Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = mosquito longevity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1598 KB  
Article
Impact of Thermal Variation on Egg Hatching and the Life Cycle of Aedes (Protomacleaya) terrens (Diptera: Culicidae) in a Laboratory Environment
by Rayane Dias, Manuella Pereira Cerqueira Leite, Guilherme Sanches Corrêa-do-Nascimento, Gabriel Silva Santos, Cecilia Ferreira de Mello, Nathália Menezes de Almeida and Jeronimo Alencar
Life 2025, 15(7), 1038; https://doi.org/10.3390/life15071038 - 30 Jun 2025
Viewed by 462
Abstract
Evaluating the development process of mosquito species under the influence of temperature is essential for understanding their ecology and geographical distribution, as well as assessing their potential as vectors of pathogens. Aedes (Protomacleaya) terrens, a species recognized for its susceptibility [...] Read more.
Evaluating the development process of mosquito species under the influence of temperature is essential for understanding their ecology and geographical distribution, as well as assessing their potential as vectors of pathogens. Aedes (Protomacleaya) terrens, a species recognized for its susceptibility and competence in transmitting the chikungunya virus, serves as a relevant model for research in this context. This study aimed to analyze the influence of temperature on egg hatching and the development cycle of this species to expand knowledge on its biology and implications for public health. During the experiment, 800 eggs were used, collected through 10 ovitraps in a forest remnant located in Uruaçu, Goiás, Brazil. The total number of eggs was divided into four groups, exposed to constant temperatures of 15 ± 2 °C, 20 ± 2 °C, 25 ± 2 °C, and 30 ± 2 °C. After hatching, first-instar larvae were individually separated and monitored daily under controlled conditions until adult emergence. The highest hatching rate occurred at 25 °C, showing an optimal point around 27 °C. Throughout development, temperature significantly reduced the duration of each stage, with the fastest complete cycle at 30 °C, a difference of approximately 10–12 days when compared to 20 °C and approximately 47 days when compared to 25 °C. These results offer valuable insights into the temperature sensitivity of Ae. terrens across its developmental stages, suggesting that each stage has its own optimal temperature. Thus, small variations in responses to environmental conditions and differentiation between sexes may become more pronounced throughout development. In this sense, temperature can affect not only the development and survival of dipterans but also the capacity for virus transmission, as the pathogen influences the reproduction rate and longevity of the vectors. Full article
(This article belongs to the Section Diversity and Ecology)
Show Figures

Figure 1

15 pages, 2891 KB  
Article
Optimizing Cost-Effective Larval Diets for Mass Rearing of Aedes Mosquitoes in Vector Control Programs
by Qianqian Li, Tongxin Wei, Yan Sun, Jehangir Khan and Dongjing Zhang
Insects 2025, 16(5), 483; https://doi.org/10.3390/insects16050483 - 1 May 2025
Viewed by 814
Abstract
(1) Background: Larval diet composition significantly influences the developmental, physiological, and reproductive traits of Ae. albopictus and Ae. aegypti, major arbovirus vectors. Optimizing larval nutrition is essential for mass-rearing programs supporting the sterile insect technique and incompatible insect technique. This study evaluated [...] Read more.
(1) Background: Larval diet composition significantly influences the developmental, physiological, and reproductive traits of Ae. albopictus and Ae. aegypti, major arbovirus vectors. Optimizing larval nutrition is essential for mass-rearing programs supporting the sterile insect technique and incompatible insect technique. This study evaluated the effects of three larval diets on key fitness traits, including pupation rate, male flight ability, adult longevity, female fecundity, pupal size, and wing length, which are critical for the success of SIT and IIT programs. (2) Methods: Ae. albopictus (GT strain) and Ae. aegypti (AEG strain) were reared on three diets with varying protein sources: diet 1 (≈1.23 dollars/kg; porcine liver/shrimp/yeast = 6:3:1), the IAEA-recommended diet; diet 2 (≈1.78 dollars/kg; bovine liver/shrimp/yeast = 6:3:1), a modified IAEA diet; and diet 3 (≈0.55 dollars/kg; tortoise food), a low-cost laboratory formulation. Life history traits were assessed using standardized protocols, and data were analyzed with ANOVA and Tukey’s post hoc test. (3) Results: Diet 3 consistently improved pupation rates, adult longevity, and male flight ability compared with diet 2. Mosquitoes reared on diets 1 and 3 exhibited significantly larger pupae and longer wings, while diet 2 performed sub-optimally. Adult eclosion rates (~100%) remained high across all diets. Male flight ability varied by species, with Ae. albopictus performing best on diet 1 and Ae. aegypti on diet 3. Female fecundity was diet-dependent, with diet 1 favoring Ae. albopictus and diet 3 benefitting Ae. aegypti. Longevity was highest in mosquitoes reared on diet 3, with a median survival of 19.5 days for GT males and 37.5 days for GT females. (4) Conclusions: Diet 3 emerged as the most cost-effective option, enhancing key fitness traits essential for SIT and IIT. Future studies should refine nutrient formulations and validate findings under field conditions to optimize mass-rearing efficiency in vector control. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Figure 1

9 pages, 1803 KB  
Article
Effects of Temperature and Bacillus velezensis on the Development, Longevity, and Reproduction of Culex quinquefasciatus
by Abdullah A. Alomar
Biology 2025, 14(4), 357; https://doi.org/10.3390/biology14040357 - 30 Mar 2025
Viewed by 615
Abstract
Temperature is a key environmental factor that influences mosquito phenotypic traits and the effectiveness of vector control strategies. Bacillus velezensis (Bv) has shown promise as a microbial biocontrol agent due to its insecticidal properties; however, its effects on mosquitoes under different [...] Read more.
Temperature is a key environmental factor that influences mosquito phenotypic traits and the effectiveness of vector control strategies. Bacillus velezensis (Bv) has shown promise as a microbial biocontrol agent due to its insecticidal properties; however, its effects on mosquitoes under different environmental conditions are still unexplored. This study investigated the effects of Bv (strain WHk23) exposure on the life history traits of Culex quinquefasciatus at two temperature conditions (20 °C and 30 °C), focusing on development, longevity, and reproductive fitness. Results showed that temperature significantly affected mosquito development and longevity, with faster development and shorter adult longevity observed at 30 °C compared to 20 °C. Exposure to Bv further accelerated larval development and reduced adult emergence, with the effects being more pronounced at 30 °C than at 20 °C. Exposure to Bv reduced adult longevity regardless of temperature. In addition, Bv-exposed females had larger body sizes but lower fecundity and fertility, suggesting that Bv exposure may cause physiological stress that disrupts reproductive processes. These findings highlight the importance of considering environmental factors in mosquito control programs while reinforcing the efficacy of Bv as a sustainable biocontrol agent under a variety of environmental conditions. Full article
Show Figures

Figure 1

10 pages, 1269 KB  
Article
Impact of Climatic Factors on the Temporal Trend of Malaria in India from 1961 to 2021
by Muniaraj Mayilsamy, Rajamannar Veeramanoharan, Kamala Jain, Vijayakumar Balakrishnan and Paramasivan Rajaiah
Trop. Med. Infect. Dis. 2024, 9(12), 309; https://doi.org/10.3390/tropicalmed9120309 - 19 Dec 2024
Viewed by 1378
Abstract
Malaria remains a significant public health problem in India. Although temperature influences Anopheline mosquito feeding intervals, population density, and longevity, the reproductive potential of the Plasmodium parasite and rainfall influence the availability of larval habitats, and evidence to correlate the impact of climatic [...] Read more.
Malaria remains a significant public health problem in India. Although temperature influences Anopheline mosquito feeding intervals, population density, and longevity, the reproductive potential of the Plasmodium parasite and rainfall influence the availability of larval habitats, and evidence to correlate the impact of climatic factors on the incidence of malaria is sparse. Understanding the influence of climatic factors on malaria transmission will help us predict the future spread and intensification of the disease. The present study aimed to determine the impact of temporal trend of climatic factors such as annual average maximum, minimum, mean temperature, and rainfall on the annual incidence of malaria cases in India for a period of 61 years from 1961 to 2021 and relative humidity for a period of 41 years from 1981 to 2021. Two different analyses were performed. In the first analysis, the annual incidence of malaria and meteorological parameters such as annual maximum, minimum, and mean temperature, annual rainfall, and relative humidity were plotted separately in the graph to see if the temporal trend of climatic factors had any coherence or influence over the annual incidence of malaria cases. In the second analysis, a scatter plot was used to determine the relationship of the incidence of malaria in response to associated climatic factors. The incidence of malaria per million population was also calculated. In the first analysis, the annual malaria cases showed a negative correlation of varying degrees with relative humidity, minimum, maximum, and mean temperature, except rainfall, which showed a positive correlation. In the second analysis, the scatter plot showed that the rainfall had a positive correlation with malaria cases, and the rest of the climatic factors, such as temperature and humidity, had negative correlations of varying degrees. Out of the total 61 years studied, in 29 years, malaria cases increased more than 1000 square root counts when the minimum temperature was at 18–19 °C; counts also increased over a period of 33 years when the maximum temperature was 30–31 °C, over 37 years when the mean temperature was 24–25 °C, over 20 years when the rainfall was in the range of 100–120, and over a period of 29 years when the relative humidity was at 55–65%. While the rainfall showed a strong positive correlation with the annual incidence of malaria cases, the temperature and relative humidity showed negative correlations of various degrees. The increasing temperature may push the boundaries of malaria towards higher altitude and northern sub-tropical areas from the southern peninsular region. Although scanty rainfall reduces the transmission, increases in the same would increase the malaria incidence in India. Full article
(This article belongs to the Special Issue The Global Burden of Malaria and Control Strategies)
Show Figures

Figure 1

12 pages, 1309 KB  
Article
Dietary Influences on the Longevity and Reproductive Success of Anopheles aquasalis in Laboratory Studies: Sucrose vs. Honey
by Fernanda Oliveira Rezende, Dimas Augusto da Silva, Sara Comini, Silvana de Mendonça, Ellen Santos, Lívia Baldon, Bruno Marçal, Amanda Cupertino de Freitas, Rafaela Moreira, Viviane Sousa, Mariana Lima, Marcele Rocha, Luciano A. Moreira and Alvaro Ferreira
Insects 2024, 15(12), 978; https://doi.org/10.3390/insects15120978 - 10 Dec 2024
Viewed by 1461
Abstract
Malaria continues to be a major public health challenge in tropical and subtropical regions. Anopheles aquasalis, a key laboratory model for malaria research, plays a critical role in the study of vector–parasite interactions. Although vector life traits and environmental factors such as [...] Read more.
Malaria continues to be a major public health challenge in tropical and subtropical regions. Anopheles aquasalis, a key laboratory model for malaria research, plays a critical role in the study of vector–parasite interactions. Although vector life traits and environmental factors such as age and resource availability can influence the transmission potential of mosquitoes for Plasmodium parasites, the impact of different adult diets on their survival and reproductive fitness remains underexplored. This study investigates the effects of sucrose and honey diets on the longevity, fertility, and fecundity of Anopheles aquasalis under controlled laboratory conditions. Our results demonstrate that the type of diet significantly affects mosquito survival and reproductive output. Specifically, mosquitoes consuming honey exhibited a substantially longer lifespan and higher fecundity compared to those fed on sucrose. Additionally, eggs laid by honey-fed females had notably higher hatching success rates than those from sucrose-fed females. These findings underscore the profound impact of dietary choices on the reproductive fitness of Anopheles aquasalis, with important implications for laboratory studies focusing on vector–parasite interactions. This study highlights the need for a careful consideration of diet in vector research to ensure accurate assessment of vector competence and disease transmission. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Figure 1

13 pages, 2567 KB  
Article
Toxicity and Sublethal Effect of Chlorantraniliprole on Multiple Generations of Aedes aegypti L. (Diptera: Culicidae)
by Nimra Batool, Muhammad Abubakar, Ahmed Noureldeen, Muhammad Nadir Naqqash, Akram Alghamdi, Zamzam M. Al Dhafar, Fadi Baakdah and Raimondas Mozūratis
Insects 2024, 15(11), 851; https://doi.org/10.3390/insects15110851 - 30 Oct 2024
Cited by 5 | Viewed by 1539
Abstract
Due to the quick development of insecticide resistance, it is crucial to optimize management programs by understanding the sublethal effects of effective insecticides like chlorantraniliprole on Aedes aegypti L. populations. Using age-stage and two-sex life tables, we investigated the sublethal impacts of chlorantraniliprole [...] Read more.
Due to the quick development of insecticide resistance, it is crucial to optimize management programs by understanding the sublethal effects of effective insecticides like chlorantraniliprole on Aedes aegypti L. populations. Using age-stage and two-sex life tables, we investigated the sublethal impacts of chlorantraniliprole on Ae. aegypti. Larval duration in the progeny of exposed parents was reduced by 0.33–0.42 days, whereas, the longevity of male and female adults was decreased by 1.43–3.05 days. Similarly, the egg-laying capacity of F1 and F2 progeny of the exposed parents was significantly reduced from 27.3% to 41.2%. The mean generation time (T) increased up to 11.8% in exposed populations, and the net reproduction rate (Ro) decreased by 51.50–55.60%. After 24 h of chlorantraniliprole treatment, there was a significant increase in cytochrome P450 activity. Contrarily, the activity of glutathione S-transferase (GST) initially declined but started increasing after 48 h of treatment. This research highlights the importance of chlorantraniliprole in mosquito management, as well as the importance of considering sublethal effects when developing strategies to handle them. Having a thorough understanding of the harmful effects of insecticides on mosquito populations can greatly enhance the effectiveness of insecticide-based interventions, while also minimizing the risk of pest resurgence. Full article
(This article belongs to the Special Issue Chemical Toxicology and Insecticide Resistance on Insect Pests)
Show Figures

Figure 1

12 pages, 916 KB  
Article
Residual Longevity of Recaptured Sterile Mosquitoes as a Tool to Understand Field Performance and Reveal Quality
by Georgios Balatsos, Laura Blanco-Sierra, Vasileios Karras, Arianna Puggioli, Hugo Costa Osório, Romeo Bellini, Dimitrios P. Papachristos, Jérémy Bouyer, Frederic Bartumeus, Nikos T. Papadopoulos and Antonios Michaelakis
Insects 2024, 15(11), 826; https://doi.org/10.3390/insects15110826 - 23 Oct 2024
Cited by 1 | Viewed by 1777
Abstract
Invasive mosquito species, such as Aedes albopictus, pose significant threats to both ecosystems and public health due to their role in transmitting diseases, such as dengue, Zika, and chikungunya. The Sterile Insect Technique (SIT) is a promising vector control strategy aimed at [...] Read more.
Invasive mosquito species, such as Aedes albopictus, pose significant threats to both ecosystems and public health due to their role in transmitting diseases, such as dengue, Zika, and chikungunya. The Sterile Insect Technique (SIT) is a promising vector control strategy aimed at reducing mosquito populations by releasing sterile males to mate with wild females and reduce their reproduction rates. In this study, we employed the captive cohort method, which assesses the remaining longevity of randomly caught released individuals, to assess the longevity and frailty dynamics of sterile and non-sterile Ae. albopictus males. Using a mark–release–recapture approach (MRR), we compared the residual lifespan of sterile and non-sterile released males with that of wild, non-sterile males, aiming to understand the frailty dynamics of released males and, therefore, their quality and field performance. Contrary to expectations, our results revealed that released sterile males showed increased longevity compared to non-sterile males. Further, the marking process did not impact the longevity between lab-kept and marked males, suggesting that the marking process does not adversely affect survival under controlled conditions. These findings underscore the importance of optimizing pre-release and mass-rearing practices to enhance the effectiveness of SIT programs. Our study also demonstrates for the first time the use of the captive cohort method for understanding the biological dynamics of sterile mosquito populations in SIT programs, providing valuable insights for improving vector control strategies. Full article
Show Figures

Figure 1

10 pages, 601 KB  
Article
Effects of Temperature and Nutrition during the Larval Period on Life History Traits in an Invasive Malaria Vector Anopheles stephensi
by Nobuko Tuno, Thahsin Farjana, Yui Uchida, Mitsuhiro Iyori and Shigeto Yoshida
Insects 2023, 14(6), 543; https://doi.org/10.3390/insects14060543 - 10 Jun 2023
Cited by 9 | Viewed by 3089
Abstract
Anopheles stephensi is an Asian and Middle Eastern malaria vector, and it has recently spread to the African continent. It is needed to measure how the malaria parasite infection in A. stephensi is influenced by environmental factors to predict its expansion in [...] Read more.
Anopheles stephensi is an Asian and Middle Eastern malaria vector, and it has recently spread to the African continent. It is needed to measure how the malaria parasite infection in A. stephensi is influenced by environmental factors to predict its expansion in a new environment. Effects of temperature and food conditions during larval periods on larval mortality, larval period, female wing size, egg production, egg size, adult longevity, and malaria infection rate were studied using a laboratory strain. Larval survival and female wing size were generally reduced when reared at higher temperatures and with a low food supply during the larval period. Egg production was not significantly affected by temperature during the larval period. Egg size was generally smaller in females reared at higher temperatures during the larval period. The infection rate of mosquitoes that fed on blood from malaria-infected mice was not affected by rearing temperature or food conditions during the larval period. Higher temperatures may reduce infection. A. stephensi; however, larger individuals can still be infective. We suggest that routinely recording the body size of adults in field surveys is effective in finding productive larval breeding sites and in predicting malaria risk. Full article
(This article belongs to the Special Issue Mosquito: Ecology, Behavior and Molecular Biology)
Show Figures

Figure 1

13 pages, 1562 KB  
Article
Evaluating the Sublethal Effects of Origanum vulgare Essential Oil and Carvacrol on the Biological Characteristics of Culex pipiens biotype molestus (Diptera: Culicidae)
by Athanasios Giatropoulos, George Koliopoulos, Pavlos-Nektarios Pantelakis, Dimitrios Papachristos and Antonios Michaelakis
Insects 2023, 14(4), 400; https://doi.org/10.3390/insects14040400 - 20 Apr 2023
Cited by 12 | Viewed by 4925
Abstract
Culex pipiens is a mosquito species complex spread worldwide that poses a serious threat to human health as the primary vector of West Nile virus. Its control is mainly based on larvicidal applications with synthetic insecticides on mosquito breeding sites. However, the excessive [...] Read more.
Culex pipiens is a mosquito species complex spread worldwide that poses a serious threat to human health as the primary vector of West Nile virus. Its control is mainly based on larvicidal applications with synthetic insecticides on mosquito breeding sites. However, the excessive use of synthetic larvicides may provoke mosquito resistance issues and negative side effects to the aquatic environment and human health. Plant-derived essential oils, including those from the Lamiaceae family, can be eco-friendly alternative larvicidal agents causing acute larval toxicity and/or growth inhibitory effects on the developmental stages of mosquitoes through different modes of action. In the current laboratory study, we evaluated the sublethal effects of carvacrol-rich oregano essential oil and pure carvacrol on Cx. pipiens biotype molestus, the autogenous member of the Cx. pipiens species complex, after the exposure of 3rd–4th instar larvae to LC50 concentrations. The short-term (24 h) larvicidal treatment with the sublethal concentrations of both tested materials exhibited an acute lethal effect on the exposed larvae as well as significant delayed mortality for surviving larvae and pupae. Larvicidal treatment with carvacrol reduced the longevity of the emerged males. In addition, the morphological abnormalities that were observed at the larval and pupal stage along with failed adult emergence indicate the potential growth inhibitory properties of the tested bioinsecticides. Our findings suggest that carvacrol and carvacrol-rich oregano oil are effective plant-based larvicides at doses lower than the acute lethal ones, thus promoting an environmentally friendly and more affordable perspective for their use against the WNV vector Cx. pipiens biotype molestus. Full article
(This article belongs to the Special Issue Advances in Urban Pest Management in Europe)
Show Figures

Figure 1

18 pages, 2387 KB  
Article
Differences in Longevity and Temperature-Driven Extrinsic Incubation Period Correlate with Varying Dengue Risk in the Arizona–Sonora Desert Region
by Kacey C. Ernst, Kathleen R. Walker, A Lucia Castro-Luque, Chris Schmidt, Teresa K. Joy, Maureen Brophy, Pablo Reyes-Castro, Rolando Enrique Díaz-Caravantes, Veronica Ortiz Encinas, Alfonso Aguilera, Mercedes Gameros, Rosa Elena Cuevas Ruiz, Mary H. Hayden, Gerardo Alvarez, Andrew Monaghan, Daniel Williamson, Josh Arnbrister, Eileen Jeffrey Gutiérrez, Yves Carrière and Michael A. Riehle
Viruses 2023, 15(4), 851; https://doi.org/10.3390/v15040851 - 26 Mar 2023
Cited by 3 | Viewed by 3886
Abstract
Dengue transmission is determined by a complex set of interactions between the environment, Aedes aegypti mosquitoes, dengue viruses, and humans. Emergence in new geographic areas can be unpredictable, with some regions having established mosquito populations for decades without locally acquired transmission. Key factors [...] Read more.
Dengue transmission is determined by a complex set of interactions between the environment, Aedes aegypti mosquitoes, dengue viruses, and humans. Emergence in new geographic areas can be unpredictable, with some regions having established mosquito populations for decades without locally acquired transmission. Key factors such as mosquito longevity, temperature-driven extrinsic incubation period (EIP), and vector–human contact can strongly influence the potential for disease transmission. To assess how these factors interact at the edge of the geographical range of dengue virus transmission, we conducted mosquito sampling in multiple urban areas located throughout the Arizona–Sonora desert region during the summer rainy seasons from 2013 to 2015. Mosquito population age structure, reflecting mosquito survivorship, was measured using a combination of parity analysis and relative gene expression of an age-related gene, SCP-1. Bloodmeal analysis was conducted on field collected blood-fed mosquitoes. Site-specific temperature was used to estimate the EIP, and this predicted EIP combined with mosquito age were combined to estimate the abundance of “potential” vectors (i.e., mosquitoes old enough to survive the EIP). Comparisons were made across cities by month and year. The dengue endemic cities Hermosillo and Ciudad Obregon, both in the state of Sonora, Mexico, had higher abundance of potential vectors than non-endemic Nogales, Sonora, Mexico. Interestingly, Tucson, Arizona consistently had a higher estimated abundance of potential vectors than dengue endemic regions of Sonora, Mexico. There were no observed city-level differences in species composition of blood meals. Combined, these data offer insights into the critical factors required for dengue transmission at the ecological edge of the mosquito’s range. However, further research is needed to integrate an understanding of how social and additional environmental factors constrain and enhance dengue transmission in emerging regions. Full article
Show Figures

Figure 1

11 pages, 589 KB  
Article
Low Transmission of Chikungunya Virus by Aedes aegypti from Vientiane Capital, Lao PDR
by Elodie Calvez, Elliott F. Miot, Sitsana Keosenhom, Vaekey Vungkyly, Souksakhone Viengphouthong, Phaithong Bounmany, Paul T. Brey, Sébastien Marcombe and Marc Grandadam
Pathogens 2023, 12(1), 31; https://doi.org/10.3390/pathogens12010031 - 25 Dec 2022
Cited by 3 | Viewed by 2640
Abstract
In 2012–2013, chikungunya virus (CHIKV) was the cause of a major outbreak in the southern part of Lao People’s Democratic Republic (Lao PDR). Since then, only a few imported cases, with isolates belonging to different lineages, were recorded between 2014 and 2020 in [...] Read more.
In 2012–2013, chikungunya virus (CHIKV) was the cause of a major outbreak in the southern part of Lao People’s Democratic Republic (Lao PDR). Since then, only a few imported cases, with isolates belonging to different lineages, were recorded between 2014 and 2020 in Vientiane capital and few autochthonous cases of ECSA-IOL lineage were detected in the south of the country in 2020. The CHIKV epidemiological profile contrasts with the continuous and intensive circulation of dengue virus in the country, especially in Vientiane capital. The study’s aim was to investigate the ability of the local field-derived Aedes aegypti population from Vientiane capital to transmit the Asian and ECSA-IOL lineages of CHIKV. Our results revealed that, for both CHIKV lineages, infection rates were low and dissemination rates were high. The transmission rates and efficiencies evidenced a low vector competence for the CHIKV tested. Although this population of Ae. aegypti showed a relatively modest vector competence for these two CHIKV lineages, several other factors could influence arbovirus emergence such as the longevity and density of female mosquitoes. Due to the active circulation of CHIKV in Southeast Asia, investigations on these factors should be done to prevent the risk of CHIKV emergence and spread in Lao PDR and neighboring countries. Full article
(This article belongs to the Special Issue Biology, Control and Zoonotic Role of Disease Vectors)
Show Figures

Figure 1

13 pages, 940 KB  
Article
Assessment of Compaction, Temperature, and Duration Factors for Packaging and Transporting of Sterile Male Aedes aegypti (Diptera: Culicidae) under Laboratory Conditions
by Beni Ernawan, Tjandra Anggraeni, Sri Yusmalinar, Hadian Iman Sasmita, Nur Fitrianto and Intan Ahmad
Insects 2022, 13(9), 847; https://doi.org/10.3390/insects13090847 - 17 Sep 2022
Cited by 9 | Viewed by 2610
Abstract
Optimized conditions for the packaging and transportation of sterile males are crucial factors in successful SIT programs against mosquito vector-borne diseases. The factors influencing the quality of sterile males in packages during transportation need to be assessed to develop standard protocols. This study [...] Read more.
Optimized conditions for the packaging and transportation of sterile males are crucial factors in successful SIT programs against mosquito vector-borne diseases. The factors influencing the quality of sterile males in packages during transportation need to be assessed to develop standard protocols. This study was aimed to investigate the impact of compaction, temperature, and duration factors during packaging and transportation on the quality of gamma-sterilized male Ae. aegypti. Aedes aegypti males were sterilized at a dose of 70 Gy, compacted into Falcon tubes with densities of 40, 80, and 120 males/2 mL; and then exposed to temperatures of 7, 14, 21, and 28 °C. Each temperature setup was held for a duration of 3, 6, 12, 24, and 48 h at a 60 rpm constant vibration to simulate transportation. The parameters of mortality, flight ability, induced sterility, and longevity were investigated. Results showed that increases in density, temperature, and duration significantly increased mortality and reduced flight ability and longevity, but none of the factors significantly affected induced sterility. With a mortality rate of less than 20%, an escaping rate of more than 70%, considerable longevity, and the most negligible effect on induced sterility (approximately 98%), a temperature of 7 °C and a compaction density of 80 males/2 mL were shown to be optimized conditions for short-term transportation (no more than 24 h) with the minimum adverse effects compared with other condition setups. Full article
(This article belongs to the Special Issue Mosquito Handling, Transport, Release and Male Trapping Methods)
Show Figures

Figure 1

22 pages, 4066 KB  
Article
Differential Hatching, Development, Oviposition, and Longevity Patterns among Colombian Aedes aegypti Populations
by Andrea Arévalo-Cortés, Yurany Granada, David Torres and Omar Triana-Chavez
Insects 2022, 13(6), 536; https://doi.org/10.3390/insects13060536 - 10 Jun 2022
Cited by 8 | Viewed by 4612
Abstract
Dengue, Zika, and chikungunya are arboviral diseases for which there are no effective therapies or vaccines. The only way to avoid their transmission is by controlling the vector Aedes aegypti, but insecticide resistance limits this strategy. To generate relevant information for surveillance [...] Read more.
Dengue, Zika, and chikungunya are arboviral diseases for which there are no effective therapies or vaccines. The only way to avoid their transmission is by controlling the vector Aedes aegypti, but insecticide resistance limits this strategy. To generate relevant information for surveillance and control mechanisms, we determined life cycle parameters, including longevity, fecundity, and mortality, of Colombian Ae. aegypti populations from four different geographical regions: Neiva, Bello, Itagüí, and Riohacha. When reared at 28 °C, Bello had the shortest development time, and Riohacha had the longest. Each mosquito population had its own characteristic fecundity pattern during four gonotrophic cycles. The survival curves of each population were significantly different, with Riohacha having the longest survival in both males and females and Bello the shortest. High mortality was observed in mosquitoes from Neiva in the egg stage and for Bello in the pupae stage. Finally, when mosquitoes from Neiva and Bello were reared at 35 °C, development times and mortality were severely affected. In conclusion, each population has a unique development pattern with an innate trace in their biological characteristics that confers vulnerability in specific stages of development. Full article
Show Figures

Figure 1

17 pages, 2044 KB  
Article
Quality Control Methods for Aedes albopictus Sterile Male Transportation
by Georgios D. Mastronikolos, Apostolos Kapranas, George K. Balatsos, Charalampos Ioannou, Dimitrios P. Papachristos, Panagiotis G. Milonas, Arianna Puggioli, Igor Pajović, Dušan Petrić, Romeo Bellini, Antonios Michaelakis and Nikos T. Papadopoulos
Insects 2022, 13(2), 179; https://doi.org/10.3390/insects13020179 - 9 Feb 2022
Cited by 14 | Viewed by 3794
Abstract
Genetic based mosquito control methods have been gaining ground in recent years for their potential to achieve effective suppression or replacement of vector populations without hampering environments or causing any public health risk. These methods require the mass rearing of the target species [...] Read more.
Genetic based mosquito control methods have been gaining ground in recent years for their potential to achieve effective suppression or replacement of vector populations without hampering environments or causing any public health risk. These methods require the mass rearing of the target species in large facilities sized to produce millions of sterile males, as already well established for a number of insects of agricultural importance. Assessing the performance of released males in Sterile Insect Technique (SIT) control programs is of the utmost importance for the success of the operation. Besides the negative effects of mass rearing and sterilization, the handling of sterilized insects and shipment to distant areas may also negatively impact the quality of sterilized males. The aim of the current study was to design and executive quality control (QC) tests for sterilized Aedes albopictus (Asian tiger mosquito) males delivered by air shipment from the mass production facility located in Italy to Greece and Montenegro field release sites. Mass reared mosquito strains were based on biological materials received from Italy, Greece and Montenegro. Tests conducted at the mass rearing facility before transportation revealed a rather high residual female contamination following mechanical sex separation (approximately 1.5% females, regardless of the mosquito strain). Irradiated males of all three mosquito strains induced high levels of sterility to females. Shipment lasting approximately 24 h resulted in approximately 15% mortality, while when shipment lasted nearly two days this increased to almost 40%. The flight ability of sterilized males following one day transportation time was satisfactory (over 60%). The response of sterile males to food and water starvation was comparable and slightly lower than that of wild non-transported males. Longevity of sterile males was shorter than that of wild counterparts and it seems it was not affected by mating to wild females. Both mating propensity and mating competitiveness for wild virgin females was higher for the wild, control males compared to the sterile, transported ones. Overall, the performance of sterile male Ae. albopictus delivered from the mass rearing facility of Italy to Greece in approximately 24 h was satisfactory. Transportation lasting two days or longer incurred detrimental effects on males, which called into question the outcome of the SIT release programs. In conclusion, our results demonstrate the need of quality control procedures, especially when sterile male production facilities are not near to the releasing point. Transportation could be a serious drawback for the implementation of Sterile Insect Releases and, consequently, it is important to establish an efficient and fast transportation of sterilized males in advance. Full article
Show Figures

Figure 1

22 pages, 2494 KB  
Review
A Systematic Review of the Effects of Temperature on Anopheles Mosquito Development and Survival: Implications for Malaria Control in a Future Warmer Climate
by Thomas P. Agyekum, Paul K. Botwe, John Arko-Mensah, Ibrahim Issah, Augustine A. Acquah, Jonathan N. Hogarh, Duah Dwomoh, Thomas G. Robins and Julius N. Fobil
Int. J. Environ. Res. Public Health 2021, 18(14), 7255; https://doi.org/10.3390/ijerph18147255 - 7 Jul 2021
Cited by 78 | Viewed by 10102
Abstract
The rearing temperature of the immature stages can have a significant impact on the life-history traits and the ability of adult mosquitoes to transmit diseases. This review assessed published evidence of the effects of temperature on the immature stages, life-history traits, insecticide susceptibility, [...] Read more.
The rearing temperature of the immature stages can have a significant impact on the life-history traits and the ability of adult mosquitoes to transmit diseases. This review assessed published evidence of the effects of temperature on the immature stages, life-history traits, insecticide susceptibility, and expression of enzymes in the adult Anopheles mosquito. Original articles published through 31 March 2021 were systematically retrieved from Scopus, Google Scholar, Science Direct, PubMed, ProQuest, and Web of Science databases. After applying eligibility criteria, 29 studies were included. The review revealed that immature stages of An. arabiensis were more tolerant (in terms of survival) to a higher temperature than An. funestus and An. quadriannulatus. Higher temperatures resulted in smaller larval sizes and decreased hatching and pupation time. The development rate and survival of An. stephensi was significantly reduced at a higher temperature than a lower temperature. Increasing temperatures decreased the longevity, body size, length of the gonotrophic cycle, and fecundity of Anopheles mosquitoes. Higher rearing temperatures increased pyrethroid resistance in adults of the An. arabiensis SENN DDT strain, and increased pyrethroid tolerance in the An. arabiensis SENN strain. Increasing temperature also significantly increased Nitric Oxide Synthase (NOS) expression and decreased insecticide toxicity. Both extreme low and high temperatures affect Anopheles mosquito development and survival. Climate change could have diverse effects on Anopheles mosquitoes. The sensitivities of Anopeheles mosquitoes to temperature differ from species to species, even among the same complex. Notwithstanding, there seem to be limited studies on the effects of temperature on adult life-history traits of Anopheles mosquitoes, and more studies are needed to clarify this relationship. Full article
(This article belongs to the Special Issue Climate Changes and Infectious Diseases Risks)
Show Figures

Figure 1

Back to TopTop