competition IV Dataset 1, with continuous recordings from seven subjects performing motor imagery tasks, for which a total of 1400 segments were extracted. In the study, we also evaluated the non-distributed (centralized) approach to provide a comprehensive performance baseline. Additionally, we tested a convolutional neural network specifically designed for EEG data, ensuring our results are compared against advanced deep learning methods. Gradient Boosting combined with measurement-level fusion and unified coalitions consistently achieved the highest performance, with an F1-score, accuracy, and balanced accuracy of 0.987 (for nine local tables). The results demonstrate the effectiveness and scalability of dynamic coalition-based ensembles for EEG diagnosis in distributed settings, highlighting their potential in privacy-sensitive clinical and telemedicine applications. Full article
(This article belongs to the Special Issue EEG Signal Processing in Medical Diagnosis Applications)
Show Figures

Figure 1

27 pages, 1883 KiB  
Article
Advancing Fractal Dimension Techniques to Enhance Motor Imagery Tasks Using EEG for Brain–Computer Interface Applications
by Amr F. Mohamed and Vacius Jusas
Appl. Sci. 2025, 15(11), 6021; https://doi.org/10.3390/app15116021 - 27 May 2025
Viewed by 534
Abstract
The ongoing exploration of brain–computer interfaces (BCIs) provides deeper insights into the workings of the human brain. Motor imagery (MI) tasks, such as imagining movements of the tongue, left and right hands, or feet, can be identified through the analysis of electroencephalography (EEG) [...] Read more.
The ongoing exploration of brain–computer interfaces (BCIs) provides deeper insights into the workings of the human brain. Motor imagery (MI) tasks, such as imagining movements of the tongue, left and right hands, or feet, can be identified through the analysis of electroencephalography (EEG) signals. The development of BCI systems opens up opportunities for their application in assistive devices, neurorehabilitation, and brain stimulation and brain feedback technologies, potentially helping patients to regain the ability to eat and drink without external help, move, or even speak. In this context, the accurate recognition and deciphering of a patient’s imagined intentions is critical for the development of effective BCI systems. Therefore, to distinguish motor tasks in a manner differing from the commonly used methods in this context, we propose a fractal dimension (FD)-based approach, which effectively captures the self-similarity and complexity of EEG signals. For this purpose, all four classes provided in the BCI Competition IV 2a dataset are utilized with nine different combinations of seven FD methods: Katz, Petrosian, Higuchi, box-counting, MFDFA, DFA, and correlation dimension. The resulting features are then used to train five machine learning models: linear, Gaussian, polynomial support vector machine, regression tree, and stochastic gradient descent. As a result, the proposed method obtained top-tier results, achieving 79.2% accuracy when using the Katz vs. box-counting vs. correlation dimension FD combination (KFD vs. BCFD vs. CDFD) classified by LinearSVM, thus outperforming the state-of-the-art TWSB method (achieving 79.1% accuracy). These results demonstrate that fractal dimension features can be applied to achieve higher classification accuracy for online/offline MI-BCIs, when compared to traditional methods. The application of these findings is expected to facilitate the enhancement of motor imagery brain–computer interface systems, which is a key issue faced by neuroscientists. Full article
(This article belongs to the Section Applied Neuroscience and Neural Engineering)
Show Figures

Figure 1

18 pages, 2282 KiB  
Article
Preliminary Electroencephalography-Based Assessment of Anxiety Using Machine Learning: A Pilot Study
by Katarzyna Mróz and Kamil Jonak
Brain Sci. 2025, 15(6), 571; https://doi.org/10.3390/brainsci15060571 - 26 May 2025
Viewed by 738
Abstract
Background: Recent advancements in machine learning (ML) have significantly influenced the analysis of brain signals, particularly electroencephalography (EEG), enhancing the detection of complex neural patterns. ML enables large-scale data processing, offering novel opportunities for diagnosing and treating mental disorders. However, challenges such [...] Read more.
Background: Recent advancements in machine learning (ML) have significantly influenced the analysis of brain signals, particularly electroencephalography (EEG), enhancing the detection of complex neural patterns. ML enables large-scale data processing, offering novel opportunities for diagnosing and treating mental disorders. However, challenges such as data variability, noise, and model interpretability remain significant. This study reviews the current limitations of EEG-based anxiety detection and explores the potential of advanced AI models, including transformers and VAE-D2GAN, to improve diagnostic accuracy and real-time monitoring. Methods: The paper presents the application of ML algorithms, with a focus on convolutional neural networks (CNN) and recurrent neural networks (RNN), in identifying biomarkers of anxiety disorders and predicting therapy responses. Additionally, it discusses the role of brain–computer interfaces (BCIs) in assisting individuals with disabilities by enabling device control through brain activity. Results: Experimental EEG research on BCI applications was conducted, focusing on motor imagery-based brain activity. Findings indicate that successive training sessions improve signal classification accuracy, emphasizing the need for personalized and adaptive EEG analysis methods. Challenges in BCI usability and technological constraints in EEG processing are also addressed. Conclusions: By integrating ML with EEG analysis, this study highlights the potential for future healthcare applications, including neurorehabilitation, anxiety disorder therapy, and predictive clinical models. Future research should focus on optimizing ML algorithms, enhancing personalization, and addressing ethical concerns related to patient privacy. Full article
Show Figures

Figure 1

18 pages, 1850 KiB  
Article
Cross-Subject Motor Imagery Electroencephalogram Decoding with Domain Generalization
by Yanyan Zheng, Senxiang Wu, Jie Chen, Qiong Yao and Siyu Zheng
Bioengineering 2025, 12(5), 495; https://doi.org/10.3390/bioengineering12050495 - 7 May 2025
Viewed by 744
Abstract
Decoding motor imagery (MI) electroencephalogram (EEG) signals in the brain–computer interface (BCI) can assist patients in accelerating motor function recovery. To realize the implementation of plug-and-play functionality for MI-BCI applications, cross-subject models are employed to alleviate time-consuming calibration and avoid additional model training [...] Read more.
Decoding motor imagery (MI) electroencephalogram (EEG) signals in the brain–computer interface (BCI) can assist patients in accelerating motor function recovery. To realize the implementation of plug-and-play functionality for MI-BCI applications, cross-subject models are employed to alleviate time-consuming calibration and avoid additional model training for target subjects by utilizing EEG data from source subjects. However, the diversity in data distribution among subjects limits the model’s robustness. In this study, we investigate a cross-subject MI-EEG decoding model with domain generalization based on a deep learning neural network that extracts domain-invariant features from source subjects. Firstly, a knowledge distillation framework is adopted to obtain the internally invariant representations based on spectral features fusion. Then, the correlation alignment approach aligns mutually invariant representations between each pair of sub-source domains. In addition, we use distance regularization on two kinds of invariant features to enhance generalizable information. To assess the effectiveness of our approach, experiments are conducted on the BCI Competition IV 2a and the Korean University dataset. The results demonstrate that the proposed model achieves 8.93% and 4.4% accuracy improvements on two datasets, respectively, compared with current state-of-the-art models, confirming that the proposed approach can effectively extract invariant features from source subjects and generalize to the unseen target distribution, hence paving the way for effective implementation of the plug-and-play functionality in MI-BCI applications. Full article
(This article belongs to the Special Issue Medical Imaging Analysis: Current and Future Trends)
Show Figures

Figure 1

18 pages, 2610 KiB  
Article
Weighted Filter Bank and Regularization Common Spatial Pattern-Based Decoding Algorithm for Brain-Computer Interfaces
by Jincai Ye, Jiajie Zhu and Shoulin Huang
Appl. Sci. 2025, 15(9), 5159; https://doi.org/10.3390/app15095159 - 6 May 2025
Cited by 1 | Viewed by 613
Abstract
In the field of brain–computer interfaces (BCI), the decoding of motor imagery EEG signals is significantly hindered by individual differences in EEG signals, which limits the generalization ability of decoding models. To address this challenge, this study proposes a mutual information weighted filter [...] Read more.
In the field of brain–computer interfaces (BCI), the decoding of motor imagery EEG signals is significantly hindered by individual differences in EEG signals, which limits the generalization ability of decoding models. To address this challenge, this study proposes a mutual information weighted filter bank regularized common spatial pattern (WFBRCSP) algorithm. The algorithm divides the signal into multiple frequency bands, adaptively assigns subject weights based on the mutual information maximization criterion, and optimizes the covariance matrix with a regularization strategy, significantly improving the robustness of feature extraction. The results on the public BCI competition datasets BCICIII IVa and BCICIV IIb exhibit that the WFBRCSP outperforms traditional CSP, RCSP, FBCSP, FBRCSP, and OFBRCSP methods in terms of classification accuracy (87.87% and 85.92%). In addition, through the mutual information-weighted and regularized spatial filtering of data from different subjects, WFBRCSP demonstrates excellent real-time performance in cross-subject scenarios, validating its practical value in brain–computer interface systems. This study provides a new approach to addressing the issues of individual differences and noise interference in EEG signals. Full article
Show Figures

Figure 1

Back to TopTop