Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = molecular rotor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2001 KiB  
Article
Effect of Continuous Mixer Design and Parameters on the Degradation of Polylactic Acid
by Mansour Alotaibi, Jainam Shah, Aniket Sadani and Carol Forance Barry
Polymers 2025, 17(11), 1568; https://doi.org/10.3390/polym17111568 - 4 Jun 2025
Viewed by 499
Abstract
Polylactic acid (PLA) has gained attention as a sustainable, compostable polyester, but process-induced degradation in single- and twin-screw extruders reduces PLA’s molecular weight and affects its properties. In addition, PLA is often blended with other materials to improve its properties. A continuous mixer, [...] Read more.
Polylactic acid (PLA) has gained attention as a sustainable, compostable polyester, but process-induced degradation in single- and twin-screw extruders reduces PLA’s molecular weight and affects its properties. In addition, PLA is often blended with other materials to improve its properties. A continuous mixer, which provides tighter control of shear levels and lower processing temperatures, produces less degradation of heat-sensitive polymers like polyvinyl chloride, but there is limited information about the effects of machine design and processing parameters. Therefore, this work investigated three parameters in the mixer section (rotor design, rotor speed, and orifice position) and screw speeds in the extruder section when processing PLA using a continuous mixer. The resultant PLA samples were characterized for their rheological, thermal, and chemical structure properties. It was found that higher rotor speeds and smaller orifice openings resulted in lower molecular weights, whereas varying the screw speed in the extruder did not significantly affect the molecular weight. Rotor design substantially impacted degradation, with rotors that provided lower shear stress and residence time producing very low reductions in molecular weight. Overall, this work provided insight on how to select rotors and processing parameters to reduce degradation of PLA for continuous mixer Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

15 pages, 5468 KiB  
Article
Regulatory Role of a Hydrophobic Core in the FliG C-Terminal Domain in the Rotary Direction of a Flagellar Motor
by Tatsuro Nishikino, Akihiro Hatano, Seiji Kojima and Michio Homma
Biomolecules 2025, 15(2), 212; https://doi.org/10.3390/biom15020212 - 1 Feb 2025
Viewed by 764
Abstract
A flagellar motor can rotate either counterclockwise (CCW) or clockwise (CW), and rotational switching is triggered by conformational changes in FliG, although the molecular mechanism is still unknown. Here, we found that cheY deletion, which locks motor rotation in the CCW direction, restored [...] Read more.
A flagellar motor can rotate either counterclockwise (CCW) or clockwise (CW), and rotational switching is triggered by conformational changes in FliG, although the molecular mechanism is still unknown. Here, we found that cheY deletion, which locks motor rotation in the CCW direction, restored the motility abolished by the fliG L259Q mutation. We found that the CCW-biased fliG G214S mutation also restored the swimming of the L259Q mutant, but the CW-biased fliG G215A mutation did not. Since the L259 residue participates in forming the FliG hydrophobic core at its C-terminal domain, mutations were introduced into residues structurally closer to L259, and their motility was examined. Two mutants, D251R and L329Q, exhibited CW-biased rotation. Our results suggest that mutations in the hydrophobic core of FliGC collapse its conformational switching and/or stator interaction; however, the CCW state of the rotor enables rotation even with this disruption. Full article
Show Figures

Figure 1

13 pages, 4507 KiB  
Article
A Photocontrolled Molecular Rotor Based on Azobenzene-Strapped Mixed (Phthalocyaninato)(Porphyrinato) Rare Earth Triple-Decker
by Wenxin Lu, Tiantian Mu, Yuehong Zhang, Bo Chen, Huantao Guo, Luyang Zhao, Peng Wang and Yongzhong Bian
Molecules 2025, 30(2), 326; https://doi.org/10.3390/molecules30020326 - 15 Jan 2025
Viewed by 874
Abstract
Effectively regulating the rotary motions of molecular rotors through external stimuli poses a tremendous challenge. Herein, a new type of molecular rotor based on azobenzene-strapped mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complex Azo-1 is reported. Electronic absorption and 1H NMR spectra manifested the [...] Read more.
Effectively regulating the rotary motions of molecular rotors through external stimuli poses a tremendous challenge. Herein, a new type of molecular rotor based on azobenzene-strapped mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complex Azo-1 is reported. Electronic absorption and 1H NMR spectra manifested the reversible isomerization of the rotor Azo-1 between the trans configuration and the cis configuration. The rotational behavior of phthalocyanine rotator in two configurations were investigated by VT-1H NMR experiments, and the results indicated that the phthalocyanine rotator possessed a smaller rotational energy barrier in the cis isomer than in the trans isomer, which was also supported by DFT calculations. This result demonstrates that the rotation of phthalocyanine rotator in (phthalocyaninato)(porphyrinato) rare earth triple-decker complex can be successfully modulated by photo-isomerization via altering irradiation. Full article
Show Figures

Figure 1

16 pages, 5439 KiB  
Article
Unraveling Microviscosity Changes Induced in Cancer Cells by Photodynamic Therapy with Targeted Genetically Encoded Photosensitizer
by Liubov E. Shimolina, Aleksandra E. Khlynova, Vadim V. Elagin, Pavel A. Bureev, Petr S. Sherin, Marina K. Kuimova and Marina V. Shirmanova
Biomedicines 2024, 12(11), 2550; https://doi.org/10.3390/biomedicines12112550 - 8 Nov 2024
Cited by 1 | Viewed by 1433
Abstract
Background: Despite the fundamental importance of cell membrane microviscosity, changes in this biophysical parameter of membranes during photodynamic therapy (PDT) have not been fully understood. Methods: In this work, changes in the microviscosity of membranes of live HeLa Kyoto tumor cells were studied [...] Read more.
Background: Despite the fundamental importance of cell membrane microviscosity, changes in this biophysical parameter of membranes during photodynamic therapy (PDT) have not been fully understood. Methods: In this work, changes in the microviscosity of membranes of live HeLa Kyoto tumor cells were studied during PDT with KillerRed, a genetically encoded photosensitizer, in different cellular localizations. Membrane microviscosity was visualized using fluorescence lifetime imaging microscopy (FLIM) with a viscosity-sensitive BODIPY2 rotor. Results: Depending on the localization of the phototoxic protein, different effects on membrane microviscosity were observed. With nuclear localization of KillerRed, a gradual decrease in microviscosity was detected throughout the entire observation period, while for membrane localization of KillerRed, a dramatic increase in microviscosity was observed in the first minutes after PDT, and then a significant decrease at later stages of monitoring. The obtained data on cell monolayers are in good agreement with the data obtained for 3D tumor spheroids. Conclusions: These results indicate the involvement of membrane microviscosity in the response of tumor cells to PDT, which strongly depends on the localization of reactive oxygen species attack via targeting of a genetically encoded photosensitizer. Full article
(This article belongs to the Special Issue Photodynamic Therapy (3rd Edition))
Show Figures

Figure 1

19 pages, 4045 KiB  
Article
Hydration- and Temperature-Dependent Fluorescence Spectra of Laurdan Conformers in a DPPC Membrane
by Stefan Knippenberg, Kathakali De, Christopher Aisenbrey, Burkhard Bechinger and Silvio Osella
Cells 2024, 13(15), 1232; https://doi.org/10.3390/cells13151232 - 23 Jul 2024
Cited by 1 | Viewed by 1607
Abstract
The widely used Laurdan probe has two conformers, resulting in different optical properties when embedded in a lipid bilayer membrane, as demonstrated by our previous simulations. Up to now, the two conformers’ optical responses have, however, not been investigated when the temperature and [...] Read more.
The widely used Laurdan probe has two conformers, resulting in different optical properties when embedded in a lipid bilayer membrane, as demonstrated by our previous simulations. Up to now, the two conformers’ optical responses have, however, not been investigated when the temperature and the phase of the membrane change. Since Laurdan is known to be both a molecular rotor and a solvatochromic probe, it is subject to a profound interaction with both neighboring lipids and water molecules. In the current study, molecular dynamics simulations and hybrid Quantum Mechanics/Molecular Mechanics calculations are performed for a DPPC membrane at eight temperatures between 270K and 320K, while the position, orientation, fluorescence lifetime and fluorescence anisotropy of the embedded probes are monitored. The importance of both conformers is proven through a stringent comparison with experiments, which corroborates the theoretical findings. It is seen that for Conf-I, the excited state lifetime is longer than the relaxation of the environment, while for Conf-II, the surroundings are not yet adapted when the probe returns to the ground state. Throughout the temperature range, the lifetime and anisotropy decay curves can be used to identify the different membrane phases. The current work might, therefore, be of importance for biomedical studies on diseases, which are associated with cell membrane transformations. Full article
(This article belongs to the Special Issue Advances in Biophysics of Cellular Membranes)
Show Figures

Figure 1

24 pages, 7857 KiB  
Article
Vibration Suppression of Multi-Stage-Blade AMB-Rotor Using Parallel Adaptive and Cascaded Multi-Frequency Notch Filters
by Min Zhang, Jiqiang Tang, Jinxiang Zhou, Xue Han and Kun Wang
Appl. Sci. 2024, 14(14), 6255; https://doi.org/10.3390/app14146255 - 18 Jul 2024
Cited by 3 | Viewed by 1283
Abstract
The application of active magnetic bearings (AMBs) in high-speed rotating machinery faces the challenge of micro-vibration. This research addresses the vibration control of a high-speed magnetically suspended turbo molecular pump (MSTMP) with rotor mass imbalance vibration and multi-stage-blade modal vibration. A novel integrated [...] Read more.
The application of active magnetic bearings (AMBs) in high-speed rotating machinery faces the challenge of micro-vibration. This research addresses the vibration control of a high-speed magnetically suspended turbo molecular pump (MSTMP) with rotor mass imbalance vibration and multi-stage-blade modal vibration. A novel integrated AMB controller consisting of parallel co-frequency adaptive notch filter (ANF) and cascaded multi-frequency improved double-T notch filters (DTNFs) is proposed. To suppress rotor mass imbalance vibration, a bandwidth factor rectification method of the ANF based on displacement stiffness perturbation is designed. To suppress multi-stage-blade modal vibration, a multi-objective constrained optimization method of cascaded improved DTNFs based on linear normalization is designed. Simulation and experimental results validate that the proposed structure improvement of the addition of an AMB controller and multi-parameter optimization of the algorithm can effectively improve not only the phase stability margin and the notch vibration performance of the magnetically suspended rotor (MSR) system but also the efficiency and practicability of the algorithm. At rotational speeds of 12,000 rpm, 15,000 rpm, 18,000 rpm, and 21,000 rpm, the suppression of co-frequency synchronous vibration is approximately maintained between −30.94 dB and −30.56 dB. At the rated speed of 24,000 rpm, compared with other algorithms, the value of the rotor displacement converges from 0.08 mm to 0.03 mm, a reduction of 62.50%. The convergence time decreases from 3.67 s to 2.85 s, a reduction of 22.34%. Full article
Show Figures

Figure 1

19 pages, 672 KiB  
Article
Hydrogen Deuteride for Cold Neutron Production: A Model for the Double Differential Cross Section
by Eleonora Guarini, Douglas D. DiJulio, José I. Marquez Damian, Ubaldo Bafile and Milva Celli
Appl. Sci. 2024, 14(11), 4718; https://doi.org/10.3390/app14114718 - 30 May 2024
Cited by 1 | Viewed by 991
Abstract
The present work deals with the modeling of the response to neutrons of heteronuclear diatomic liquids, with special interest in the case of hydrogen deuteride (HD), as a possible candidate for the moderation process required in the production of cold neutrons. Preliminary evaluations [...] Read more.
The present work deals with the modeling of the response to neutrons of heteronuclear diatomic liquids, with special interest in the case of hydrogen deuteride (HD), as a possible candidate for the moderation process required in the production of cold neutrons. Preliminary evaluations of the model giving the neutron double differential cross section of a heteronuclear vibrating rotor were performed in the recent past by using, as a first approximation, the ideal gas law for the center-of-mass translational dynamics. Here, the state-of-the-art methodology (based on the use of quantum simulations of the velocity autocorrelation function) for predicting the neutron response of moderately quantum fluids (like molecular hydrogen and deuterium at low temperatures) is applied to the heteronuclear form of this molecular liquid. The unavailability of the double differential cross section experimental data on liquid HD still compels us to test the calculations only at an integral level, i.e., against the only available measurements of the total neutron cross section of HD. Despite the well-tested and parameter-free computational approach, which includes proper consideration of the quantum effects, the present findings on HD indicate the evident need for more accurate measurements of its total cross section in extended ranges of incident energy, as well as of an experimental determination of the double differential cross section of this mild quantum liquid. For further applicative purposes, a very useful by-product of this study is the determination of the self diffusion coefficient D of the HD in the liquid phase. Full article
(This article belongs to the Special Issue Neutron Scattering and Its Applications)
Show Figures

Figure 1

12 pages, 3664 KiB  
Article
A Red-Emission Fluorescent Probe with Large Stokes Shift for Detection of Viscosity in Living Cells and Tumor-Bearing Mice
by Beilei Wang, Dezhi Yang, Xiaohong Zhong, Yuhui Liu and Yong Huang
Molecules 2024, 29(9), 1993; https://doi.org/10.3390/molecules29091993 - 26 Apr 2024
Cited by 3 | Viewed by 1623
Abstract
Abnormal viscosity is closely related to the occurrence of many diseases, such as cancer. Therefore, real-time detection of changes in viscosity in living cells is of great importance. Fluorescent molecular rotors play a critical role in detecting changes in cellular viscosity. Developing red [...] Read more.
Abnormal viscosity is closely related to the occurrence of many diseases, such as cancer. Therefore, real-time detection of changes in viscosity in living cells is of great importance. Fluorescent molecular rotors play a critical role in detecting changes in cellular viscosity. Developing red emission viscosity probes with large Stokes shifts and high sensitivity and specificity remains an urgent and important topic. Herein, a novel viscosity-sensitive fluorescent probe (TCF-VIS1) with a large stokes shift and red emission was prepared based on the 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran (TCF) skeleton. Due to intramolecular rotation, the probe itself does not fluorescence at low viscosity. With the increase in viscosity, the rotation of TCF-VIS1 is limited, and its fluorescence is obviously enhanced. The probe has the advantages of simple preparation, large Stokes shift, good sensitivity and selectivity, and low cytotoxicity, which make it successfully used for viscosity detection in living cells. Moreover, TCF-VIS1 showed its potential for cancer diagnosis at the cell level and in tumor-bearing mice by detecting viscosity. Therefore, the probe is expected to enrich strategies for the detection of viscosity in biological systems and offer a potential tool for cancer diagnosis. Full article
Show Figures

Figure 1

9 pages, 1475 KiB  
Article
Variable-Temperature Non-Linear Optical Imaging Witnesses Change in Crystalline Rotor Dynamics at Phase Transition
by Guillaume Bastien, Cécile Mézière, Patrick Batail and Denis Gindre
Crystals 2024, 14(3), 259; https://doi.org/10.3390/cryst14030259 - 6 Mar 2024
Viewed by 1350
Abstract
We present a novel approach to second harmonic microscopy combining variable temperature and photon counting. This innovative method aims to generate Second Harmonic Generation (SHG) images by scanning the same area multiple times with short pixel dwell times and low excitation intensities, as [...] Read more.
We present a novel approach to second harmonic microscopy combining variable temperature and photon counting. This innovative method aims to generate Second Harmonic Generation (SHG) images by scanning the same area multiple times with short pixel dwell times and low excitation intensities, as illustrated by imaging the full extent of a single crystalline rod of (1,4-bis((4′-(iodoethynyl)phenyl) ethynyl) bicyclo[2.2.2]octane (BCO). Remarkably, this new technique records the change in SHG intensity that occurs along with the crystalline phase transition at 108 K, thereby showing great promise in exploring the intricate instabilities of rotator dynamics concealed within the phase diagrams of molecular machines. Notably, our findings reveal a sustained decrease in non-linear optical intensity as the temperature drops to 95 K, followed by a sharp increase in SHG intensity at approximately 108 K, in synchronicity with the phase transition reported earlier that involves an intricate set of concerted changes in rotor dynamics. Full article
(This article belongs to the Special Issue Feature Papers in Crystals 2023)
Show Figures

Figure 1

16 pages, 10209 KiB  
Article
Sand Erosion Resistance and Failure Mechanism of Polyurethane Film on Helicopter Rotor Blades
by Linfeng Zheng, Jinjuan Fan, Qing Gong, Wei Sun and Xinghui Jia
Polymers 2023, 15(22), 4386; https://doi.org/10.3390/polym15224386 - 11 Nov 2023
Cited by 1 | Viewed by 2149
Abstract
Polyurethane is widely used on the surface of composite materials for rotor blades as sand erosion protection materials. The failure mechanism investigation of polyurethane film under service conditions is useful for developing the optimal polyurethane film for rotor blades. In this article, the [...] Read more.
Polyurethane is widely used on the surface of composite materials for rotor blades as sand erosion protection materials. The failure mechanism investigation of polyurethane film under service conditions is useful for developing the optimal polyurethane film for rotor blades. In this article, the sand erosion test parameters were ascertained according to the service environment of the polyurethane film. The sand erosion resistance and failure mechanism of polyurethane film at different impact angles were analyzed by an infrared thermometer, a Fourier transform infrared spectrometer (FTIR), a differential scanning calorimeter (DSC), a field emission scanning electron microscope (FESEM), and a laser confocal microscope (CLSM). The results show that the direct measurement method of volume loss can better characterize the sand erosion resistance of the polyurethane film compared to traditional mass loss methods, which avoids the influence of sand particles embedded in the polyurethane film. The sand erosion resistance of polyurethane film at low-angle impact is much lower than that at high-angle impact. At an impact rate of 220 m/s, the volume loss after sand erosion for 15 min at the impact angle of 30° is 57.8 mm3, while that at the impact angle of 90° is only 2.6 mm3. The volume loss prediction equation was established according to the experimental data. During low-angle erosion, the polyurethane film damage is mainly caused by sand cutting, which leads to wrinkling and accumulation of surface materials, a rapid increase in roughness, and the generation of long cracks. The linking of developing cracks would lead to large-scale shedding of polyurethane film. During high-angle erosion, the polyurethane film damage is mainly caused by impact. The connection of small cracks caused by impact leads to the shedding of small pieces of polyurethane, while the change in the roughness of the film is not as significant as that during low-angle erosion. The disordered arrangement of the soft and hard blocks becomes locally ordered under the action of impact and cutting loads. Then, the disordered state is restored after the erosion test finishes. The erosion of sand particles leads to an increase in the temperature of the erosion zone of the polyurethane film, and the maximum temperature rise is 6 °C, which does not result in a significant change in the molecular structure of the polyurethane film. The erosion failure mechanism is cracking caused by sand cutting and impact. Full article
(This article belongs to the Special Issue Damage and Failure Analysis of Polymer-Based Composites)
Show Figures

Figure 1

21 pages, 23317 KiB  
Article
Correlation of Plasma Membrane Microviscosity and Cell Stiffness Revealed via Fluorescence-Lifetime Imaging and Atomic Force Microscopy
by Yuri M. Efremov, Liubov Shimolina, Alexander Gulin, Nadezhda Ignatova, Margarita Gubina, Marina K. Kuimova, Peter S. Timashev and Marina V. Shirmanova
Cells 2023, 12(21), 2583; https://doi.org/10.3390/cells12212583 - 6 Nov 2023
Cited by 7 | Viewed by 4239
Abstract
The biophysical properties of cells described at the level of whole cells or their membranes have many consequences for their biological behavior. However, our understanding of the relationships between mechanical parameters at the level of cell (stiffness, viscoelasticity) and at the level of [...] Read more.
The biophysical properties of cells described at the level of whole cells or their membranes have many consequences for their biological behavior. However, our understanding of the relationships between mechanical parameters at the level of cell (stiffness, viscoelasticity) and at the level of the plasma membrane (fluidity) remains quite limited, especially in the context of pathologies, such as cancer. Here, we investigated the correlations between cells’ stiffness and viscoelastic parameters, mainly determined via the actin cortex, and plasma membrane microviscosity, mainly determined via its lipid profile, in cancer cells, as these are the keys to their migratory capacity. The mechanical properties of cells were assessed using atomic force microscopy (AFM). The microviscosity of membranes was visualized using fluorescence-lifetime imaging microscopy (FLIM) with the viscosity-sensitive probe BODIPY 2. Measurements were performed for five human colorectal cancer cell lines that have different migratory activity (HT29, Caco-2, HCT116, SW 837, and SW 480) and their chemoresistant counterparts. The actin cytoskeleton and the membrane lipid composition were also analyzed to verify the results. The cell stiffness (Young’s modulus), measured via AFM, correlated well (Pearson r = 0.93) with membrane microviscosity, measured via FLIM, and both metrics were elevated in more motile cells. The associations between stiffness and microviscosity were preserved upon acquisition of chemoresistance to one of two chemotherapeutic drugs. These data clearly indicate that mechanical parameters, determined by two different cellular structures, are interconnected in cells and play a role in their intrinsic migratory potential. Full article
(This article belongs to the Special Issue Advances in Scanning Probe Microscopy in Cell Biology)
Show Figures

Figure 1

13 pages, 3034 KiB  
Article
Effects of Paclitaxel on Plasma Membrane Microviscosity and Lipid Composition in Cancer Cells
by Liubov Shimolina, Alexander Gulin, Alexandra Khlynova, Nadezhda Ignatova, Irina Druzhkova, Margarita Gubina, Elena Zagaynova, Marina K. Kuimova and Marina Shirmanova
Int. J. Mol. Sci. 2023, 24(15), 12186; https://doi.org/10.3390/ijms241512186 - 29 Jul 2023
Cited by 2 | Viewed by 2666
Abstract
The cell membrane is an important regulator for the cytotoxicity of chemotherapeutic agents. However, the biochemical and biophysical effects that occur in the membrane under the action of chemotherapy drugs are not fully described. In the present study, changes in the microviscosity of [...] Read more.
The cell membrane is an important regulator for the cytotoxicity of chemotherapeutic agents. However, the biochemical and biophysical effects that occur in the membrane under the action of chemotherapy drugs are not fully described. In the present study, changes in the microviscosity of membranes of living HeLa–Kyoto tumor cells were studied during chemotherapy with paclitaxel, a widely used antimicrotubule agent. To visualize the microviscosity of the membranes, fluorescence lifetime imaging microscopy (FLIM) with a BODIPY 2 fluorescent molecular rotor was used. The lipid profile of the membranes was assessed using time-of-flight secondary ion mass spectrometry ToF-SIMS. A significant, steady-state decrease in the microviscosity of membranes, both in cell monolayers and in tumor spheroids, was revealed after the treatment. Mass spectrometry showed an increase in the unsaturated fatty acid content in treated cell membranes, which may explain, at least partially, their low microviscosity. These results indicate the involvement of membrane microviscosity in the response of tumor cells to paclitaxel treatment. Full article
(This article belongs to the Special Issue Applications of Fluorescence Microscopy in Molecular Biology)
Show Figures

Figure 1

19 pages, 29315 KiB  
Article
Long-Time Dynamics of Selected Molecular-Motor Components Using a Physics-Based Coarse-Grained Approach
by Adam Liwo, Maciej Pyrka, Cezary Czaplewski, Xubiao Peng and Antti J. Niemi
Biomolecules 2023, 13(6), 941; https://doi.org/10.3390/biom13060941 - 5 Jun 2023
Cited by 1 | Viewed by 2451
Abstract
Molecular motors are essential for the movement and transportation of macromolecules in living organisms. Among them, rotatory motors are particularly efficient. In this study, we investigated the long-term dynamics of the designed left-handed alpha/alpha toroid (PDB: 4YY2), the RBM2 flagellum protein ring from [...] Read more.
Molecular motors are essential for the movement and transportation of macromolecules in living organisms. Among them, rotatory motors are particularly efficient. In this study, we investigated the long-term dynamics of the designed left-handed alpha/alpha toroid (PDB: 4YY2), the RBM2 flagellum protein ring from Salmonella (PDB: 6SD5), and the V-type Na+-ATPase rotor in Enterococcus hirae (PDB: 2BL2) using microcanonical and canonical molecular dynamics simulations with the coarse-grained UNRES force field, including a lipid-membrane model, on a millisecond laboratory time scale. Our results demonstrate that rotational motion can occur with zero total angular momentum in the microcanonical regime and that thermal motions can be converted into net rotation in the canonical regime, as previously observed in simulations of smaller cyclic molecules. For 6SD5 and 2BL2, net rotation (with a ratcheting pattern) occurring only about the pivot of the respective system was observed in canonical simulations. The extent and direction of the rotation depended on the initial conditions. This result suggests that rotatory molecular motors can convert thermal oscillations into net rotational motion. The energy from ATP hydrolysis is required probably to set the direction and extent of rotation. Our findings highlight the importance of molecular-motor structures in facilitating movement and transportation within living organisms. Full article
Show Figures

Figure 1

12 pages, 1196 KiB  
Article
The Microwave Rotational Electric Resonance (RER) Spectrum of Benzothiazole
by Hamza El Hadki, Kenneth J. Koziol, Oum Keltoum Kabbaj, Najia Komiha, Isabelle Kleiner and Ha Vinh Lam Nguyen
Molecules 2023, 28(8), 3419; https://doi.org/10.3390/molecules28083419 - 13 Apr 2023
Cited by 6 | Viewed by 2107
Abstract
The microwave spectra of benzothiazole were measured in the frequency range 2–26.5 GHz using a pulsed molecular jet Fourier transform microwave spectrometer. Hyperfine splittings arising from the quadrupole coupling of the 14N nucleus were fully resolved and analyzed simultaneously with the rotational [...] Read more.
The microwave spectra of benzothiazole were measured in the frequency range 2–26.5 GHz using a pulsed molecular jet Fourier transform microwave spectrometer. Hyperfine splittings arising from the quadrupole coupling of the 14N nucleus were fully resolved and analyzed simultaneously with the rotational frequencies. In total, 194 and 92 hyperfine components of the main species and the 34S isotopologue, respectively, were measured and fitted to measurement accuracy using a semi-rigid rotor model supplemented by a Hamiltonian accounting for the 14N nuclear quadrupole coupling effect. Highly accurate rotational constants, centrifugal distortion constants, and 14N nuclear quadrupole coupling constants were deduced. A large number of method and basis set combinations were used to optimize the molecular geometry of benzothiazole, and the calculated rotational constants were compared with the experimentally determined constants in the course of a benchmarking effort. The similar value of the χcc quadrupole coupling constant when compared to other thiazole derivatives indicates only very small changes of the electronic environment at the nitrogen nucleus in these compounds. The small negative inertial defect of −0.056 uÅ2 hints that low-frequency out-of-plane vibrations are present in benzothiazole, similar to the observation for some other planar aromatic molecules. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Figure 1

16 pages, 3049 KiB  
Article
Fluorescent Molecular Rotors Based on Hinged Anthracene Carboxyimides
by Yanhai Ni, Wangjian Fang and Mark A. Olson
Molecules 2023, 28(7), 3217; https://doi.org/10.3390/molecules28073217 - 4 Apr 2023
Cited by 2 | Viewed by 2472
Abstract
Temperature and viscosity are essential parameters in medicine, environmental science, smart materials, and biology. However, few fluorescent sensor publications mention the direct relationship between temperature and viscosity. Three anthracene carboxyimide-based fluorescent molecular rotors, 1DiAC∙Cl, 2DiAC∙Cl, and 9DiAC∙Cl, were designed and [...] Read more.
Temperature and viscosity are essential parameters in medicine, environmental science, smart materials, and biology. However, few fluorescent sensor publications mention the direct relationship between temperature and viscosity. Three anthracene carboxyimide-based fluorescent molecular rotors, 1DiAC∙Cl, 2DiAC∙Cl, and 9DiAC∙Cl, were designed and synthesized. Their photophysical properties were studied in various solvents, such as N, N-dimethylacetamide, N, N-dimethylformamide, 1-propanol, ethanol, dimethyl sulfoxide, methanol, and water. Solvent polarizability resulted in a solvatochromism effect for all three rotors and their absorption and emission spectra were analyzed via the Lippert–Mataga equation and multilinear analysis using Kamlet–Taft and Catalán parameters. The rotors exhibited red-shifted absorption and emission bands in solution on account of differences in their torsion angle. The three rotors demonstrated strong fluorescence in a high-viscosity environment due to restricted intramolecular rotation. Investigations carried out under varying ratios of water to glycerol were explored to probe the viscosity-based changes in their optical properties. A good linear correlation between the logarithms of fluorescence intensity and solution viscosity for two rotors, namely 2DiAC∙Cl and 9DiAC∙Cl, was observed as the percentage of glycerol increased. Excellent exponential regression between the viscosity-related temperature and emission intensity was observed for all three investigated rotors. Full article
(This article belongs to the Special Issue Design and Synthesis of Novel Fluorescent Molecules)
Show Figures

Graphical abstract

Back to TopTop