A Red-Emission Fluorescent Probe with Large Stokes Shift for Detection of Viscosity in Living Cells and Tumor-Bearing Mice
Abstract
:1. Introduction
2. Results and Discussion
2.1. Syntheses of TCF-VIS1
2.2. Spectroscopic Response of TCF-VIS1 to Viscosity
2.3. Selectivity and Photostability of TCF-VIS1 to Viscosity
2.4. Effect of pH on TCF-VIS1 Response Viscosity
2.5. Density Functional Theory Calculations
2.6. Cytotoxicity and Localization
2.7. Monitoring the Cellular Viscosity
2.8. Monitoring the Viscosity during Ferroptosis
2.9. Differentiation of Normal Cells and Tumor Cells
2.10. Cancer Diagnosis In Vivo
3. Materials and Methods
3.1. Reagents and Apparatus
3.2. Synthesis of the Florescent Probe TCF-VIS1
3.2.1. Synthesis of Compound 1
3.2.2. Synthesis of Compound 2
3.2.3. Synthesis of TCF-VIS1
3.3. Determination of Viscosity and Fluorescence Spectral Analysis
3.4. The Förster–Hoffmann Equation
3.5. Computational Methods
3.6. Colocalization Imaging Experiments
3.7. Fluorescence Imaging in Living Cells
3.8. In Vivo Fluorescence Imaging
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, C.; Sun, W.; Xu, L.; Qian, Y.; Dai, J.; Zhong, G.; Hou, Y.; Liu, J.; Shen, B. A minireview of viscosity-sensitive fluorescent probes: Design and biological applications. J. Mater. Chem. B 2020, 8, 9642–9651. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Huang, L.; Wu, L.; Li, J.; James, T.D.; Lin, W. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem. Soc. Rev. 2021, 50, 12098–12150. [Google Scholar] [CrossRef] [PubMed]
- Priya, B.; Kumar, N.; Roopa. Photophysical characterization of coumarin and rhodanine derivatives as viscosity sensitive fluorescence turn-on probes. Dye. Pigment. 2022, 207, 110707. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, Y.; Tian, W.; Deng, L. Activatable rotor for quantifying lysosomal viscosity in living cells. J. Am. Chem. Soc. 2013, 135, 2903–2906. [Google Scholar] [CrossRef]
- Kong, F.; Li, Y.; Li, X.; Wang, X.; Fu, G.; Zhao, Q.; Tang, B. Screening of dicyanoisophorone-based probes for highly sensitive detection of viscosity changes in living cells and zebrafish. Chem. Commun. 2021, 57, 9554–9557. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Li, P.; Tang, B. Small molecular fluorescent probes for imaging of viscosity in living biosystems. Chemistry 2021, 27, 6880–6898. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.M.; Chen, P.C.; Li, C.S.; Ramanujam, S.; Cheung, A.T. Whole blood viscosity and microvascular abnormalities in Alzheimer’s Disease. Clin. Hemorheol. Microcirc. 2009, 41, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Kong, X.; Lin, W. Noninvasive cancer diagnosis in vivo based on a viscosity-activated near-infrared fluorescent probe. Anal. Chem. 2021, 93, 2072–2081. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; Gu, Y.; Zhou, X.; Wang, Z.; Wang, S. Rational design and comparison of three curcumin-based fluorescent probes for viscosity detection in living cells and zebrafish. Analyst 2024, 149, 789–799. [Google Scholar] [CrossRef]
- Wei, Y.F.; Weng, X.F.; Sha, X.L.; Sun, R.; Xu, Y.J.; Ge, J.F. Simultaneous imaging of lysosomal and mitochondrial viscosity under different conditions using a NIR probe. Sens. Actuators B Chem. 2021, 326, 128954. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Ma, Y.Y.; Gao, W.J.; Ma, S.H.; Lin, W.Y. Construction of a fluorescent probe with large stokes shift and deep red emission for sensing of the viscosity in hyperglycemic mice. Dye. Pigment. 2021, 195, 109674. [Google Scholar] [CrossRef]
- Ren, M.G.; Zhou, K.; Wang, L.; Liu, K.Y.; Lin, W.Y. Construction of a ratiometric two-photon fluorescent probe to monitor the changes of mitochondrial viscosity. Sens. Actuators B Chem. 2018, 262, 452–459. [Google Scholar] [CrossRef]
- Haidekker, M.A.; Brady, T.P.; Lichlyter, D.; Theodorakis, E.A. A ratiometric fluorescent viscosity sensor. J. Am. Chem. Soc. 2006, 128, 398–399. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ren, W.X.; Hou, J.T.; Won, M.; An, J.; Chen, X.; Shu, J.; Kim, J.S. Fluorescence imaging of pathophysiological microenvironments. Chem. Soc. Rev. 2021, 50, 8887–8902. [Google Scholar] [CrossRef]
- Li, H.; Kim, Y.; Jung, H.; Hyun, J.Y.; Shin, I. Near-infrared (NIR) fluorescence-emitting small organic molecules for cancer imaging and therapy. Chem. Soc. Rev. 2022, 51, 8957–9008. [Google Scholar] [CrossRef]
- Chen, T.; Chen, Z.; Liu, R.; Zheng, S. A NIR fluorescent probe for detection of viscosity and lysosome imaging in live cells. Org. Biomol. Chem. 2019, 17, 6398–6403. [Google Scholar] [CrossRef]
- Guo, R.; Ma, Y.; Tang, Y.; Xie, P.; Wang, Q.; Lin, W. A novel mitochondria-targeted near-infrared (NIR) probe for detection of viscosity changes in living cell, zebra fishes and living mice. Talanta 2019, 204, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Z.; Hu, W.; Liu, Z. A mitochondrial-targeting near-infrared fluorescent probe for visualizing and monitoring viscosity in live cells and tissues. Anal. Chem. 2019, 91, 10302–10309. [Google Scholar] [CrossRef]
- Liu, X.; Chi, W.; Qiao, Q.; Kokate, S.V.; Cabrera, E.P.; Xu, Z.; Liu, X.; Chang, Y.T. Molecular mechanism of viscosity sensitivity in BODIPY rotors and application to motion-based fluorescent sensors. ACS Sens. 2020, 5, 731–739. [Google Scholar] [CrossRef]
- Kachwal, V.; Srivastava, A.; Thakar, S.; Zubiria-Ulacia, M.; Gautam, D.; Majumder, S.; Casanova, D.; Chowdhury, R.; Rath, N.; Mukherjee, S.; et al. Engineering a light-driven cyanine based molecular rotor to enhance the sensitivity towards a viscous medium. Mater. Adv. 2021, 2, 4804–4813. [Google Scholar] [CrossRef]
- Dakanali, M.; Do, T.H.; Horn, A.; Chongchivivat, A.; Jarusreni, T.; Lichlyter, D.; Guizzunti, G.; Haidekker, M.A.; Theodorakis, E.A. Self-calibrating viscosity probes: Design and subcellular localization. Bioorg. Med. Chem. 2012, 20, 4443–4450. [Google Scholar] [CrossRef]
- López-Duarte, I.; Vu, T.T.; Izquierdo, M.A.; Bull, J.A.; Kuimova, M.K. A molecular rotor for measuring viscosity in plasma membranes of live cells. Chem. Commun. 2014, 50, 5282–5284. [Google Scholar] [CrossRef]
- Li, H.; Shi, W.; Li, X.; Hu, Y.; Fang, Y.; Ma, H. Ferroptosis accompanied by •OH generation and cytoplasmic viscosity increase revealed via dual-functional fluorescence probe. J. Am. Chem. Soc. 2019, 141, 18301–18307. [Google Scholar] [CrossRef]
- Chen, Y.; Qi, J.; Huang, J.; Zhou, X.; Niu, L.; Yan, Z.; Wang, J. A nontoxic, photostable and high signal-to-noise ratio mitochondrial probe with mitochondrial membrane potential and viscosity detectivity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 189, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Wang, T.; Yang, X.; Yu, H.; Wang, S.; Huang, D. Facile mitochondria localized fluorescent probe for viscosity detection in living cells. Talanta 2021, 225, 121996. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.H.; Anwar, G.; Tang, Y.X.; Shi, W.J.; Chen, X.S.; Xu, C.; He, Z.Z.; Wang, Q.; Yan, J.W.; Han, D.; et al. Exploration of novel meso-C═N-BODIPY-based AIE fluorescent rotors with large Stokes shifts for organelle-viscosity imaging. Anal. Chem. 2024, 96, 5437–5445. [Google Scholar] [CrossRef]
- Sedgwick, A.C.; Gardiner, J.E.; Kim, G.; Yevglevskis, M.; Lloyd, M.D.; Jenkins, A.T.A.; Bull, S.D.; Yoon, J.; James, T.D. Long-wavelength TCF-based fluorescence probes for the detection and intracellular imaging of biological thiols. Chem. Commun. 2018, 54, 4786–4789. [Google Scholar] [CrossRef]
- Meng, T.; Ma, W.; Fan, M.; Tang, W.; Duan, X. Enhancing the contrast of tumor imaging for image-guided surgery using a tumor-targeting probiotic with the continuous expression of a biomarker. Anal. Chem. 2022, 94, 10109–10117. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Gao, C.; Shen, T.; Jing, J.; Zhang, S.; Zhang, X. Dual-site fluorescent probe to monitor intracellular nitroxyl and GSH-GSSG oscillations. Anal. Chem. 2019, 91, 4451–4456. [Google Scholar] [CrossRef]
- Przemysław, S.; Radosław, M.; Adam, S.; Renata, S.I.; Marcin, S.; Aleksandra, G.; Julia, M.; Asha, B.; Jacek, E.N.; Balaraman, K.; et al. On the chemical reactivity of tricyanofuran(TCF)-based near-infrared fluorescent redox probes—Effects of glutathione on the probe response and product fluorescence. Dye. Pigment. 2021, 192, 109405. [Google Scholar]
- Xu, F.Y.; Tang, W.; Kang, S.S.; Song, J.S.; Duan, X.R. A highly sensitive and photo-stable fluorescent probe for endogenous intracellular H2O2 imaging in live cancer cells. Dye. Pigment. 2018, 153, 61–66. [Google Scholar] [CrossRef]
- Dai, Y.; Xue, T.; Zhang, X.; Misal, S.; Ji, H.; Qi, Z. A novel probe for colorimetric and near-infrared fluorescence detection of cysteine in aqueous solution, cells and zebrafish. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 216, 365–374. [Google Scholar] [CrossRef]
- Niu, T.; Yin, G.; Yu, T.; Gan, Y.; Zhang, C.; Chen, J.; Wu, W.; Chen, H.; Li, H.; Yin, P. A novel fluorescent probe for detection of Glutathione dynamics during ROS-induced redox imbalance. Anal. Chim. Acta 2020, 1115, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, H.; Zhong, M.; Wang, S.; Xu, Q.; Cho, D.H.; Qiu, H. A novel off-on fluorescent probe for specific detection and imaging of cysteine in live cells and in vivo. Chin. Chem. Lett. 2019, 31, 133–135. [Google Scholar] [CrossRef]
- Li, X.H.; Yan, J.L.; Wu, W.N.; Zhao, X.L.; Wang, Y.; Fan, Y.C.; Xu, Z.H. A dual-response fluorescent probe for SO2 and viscosity and imaging application in lysosomes and zebrafish. Microchem. J. 2022, 181, 107653. [Google Scholar] [CrossRef]
- Song, C.W.; Tamima, U.; Reo, Y.J.; Dai, M.C.; Sarkar, S.; Ahn, K.H. A rationally designed polarity–viscosity sensitive probe for imaging lipid droplets. Dye. Pigment. 2019, 171, 107718. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, W.N.; Zhao, X.L.; Fan, Y.C.; Wang, Y.; Xu, Z.H. A pyrrole-tricyanofuran-based probe for the detection of bisulfite and viscosity in lysosomes of living cells and zebrafish. J. Mol. Struct. 2023, 1284, 135422. [Google Scholar] [CrossRef]
- Shi, W.J.; Wei, Y.F.; Yang, J.; Li, H.Z.; Wan, Q.H.; Wang, Y.; Leng, H.; Chen, K.; Yan, J.W. Novel meso-trifluoromethyl BODIPY-based near-infrared-emitting fluorescent probes for organelle-specific imaging of cellular viscosity. Sens. Actuators B Chem. 2022, 359, 131594. [Google Scholar] [CrossRef]
- Wu, X.; Wang, X.; Li, Y.; Kong, F.; Xu, K.; Li, L.; Tang, B. A near-infrared probe for specific imaging of lipid droplets in living cells. Anal. Chem. 2022, 94, 4881–4888. [Google Scholar] [CrossRef]
- Yin, J.; Zhan, J.; Hu, Q.; Huang, S.; Lin, W. Fluorescent probes for ferroptosis bioimaging: Advances, challenges, and prospects. Chem. Soc. Rev. 2023, 52, 2011–2030. [Google Scholar] [CrossRef]
- Guan, X.; Hong, J.; Li, Q.; Feng, G. High-fidelity imaging probe for lysosomes and selective visualization of cancer cells and tissues. Sens. Actuators B Chem. 2022, 369, 132325. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F.W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Fan, L.; Wang, S.; Zhang, Y.; Li, F.; Zan, Q.; Lu, W.; Shuang, S.; Dong, C. Real-time monitoring mitochondrial viscosity during mitophagy using a mitochondria-immobilized near-infrared aggregation-induced emission probe. Anal Chem. 2021, 93, 3241–3249. [Google Scholar] [CrossRef]
- Fan, L.; Zan, Q.; Wang, X.; Yu, X.; Wang, S.; Zhang, Y.; Yang, Q.; Lu, W.; Shuang, S.; Dong, C. A mitochondria-targeted and viscosity-sensitive near-infrared fluorescent probe for visualization of fatty liver, inflammation and photodynamic cancer therapy. Chem. Eng. J. 2022, 449, 137762. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, Y.; Zhao, L.; Xu, L.; Han, H.; Huang, Y.; Fei, Q.; Sun, Y.; Ma, P.; Song, D. A novel water-soluble near-infrared fluorescent probe for monitoring mitochondrial viscosity. Talanta 2021, 233, 122592. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Shen, W.; Chen, Y.; Yi, W.; Cai, C.; Zhu, L.; Zhu, Q. A highly sensitive red-emitting probe for the detection of viscosity changes in living cells, zebrafish, and human blood samples. J. Mater. Chem. B 2020, 8, 1310–1315. [Google Scholar] [CrossRef]
- Chen, B.; Li, C.; Zhang, J.; Kan, J.; Jiang, T.; Zhou, J.; Ma, H. Sensing and imaging of mitochondrial viscosity in living cells using a red fluorescent probe with a long lifetime. Chem. Commun. 2019, 55, 7410–7413. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Yang, D.; Zhong, X.; Liu, Y.; Huang, Y. A Red-Emission Fluorescent Probe with Large Stokes Shift for Detection of Viscosity in Living Cells and Tumor-Bearing Mice. Molecules 2024, 29, 1993. https://doi.org/10.3390/molecules29091993
Wang B, Yang D, Zhong X, Liu Y, Huang Y. A Red-Emission Fluorescent Probe with Large Stokes Shift for Detection of Viscosity in Living Cells and Tumor-Bearing Mice. Molecules. 2024; 29(9):1993. https://doi.org/10.3390/molecules29091993
Chicago/Turabian StyleWang, Beilei, Dezhi Yang, Xiaohong Zhong, Yuhui Liu, and Yong Huang. 2024. "A Red-Emission Fluorescent Probe with Large Stokes Shift for Detection of Viscosity in Living Cells and Tumor-Bearing Mice" Molecules 29, no. 9: 1993. https://doi.org/10.3390/molecules29091993
APA StyleWang, B., Yang, D., Zhong, X., Liu, Y., & Huang, Y. (2024). A Red-Emission Fluorescent Probe with Large Stokes Shift for Detection of Viscosity in Living Cells and Tumor-Bearing Mice. Molecules, 29(9), 1993. https://doi.org/10.3390/molecules29091993