Variable-Temperature Non-Linear Optical Imaging Witnesses Change in Crystalline Rotor Dynamics at Phase Transition
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liepuoniute, I.; Jellen, M.J.; Garcia-Garibay, M.A. Correlated motion and mechanical gearing in amphidynamic crystalline molecular machines. Chem. Sci. 2020, 11, 12994–13007. [Google Scholar] [CrossRef]
- Garcia-Garibay, M.A. Crystalline molecular machines: Encoding supramolecular dynamics into molecular structure. Proc. Natl. Acad. Sci. USA 2005, 102, 10771–10776. [Google Scholar] [CrossRef] [PubMed]
- Koumura, N.; Zijlstra, R.W.J.; van Delden, R.A.; Harada, N.; Feringa, B.L. Light-driven monodirectional molecular rotor. Nature 1999, 401, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.; Toyoda, R.; Costil, R.; Feringa, B.L. Chemically Driven Rotatory Molecular Machines. Angew. Chem. Int. Ed. 2022, 61, e202206631. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, Y.; Garcia-Garibay, M.A. Rotational Dynamics of an Amphidynamic Zirconium Metal–Organic Framework Determined by Dielectric Spectroscopy. J. Phys. Chem. Lett. 2021, 12, 5644–5648. [Google Scholar] [CrossRef]
- Catalano, L.; Naumov, P. Exploiting rotational motion in molecular crystals. CrystEngComm 2018, 20, 5872–5883. [Google Scholar] [CrossRef]
- Zyss, J.; Ledoux, I. Nonlinear optics in multipolar media: Theory and experiments. Chem. Rev. 1994, 94, 77–105. [Google Scholar] [CrossRef]
- Lemouchi, C.; Iliopoulos, K.; Zorina, L.; Simonov, S.; Wzietek, P.; Cauchy, T.; Rodríguez-Fortea, A.; Canadell, E.; Kaleta, J.; Michl, J.; et al. Crystalline Arrays of Pairs of Molecular Rotors: Correlated Motion, Rotational Barriers, and Space-Inversion Symmetry Breaking Due to Conformational Mutations. J. Am. Chem. Soc. 2013, 135, 9366–9376. [Google Scholar] [CrossRef]
- Carriles, R.; Sheetz, K.E.; Hoover, E.E.; Squier, J.A.; Barzda, V. Simultaneous multifocal, multiphoton, photon counting microscopy. Opt. Express 2008, 16, 10364–10371. [Google Scholar] [CrossRef]
- Asher, M.; Bardini, M.; Catalano, L.; Jouclas, R.; Schweicher, G.; Liu, J.; Korobko, R.; Cohen, A.; Geerts, Y.; Beljonne, D.; et al. Mechanistic View on the Order–Disorder Phase Transition in Amphidynamic Crystals. J. Phys. Chem. Lett. 2023, 14, 1570–1577. [Google Scholar] [CrossRef]
- Pugachev, A.M. Manifestation of Local Asymmetric Regions in Centrosymmetric Phase of Ferroelectric Crystals in Brillouin Scattering and Second Optical Harmonic Generation. Crystallogr. Rep. 2023, 68, 797–801. [Google Scholar] [CrossRef]
- Wang, J.; Jin, K.; Yao, H.; Gu, J.; Xu, X.; Ge, C.; Wang, C.; He, M.; Yang, G. Temperature-dependent phase transition in barium titanate crystals probed by second harmonic generation. Appl. Phys. Lett. 2018, 112, 102904. [Google Scholar] [CrossRef]
- Lun, M.M.; Su, C.Y.; Jia, Q.Q.; Zhang, Z.X.; Li, J.; Lu, H.F.; Zhang, Y.; Fu, D.W. Remarkable enhancement of optical and electric properties by temperature-controlled solid-phase molecular motion. Inorg. Chem. Front. 2023, 10, 5026–5034. [Google Scholar] [CrossRef]
- Gao, Y.F.; Zhang, Z.X.; Zhang, T.; Su, C.Y.; Zhang, W.Y.; Fu, D.W. Regulated molecular rotor in phase transition materials with switchable dielectric and SHG effect. Mater. Chem. Front. 2020, 4, 3003–3012. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, P.; Wei, Z.; Guo, W.; Zhang, H.; Cai, H. Antimony Bromide Organic–Inorganic Hybrid Compound with a Long-Chain Diamine Showing Switchable Phase Transition and Second-Harmonic Generation Properties. Inorg. Chem. 2024, 63, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Seong, D.; Han, S.; Jeon, D.; Kim, Y.; Wijesinghe, R.E.; Ravichandran, N.K.; Lee, J.; Lee, J.; Kim, P.; Lee, D.E.; et al. Dynamic Compensation of Path Length Difference in Optical Coherence Tomography by an Automatic Temperature Control System of Optical Fiber. IEEE Access 2020, 8, 77501–77510. [Google Scholar] [CrossRef]
- Brasselet, S. Polarization-resolved nonlinear microscopy: Application to structural molecular and biological imaging. Adv. Opt. Photon. 2011, 3, 205. [Google Scholar] [CrossRef]
- Li, W.; Ma, Y.; Feng, T.; Du, Z.; Liu, Y.; Kalinin, S.V.; Li, J.F.; Li, Q. Delineating complex ferroelectric domain structures via second harmonic generation spectral imaging. J. Mater. 2023, 9, 395–402. [Google Scholar] [CrossRef]
- Simonov, S.; Zorina, L.; Wzietek, P.; Rodríguez-Fortea, A.; Canadell, E.; Mézière, C.; Bastien, G.; Lemouchi, C.; Garcia-Garibay, M.A.; Batail, P. Static Modulation Wave of Arrays of Halogen Interactions Transduced to a Hierarchy of Nanoscale Change Stimuli of Crystalline Rotors Dynamics. Nano Lett. 2018, 18, 3780–3784. [Google Scholar] [CrossRef]
- Vogelsberg, C.S.; Garcia-Garibay, M.A. Crystalline molecular machines: Function, phase order, dimensionality, and composition. Chem. Soc. Rev. 2012, 41, 1892–1910. [Google Scholar] [CrossRef]
- Lemouchi, C.; Yamamoto, H.M.; Kato, R.; Simonov, S.; Zorina, L.; Rodríguez-Fortea, A.; Canadell, E.; Wzietek, P.; Iliopoulos, K.; Gindre, D.; et al. Reversible Control of Crystalline Rotors by Squeezing Their Hydrogen Bond Cloud Across a Halogen Bond-Mediated Phase Transition. Cryst. Growth Des. 2014, 14, 3375–3383. [Google Scholar] [CrossRef]
- Abendroth, J.M.; Bushuyev, O.S.; Weiss, P.S.; Barrett, C.J. Controlling Motion at the Nanoscale: Rise of the Molecular Machines. ACS Nano 2015, 9, 7746–7768. [Google Scholar] [CrossRef]
- Erbas-Cakmak, S.; Leigh, D.A.; McTernan, C.T.; Nussbaumer, A.L. Artificial Molecular Machines. Chem. Rev. 2015, 115, 10081–10206. [Google Scholar] [CrossRef] [PubMed]
- Mei, G.Q.; Zhang, H.Y.; Liao, W.Q. A symmetry breaking phase transition-triggered high-temperature solid-state quadratic nonlinear optical switch coupled with a switchable dielectric constant in an organic–inorganic hybrid compound. Chem. Commun. 2016, 52, 11135–11138. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Wu, D.H.; Wang, Z.; Zhang, Y. Switchings of dielectric constant, second harmonic generation and polarization in a polar hybrid cyanometallate crystal. New J. Chem. 2017, 41, 3211–3216. [Google Scholar] [CrossRef]
- Sun, Z.; Luo, J.; Zhang, S.; Ji, C.; Zhou, L.; Li, S.; Deng, F.; Hong, M. Solid-State Reversible Quadratic Nonlinear Optical Molecular Switch with an Exceptionally Large Contrast. Adv. Mater. 2013, 25, 4159–4163. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yang, X.; Yang, Y.; Kuang, X.; Lu, F.; Shan, P.; Sun, Z.; Lin, Z.; Hong, M.; Luo, J. Non-Centrosymmetric RbNaMgP2O7 with Unprecedented Thermo-Induced Enhancement of Second Harmonic Generation. J. Am. Chem. Soc. 2018, 140, 1592–1595. [Google Scholar] [CrossRef] [PubMed]
- Mishina, E.D.; Misuryaev, T.V.; Sherstyuk, N.E.; Lemanov, V.V.; Morozov, A.I.; Sigov, A.S.; Rasing, T. Observation of a Near-Surface Structural Phase Transition in SrTiO3 by Optical Second Harmonic Generation. Phys. Rev. Lett. 2000, 85, 3664–3667. [Google Scholar] [CrossRef]
- Gindre, D.; Iliopoulos, K.; Krupka, O.; Champigny, E.; Morille, Y.; Sallé, M. Image storage in coumarin-based copolymer thin films by photoinduced dimerization. Opt. Lett. 2013, 38, 4636–4639. [Google Scholar] [CrossRef] [PubMed]
- Gindre, D.; Ka, I.; Boeglin, A.; Fort, A.; Dorkenoo, K.D. Image storage through gray-scale encoding of second harmonic signals in azo-dye copolymers. Appl. Phys. Lett. 2007, 90, 094103. [Google Scholar] [CrossRef]
- Carriles, R.; Schafer, D.N.; Sheetz, K.E.; Field, J.J.; Cisek, R.; Barzda, V.; Sylvester, A.W.; Squier, J.A. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy. Rev. Sci. Instrum. 2009, 80, 081101. [Google Scholar] [CrossRef] [PubMed]
- Abulikemu, A.; Kainuma, Y.; An, T.; Hase, M. Temperature-dependent second-harmonic generation from color centers in diamond. Opt. Lett. 2022, 47, 1693–1696. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.G. The temperature-dependent domains, SHG effect and piezoelectric coefficient of TGS. Chin. Chem. Lett. 2013, 24, 681–684. [Google Scholar] [CrossRef]
- Kim, S.W.; Deng, Z.; Li, M.; Sen Gupta, A.; Akamatsu, H.; Gopalan, V.; Greenblatt, M. PbMn(IV)TeO6: A New Noncentrosymmetric Layered Honeycomb Magnetic Oxide. Inorg. Chem. 2016, 55, 1333–1338. [Google Scholar] [CrossRef]
- Colin-Molina, A.; Karothu, D.P.; Jellen, M.J.; Toscano, R.A.; Garcia-Garibay, M.A.; Naumov, P.; Rodríguez-Molina, B. Thermosalient Amphidynamic Molecular Machines: Motion at the Molecular and Macroscopic Scales. Matter 2019, 1, 1033–1046. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastien, G.; Mézière, C.; Batail, P.; Gindre, D. Variable-Temperature Non-Linear Optical Imaging Witnesses Change in Crystalline Rotor Dynamics at Phase Transition. Crystals 2024, 14, 259. https://doi.org/10.3390/cryst14030259
Bastien G, Mézière C, Batail P, Gindre D. Variable-Temperature Non-Linear Optical Imaging Witnesses Change in Crystalline Rotor Dynamics at Phase Transition. Crystals. 2024; 14(3):259. https://doi.org/10.3390/cryst14030259
Chicago/Turabian StyleBastien, Guillaume, Cécile Mézière, Patrick Batail, and Denis Gindre. 2024. "Variable-Temperature Non-Linear Optical Imaging Witnesses Change in Crystalline Rotor Dynamics at Phase Transition" Crystals 14, no. 3: 259. https://doi.org/10.3390/cryst14030259
APA StyleBastien, G., Mézière, C., Batail, P., & Gindre, D. (2024). Variable-Temperature Non-Linear Optical Imaging Witnesses Change in Crystalline Rotor Dynamics at Phase Transition. Crystals, 14(3), 259. https://doi.org/10.3390/cryst14030259