Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = monogalactosyl diacylglycerol (MGDG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1483 KiB  
Article
Alzheimer’s Disease Lipidome: Elevated Cortical Levels of Glycerolipids in Subjects with Mild Cognitive Impairment (MCI) but Not in Non-Demented Alzheimer’s Neuropathology (NDAN) Subjects
by Paul L. Wood, John E. Cebak and Aaron W. Beger
J. Dement. Alzheimer's Dis. 2025, 2(3), 20; https://doi.org/10.3390/jdad2030020 - 1 Jul 2025
Viewed by 257
Abstract
Background/Objectives: Abnormal brain glycerolipid metabolism has been reported for Alzheimer’s disease (AD). This includes both diacylglycerols (DGs) and monogalactosyl-DGs (MGDGs), which are elevated in AD subjects. While DGs are also elevated in subjects with mild cognitive impairment (MCI), MGDGs have not yet [...] Read more.
Background/Objectives: Abnormal brain glycerolipid metabolism has been reported for Alzheimer’s disease (AD). This includes both diacylglycerols (DGs) and monogalactosyl-DGs (MGDGs), which are elevated in AD subjects. While DGs are also elevated in subjects with mild cognitive impairment (MCI), MGDGs have not yet been examined at this early stage of cognitive impairment. Methods: MGDG, triacylglycerol (TG), and ether glycerolipid levels in the cerebral cortex gray matter of controls, MCI, and non-demented Alzheimer’s neuropathology (NDAN) subjects were monitored by high-resolution mass spectrometry (<2 ppm mass error). Results: MGDG, MGDG ether, DG ether, and TG levels were elevated in the cerebral cortex of MCI but not NDAN subjects. Conclusions: A diverse array of glycerolipids was elevated in MCI subjects, suggesting a role in cognitive dysfunction. This suggestion is further supported by the maintenance of normal glycerolipid levels in NDAN subjects with amyloid accumulation but not cognitive deficits. Our data clearly indicate that while complex lipid alterations occur in MCI subjects, relative to controls 20 years younger, no such lipid alterations occur in NDAN subjects. While amyloid deposition in MCI is not involved in the observed lipid alterations, other ongoing neuropathologies may contribute to changes in lipid dynamics and vice versa. Full article
Show Figures

Figure 1

16 pages, 3713 KiB  
Article
Plastid Phosphatidylglycerol Homeostasis Is Required for Plant Growth and Metabolism in Arabidopsis thaliana
by Mingjie Chen, Shiya Wang, Yi Zhang, Dongsheng Fang and Jay J. Thelen
Metabolites 2023, 13(3), 318; https://doi.org/10.3390/metabo13030318 - 21 Feb 2023
Cited by 1 | Viewed by 2099
Abstract
A unique feature of plastid phosphatidylglycerol (PG) is a trans-double bond specifically at the sn-2 position of 16C fatty acid (16:1t- PG), which is catalyzed by FATTY ACID DESATURASE 4 (FAD4). To offer additional insights about the in vivo roles of [...] Read more.
A unique feature of plastid phosphatidylglycerol (PG) is a trans-double bond specifically at the sn-2 position of 16C fatty acid (16:1t- PG), which is catalyzed by FATTY ACID DESATURASE 4 (FAD4). To offer additional insights about the in vivo roles of FAD4 and its product 16:1t-PG, FAD4 overexpression lines (OX-FAD4s) were generated in Arabidopsis thaliana Columbia ecotype. When grown under continuous light condition, the fad4-2 and OX-FAD4s plants exhibited higher growth rates compared to WT control. Total lipids were isolated from Col, fad4-2, and OX-FAD4_2 plants, and polar lipids quantified by lipidomic profiling. We found that disrupting FAD4 expression altered prokaryotic and eukaryotic PG content and composition. Prokaryotic and eukaryotic monogalactosyl diacylglycerol (MGDG) was up-regulated in OX-FAD4 plants but not in fad4-2 mutant. We propose that 16:1t-PG homeostasis in plastid envelope membranes may coordinate plant growth and stress response by restricting photoassimilate export from the chloroplast. Full article
(This article belongs to the Section Lipid Metabolism)
Show Figures

Figure 1

22 pages, 7916 KiB  
Article
LC-ESI-MS/MS Analysis of Sulfolipids and Galactolipids in Green and Red Lettuce (Lactuca sativa L.) as Influenced by Sulfur Nutrition
by Tania T. Körber, Tobias Sitz, Muna A. Abdalla, Karl H. Mühling and Sascha Rohn
Int. J. Mol. Sci. 2023, 24(4), 3728; https://doi.org/10.3390/ijms24043728 - 13 Feb 2023
Cited by 5 | Viewed by 2626
Abstract
Sulfur (S) deprivation leads to abiotic stress in plants. This can have a significant impact on membrane lipids, illustrated by a change in either the lipid class and/or the fatty acid distribution. Three different levels of S (deprivation, adequate, and excess) in the [...] Read more.
Sulfur (S) deprivation leads to abiotic stress in plants. This can have a significant impact on membrane lipids, illustrated by a change in either the lipid class and/or the fatty acid distribution. Three different levels of S (deprivation, adequate, and excess) in the form of potassium sulfate were used to identify individual thylakoid membrane lipids, which might act as markers in S nutrition (especially under stress conditions). The thylakoid membrane consists of the three glycolipid classes: monogalactosyl- (MGDG), digalactosyl- (DGDG), and sulfoquinovosyl diacylglycerols (SQDG). All of them have two fatty acids linked, differing in chain length and degree of saturation. LC-ESI-MS/MS served as a powerful method to identify trends in the change in individual lipids and to understand strategies of the plant responding to stress. Being a good model plant, but also one of the most important fresh-cut vegetables in the world, lettuce (Lactuca sativa L.) has already been shown to respond significantly to different states of sulfur supply. The results showed a transformation of the glycolipids in lettuce plants and trends towards a higher degree of saturation of the lipids and an increased level of oxidized SQDG under S-limiting conditions. Changes in individual MGDG, DGDG, and oxidized SQDG were associated to S-related stress for the first time. Promisingly, oxidized SQDG might even serve as markers for further abiotic stress factors. Full article
Show Figures

Figure 1

20 pages, 5715 KiB  
Article
Metabolic Regulation and Lipidomic Remodeling in Relation to Spermidine-induced Stress Tolerance to High Temperature in Plants
by Zhou Li, Bizhen Cheng, Yue Zhao, Lin Luo, Yan Zhang, Guangyan Feng, Liebao Han, Yan Peng and Xinquan Zhang
Int. J. Mol. Sci. 2022, 23(20), 12247; https://doi.org/10.3390/ijms232012247 - 13 Oct 2022
Cited by 14 | Viewed by 3631
Abstract
Beneficial effects of spermidine (Spd) on alleviating abiotic stress damage have been explored in plants for hundreds of years, but limited information is available about its roles in regulating lipids signaling and metabolism during heat stress. White clover (Trifolium repens) plants [...] Read more.
Beneficial effects of spermidine (Spd) on alleviating abiotic stress damage have been explored in plants for hundreds of years, but limited information is available about its roles in regulating lipids signaling and metabolism during heat stress. White clover (Trifolium repens) plants were pretreated with 70 μM Spd and then subjected to high temperature (38/33 °C) stress for 20 days. To further investigate the effect of Spd on heat tolerance, transgenic Arabidopsisthaliana overexpressing a TrSAMS encoding a key enzyme involved in Spd biosynthesis was exposed to high temperature (38/33 °C) stress for 10 days. A significant increase in endogenous Spd content in white clover by exogenous application of Spd or the TrSAMS overexpression in Arabidopsisthaliana could effectively mitigate heat-induced growth retardation, oxidative damage to lipids, and declines in photochemical efficiency and cell membrane stability. Based on the analysis of metabolomics, the amino acids and vitamins metabolism, biosynthesis of secondary metabolites, and lipids metabolism were main metabolic pathways regulated by the Spd in cool-season white clover under heat stress. Further analysis of lipidomics found the TrSAMS-transgenic plants maintained relatively higher accumulations of total lipids, eight phospholipids (PC, phosphatidylcholine; PG, phosphatidylglycerol; PS, phosphatidylserine; CL, cardiolipin; LPA, lysophosphatidic acid; LPC, lyso phosphatidylcholine; LPG, lyso phosphatidylglycerol; and LPI, lyso phosphatidylinositol), one glycoglycerolipid (DGDG, digalactosyl diacylglycerol), and four sphingolipids (Cer, ceramide; CerG2GNAc1, dihexosyl N-acetylhexosyl ceramide; Hex1Cer, hexosyl ceramide; and ST, sulfatide), higher ratio of DGDG: monogalactosyl diacylglycerol (MGDG), and lower unsaturation level than wild-type Arabidopsisthaliana in response to heat stress. Spd-induced lipids accumulation and remodeling could contribute to better maintenance of membrane stability, integrity, and functionality when plants underwent a long period of heat stress. In addition, the Spd significantly up-regulated PIP2 and PA signaling pathways, which was beneficial to signal perception and transduction for stress defense. Current findings provide a novel insight into the function of Spd against heat stress through regulating lipids signaling and reprograming in plants. Full article
(This article belongs to the Topic Temperature Stress and Responses in Plants)
Show Figures

Figure 1

13 pages, 1626 KiB  
Article
Human Brain Lipidomics: Utilities of Chloride Adducts in Flow Injection Analysis
by Paul L. Wood, Kathleen A. Hauther, Jon H. Scarborough, Dustin J. Craney, Beatrix Dudzik, John E. Cebak and Randall L. Woltjer
Life 2021, 11(5), 403; https://doi.org/10.3390/life11050403 - 28 Apr 2021
Cited by 10 | Viewed by 2618
Abstract
Ceramides have been implicated in a number of disease processes. However, current means of evaluation with flow infusion analysis (FIA) have been limited primarily due to poor sensitivity within our high-resolution mass spectrometry lipidomics analytical platform. To circumvent this deficiency, we investigated the [...] Read more.
Ceramides have been implicated in a number of disease processes. However, current means of evaluation with flow infusion analysis (FIA) have been limited primarily due to poor sensitivity within our high-resolution mass spectrometry lipidomics analytical platform. To circumvent this deficiency, we investigated the potential of chloride adducts as an alternative method to improve sensitivity with electrospray ionization. Chloride adducts of ceramides and ceramide subfamilies provided 2- to 50-fold increases in sensitivity both with analytical standards and biological samples. Chloride adducts of a number of other lipids with reactive hydroxy groups were also enhanced. For example, monogalactosyl diacylglycerols (MGDGs), extracted from frontal lobe cortical gray and subcortical white matter of cognitively intact subjects, were not detected as ammonium adducts but were readily detected as chloride adducts. Hydroxy lipids demonstrate a high level of specificity in that phosphoglycerols and phosphoinositols do not form chloride adducts. In the case of choline glycerophospholipids, the fatty acid substituents of these lipids could be monitored by MS2 of the chloride adducts. Monitoring the chloride adducts of a number of key lipids offers enhanced sensitivity and specificity with FIA. In the case of glycerophosphocholines, the chloride adducts also allow determination of fatty acid substituents. The chloride adducts of lipids possessing electrophilic hydrogens of hydroxyl groups provide significant increases in sensitivity. In the case of glycerophosphocholines, chloride attachment to the quaternary ammonium group generates a dominant anion, which provides the identities of the fatty acid substituents under MS2 conditions. Full article
(This article belongs to the Special Issue Multi-Omics for the Understanding of Brain Diseases)
Show Figures

Figure 1

18 pages, 2845 KiB  
Article
Glyceroglycolipid Metabolism Regulations under Phosphate Starvation Revealed by Transcriptome Analysis in Synechococcus elongatus PCC 7942
by Xinrui Xu and Xiaoling Miao
Mar. Drugs 2020, 18(7), 360; https://doi.org/10.3390/md18070360 - 13 Jul 2020
Cited by 9 | Viewed by 5055
Abstract
Glyceroglycolipids, abundant in cyanobacteria’s photosynthetic membranes, present bioactivities and pharmacological activities, and can be widely used in the pharmaceutical industry. Environmental factors could alter the contents and compositions of cyanobacteria glyceroglycolipids, but the regulation mechanism remains unclear. Therefore, the glyceroglycolipids contents and the [...] Read more.
Glyceroglycolipids, abundant in cyanobacteria’s photosynthetic membranes, present bioactivities and pharmacological activities, and can be widely used in the pharmaceutical industry. Environmental factors could alter the contents and compositions of cyanobacteria glyceroglycolipids, but the regulation mechanism remains unclear. Therefore, the glyceroglycolipids contents and the transcriptome in Synechococcus elongatus PCC 7942 were analyzed under phosphate starvation. Under phosphate starvation, the decrease of monogalactosyl diacylglycerol (MGDG) and increases of digalactosyl diacylglycerol (DGDG) and sulfoquinovosyl diacylglycerol (SQDG) led to a decrease in the MGDG/DGDG ratio, from 4:1 to 5:3, after 12 days of cultivation. However, UDP–sulfoquinovose synthase gene sqdB, and the SQDG synthase gene sqdX, were down-regulated, and the decreased MGDG/DGDG ratio was later increased back to 2:1 after 15 days of cultivation, suggesting the regulation of glyceroglycolipids on day 12 was based on the MGDG/DGDG ratio maintaining glyceroglycolipid homeostasis. There are 12 differentially expressed transcriptional regulators that could be potential candidates related to glyceroglycolipid regulation, according to the transcriptome analysis. The transcriptome analysis also suggested post-transcriptional or post-translational regulations in glyceroglycolipid synthesis. This study provides further insights into glyceroglycolipid metabolism, as well as the scientific basis for glyceroglycolipid synthesis optimization and cyanobacteria glyceroglycolipids utilization via metabolic engineering. Full article
(This article belongs to the Special Issue Marine Carbohydrate-Based Compounds with Medicinal Properties)
Show Figures

Figure 1

15 pages, 2564 KiB  
Article
Quantitative Profiling of Arabidopsis Polar Glycerolipids under Two Types of Heat Stress
by Feng Qin, Liang Lin, Yanxia Jia, Weiqi Li and Buzhu Yu
Plants 2020, 9(6), 693; https://doi.org/10.3390/plants9060693 - 29 May 2020
Cited by 13 | Viewed by 3021
Abstract
At the cellular level, the remodelling of membrane lipids and production of heat shock proteins are the two main strategies whereby plants survive heat stress. Although many studies related to glycerolipids and HSPs under heat stress have been reported separately, detailed alterations of [...] Read more.
At the cellular level, the remodelling of membrane lipids and production of heat shock proteins are the two main strategies whereby plants survive heat stress. Although many studies related to glycerolipids and HSPs under heat stress have been reported separately, detailed alterations of glycerolipids and the role of HSPs in the alterations of glycerolipids still need to be revealed. In this study, we profiled the glycerolipids of wild-type Arabidopsis and its HSP101-deficient mutant hot-1 under two types of heat stress. Our results demonstrated that the alterations of glycerolipids were very similar in wild-type Arabidopsis and hot-1 during heat stress. Although heat acclimation led to a slight decrease of glycerolipids, the decrease of glycerolipids in plants without heat acclimation is more severe under heat shock. The contents of 36:x monogalactosyl diacylglycerol (MGDG) were slightly increased, whereas that of 34:6 MGDG and 34:4 phosphatidylglycerol (PG) were severely decreased during moderate heat stress. Our findings suggested that heat acclimation could reduce the degradation of glycerolipids under heat shock. Synthesis of glycerolipids through the prokaryotic pathway was severely suppressed, whereas that through the eukaryotic pathway was slightly enhanced during moderate heat stress. In addition, HSP101 has a minor effect on the alterations of glycerolipids under heat stress. Full article
(This article belongs to the Special Issue Function of Lipids in Plant Stress)
Show Figures

Figure 1

19 pages, 2971 KiB  
Article
Domesticated Populations of Codium tomentosum Display Lipid Extracts with Lower Seasonal Shifts than Conspecifics from the Wild—Relevance for Biotechnological Applications of this Green Seaweed
by Felisa Rey, Paulo Cartaxana, Tânia Melo, Ricardo Calado, Rui Pereira, Helena Abreu, Pedro Domingues, Sónia Cruz and M. Rosário Domingues
Mar. Drugs 2020, 18(4), 188; https://doi.org/10.3390/md18040188 - 31 Mar 2020
Cited by 32 | Viewed by 4871
Abstract
In the last decades, the use of algae in biotechnology and food industries has experienced an exponential growth. Codium tomentosum is a green macroalgae with high biotechnological potential, due to its rich lipidome, although few studies have addressed it. This study aimed to [...] Read more.
In the last decades, the use of algae in biotechnology and food industries has experienced an exponential growth. Codium tomentosum is a green macroalgae with high biotechnological potential, due to its rich lipidome, although few studies have addressed it. This study aimed to investigate the seasonal changes in lipid and pigment profiles of C. tomentosum, as well as to screen its antioxidant activity, in order to evaluate its natural plasticity. Samples of C. tomentosum were collected in two different seasons, early-autumn (September/October) and spring (May), in the Portuguese coast (wild samples), and in a land-based integrated multitrophic aquaculture (IMTA) system (IMTA samples). Total lipid extracts were analysed by LC–MS, GC–MS, and HPLC, and antioxidant activity was screened through free radical scavenging potential against DPPH and 2,20-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals. Wild samples showed a high seasonal variability, modifying their lipidome and pigment profiles according to environmental shifts, while IMTA samples showed a relatively stable composition due to early-stage culturing in controlled conditions. The lipids that contributed the most to seasonal discrimination were glycolipids (monogalactosyl diacylglycerol - MGDG and digalactosyl diacylglycerol - DGDG) and the lyso forms of phospholipids and glycolipids. Lipid extracts showed antioxidant activity ranging from 61 ± 2 to 115 ± 35 µmol Trolox g−1 of lipid extract in DPPH assay and from 532 ± 73 to 927 ± 92 µmol Trolox g−1 of lipid extract in ABTS assay, with a more intense antioxidant activity in wild spring samples. This study revealed that wild specimens of C. tomentosum presented a higher plasticity to cope with seasonal environmental changes, adjusting their lipid, pigment, and bioactivity profiles, while IMTA samples, cultured under controlled conditions, displayed more stable lipidome and pigment compositions. Full article
Show Figures

Figure 1

18 pages, 1082 KiB  
Article
A Cultivated Form of a Red Seaweed (Chondrus crispus), Suppresses β-Amyloid-Induced Paralysis in Caenorhabditis elegans
by Jatinder Singh Sangha, Owen Wally, Arjun H. Banskota, Roumiana Stefanova, Jeff T. Hafting, Alan T. Critchley and Balakrishnan Prithiviraj
Mar. Drugs 2015, 13(10), 6407-6424; https://doi.org/10.3390/md13106407 - 20 Oct 2015
Cited by 19 | Viewed by 6956
Abstract
We report here the protective effects of a methanol extract from a cultivated strain of the red seaweed, Chondrus crispus, against β-amyloid-induced toxicity, in a transgenic Caenorhabditis elegans, expressing human Aβ1-42 gene. The methanol extract of C. crispus (CCE), delayed β-amyloid-induced [...] Read more.
We report here the protective effects of a methanol extract from a cultivated strain of the red seaweed, Chondrus crispus, against β-amyloid-induced toxicity, in a transgenic Caenorhabditis elegans, expressing human Aβ1-42 gene. The methanol extract of C. crispus (CCE), delayed β-amyloid-induced paralysis, whereas the water extract (CCW) was not effective. The CCE treatment did not affect the transcript abundance of amy1; however, Western blot analysis revealed a significant decrease of Aβ species, as compared to untreated worms. The transcript abundance of stress response genes; sod3, hsp16.2 and skn1 increased in CCE-treated worms. Bioassay guided fractionation of the CCE yielded a fraction enriched in monogalactosyl diacylglycerols (MGDG) that significantly delayed the onset of β-amyloid-induced paralysis. Taken together, these results suggested that the cultivated strain of C. crispus, whilst providing dietary nutritional value, may also have significant protective effects against β-amyloid-induced toxicity in C. elegans, partly through reduced β-amyloid species, up-regulation of stress induced genes and reduced accumulation of reactive oxygen species (ROS). Full article
(This article belongs to the Special Issue Marine Compounds and Their Application in Neurological Disorders)
Show Figures

Graphical abstract

13 pages, 700 KiB  
Article
Anti-Inflammatory Potential of Monogalactosyl Diacylglycerols and a Monoacylglycerol from the Edible Brown Seaweed Fucus spiralis Linnaeus
by Graciliana Lopes, Georgios Daletos, Peter Proksch, Paula B. Andrade and Patrícia Valentão
Mar. Drugs 2014, 12(3), 1406-1418; https://doi.org/10.3390/md12031406 - 11 Mar 2014
Cited by 65 | Viewed by 8836
Abstract
A monoacylglycerol (1) and a 1:1 mixture of two monogalactosyl diacylglycerols (MGDGs) (2 and 3) were isolated from the brown seaweed Fucus spiralis Linnaeus. The structures were elucidated by spectroscopic means (NMR and MS) and by comparison with the [...] Read more.
A monoacylglycerol (1) and a 1:1 mixture of two monogalactosyl diacylglycerols (MGDGs) (2 and 3) were isolated from the brown seaweed Fucus spiralis Linnaeus. The structures were elucidated by spectroscopic means (NMR and MS) and by comparison with the literature. Compound 1 was composed of a glycerol moiety linked to oleic acid (C18:1 Ω9). Compounds 2 and 3 contained a glycerol moiety linked to a galactose unit and eicosapentaenoic acid (C20:5 Ω3) combined with octadecatetraenoic acid (C18:4 Ω3) or linolenic acid (C18:3 Ω3), respectively. The isolated compounds were tested for their cytotoxic and anti-inflammatory activity in RAW 264.7 macrophage cells. All of them inhibited NO production at non-cytotoxic concentrations. The fraction consisting of compounds 2 and 3, in a ratio of 1:1, was slightly more effective than compound 1 (IC50 of 60.06 and 65.70 µg/mL, respectively). To our knowledge, this is the first report of these compounds from F. spiralis and on their anti-inflammatory capacity. Full article
Show Figures

Figure 1

Back to TopTop