Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = molecular psychiatry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 823 KiB  
Article
Influence of a Th17-Inducing Cytokine Milieu on Phenotypical and Functional Properties of Regulatory T Cells in Chronic Inflammatory Arthritis
by Tobias Schwarz, Giovanni Almanzar, Marie Wulfheide, Robert Woidich, Marie-Therese Holzer, Timotheos Christoforou, Leonie Karle, David Radtke, Franziska Brauneiser, Thomas Haaf, Ramya Potabattula, Gabriela Ortega, Klaus-Peter Lesch, Arne Schäfer, Sandrine Benoit, Astrid Schmieder, Matthias Goebeler, Marc Schmalzing, Martin Feuchtenberger and Martina Prelog
Int. J. Mol. Sci. 2025, 26(15), 7339; https://doi.org/10.3390/ijms26157339 - 29 Jul 2025
Viewed by 279
Abstract
Considering the high plasticity of FoxP3+ regulatory T (Treg) cells and Interleukin (IL)-17-producing Th17 cells, we hypothesized that a Th17 inflammatory milieu may impair the functional properties of Treg cells in chronic inflammatory arthritides. Therefore, a cross-sectional explorative analysis was set up [...] Read more.
Considering the high plasticity of FoxP3+ regulatory T (Treg) cells and Interleukin (IL)-17-producing Th17 cells, we hypothesized that a Th17 inflammatory milieu may impair the functional properties of Treg cells in chronic inflammatory arthritides. Therefore, a cross-sectional explorative analysis was set up in patients with psoriatic arthritis (PsoA), rheumatoid arthritis, or spondyloarthritis to investigate the features of Th17 and Treg cells. T cell subpopulation counts, FOXP3 mRNA expression, CpG methylation of the FOXP3 gene, and the suppressive capacity of isolated Treg cells were determined. Ex vivo analysis of PsoA-derived peripheral blood lymphocytes showed a Th17-mediated inflammation. It was accompanied by demethylation of the FOXP3 promotor and Treg-specific demethylated region (TSDR) in Treg cells which, however, resulted neither in elevated FOXP3 mRNA expression nor in increased suppressive Treg cell capacity. To clarify this conundrum, in vitro stimulation of isolated Treg cells with Th17-inducing cytokines (IL-1β, IL-6, IL-23, TGFβ), recombinant IL-17, or the anti-IL-17A antibody secukinumab was performed, demonstrating that cell culture conditions polarizing towards Th17, but not IL-17 itself, impair the suppressive function of Treg cells, accompanied by diminished FOXP3 mRNA expression due to hypermethylation of the FOXP3 promotor and TSDR. This potential causal relationship between Th17 inflammation and impaired Treg cell function requires attention regarding the development of immunomodulatory therapies. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapy in Autoimmune Disease)
Show Figures

Figure 1

51 pages, 1575 KiB  
Review
Translating Molecular Psychiatry: From Biomarkers to Personalized Therapies—A Narrative Review
by Tudor-Florentin Capatina, Anamaria Oatu, Casandra Babasan and Simona Trifu
Int. J. Mol. Sci. 2025, 26(9), 4285; https://doi.org/10.3390/ijms26094285 - 1 May 2025
Viewed by 1563
Abstract
In this review, we explore the biomarkers of different psychiatric disorders, such as major depressive disorder, generalized anxiety disorder, schizophrenia, and bipolar disorder. Moreover, we show the interplay between genetic and environmental factors. Novel techniques such as genome-wide association studies (GWASs) have identified [...] Read more.
In this review, we explore the biomarkers of different psychiatric disorders, such as major depressive disorder, generalized anxiety disorder, schizophrenia, and bipolar disorder. Moreover, we show the interplay between genetic and environmental factors. Novel techniques such as genome-wide association studies (GWASs) have identified numerous risk loci and single-nucleotide polymorphisms (SNPs) implicated in these conditions, contributing to a better understanding of their mechanisms. Moreover, the impact of genetic variations on drug metabolisms, particularly through cytochrome P450 (CYP450) enzymes, highlights the importance of pharmacogenomics in optimizing psychiatric treatment. This review also explores the role of neurotransmitter regulation, immune system interactions, and metabolic pathways in psychiatric disorders. As the technology advances, integrating genetic markers into clinical practice will be crucial in advancing precision psychiatry, improving diagnostic accuracy and therapeutic interventions for individual patients. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

39 pages, 1641 KiB  
Review
The Role of Astrocytes in the Molecular Pathophysiology of Schizophrenia: Between Neurodevelopment and Neurodegeneration
by Licia Vellucci, Benedetta Mazza, Annarita Barone, Anita Nasti, Giuseppe De Simone, Felice Iasevoli and Andrea de Bartolomeis
Biomolecules 2025, 15(5), 615; https://doi.org/10.3390/biom15050615 - 23 Apr 2025
Cited by 1 | Viewed by 1487
Abstract
Schizophrenia is a chronic and severe psychiatric disorder affecting approximately 1% of the global population, characterized by disrupted synaptic plasticity and brain connectivity. While substantial evidence supports its classification as a neurodevelopmental disorder, non-canonical neurodegenerative features have also been reported, with increasing attention [...] Read more.
Schizophrenia is a chronic and severe psychiatric disorder affecting approximately 1% of the global population, characterized by disrupted synaptic plasticity and brain connectivity. While substantial evidence supports its classification as a neurodevelopmental disorder, non-canonical neurodegenerative features have also been reported, with increasing attention given to astrocytic dysfunction. Overall, in this study, we explore the role of astrocytes as a structural and functional link between neurodevelopment and neurodegeneration in schizophrenia. Specifically, we examine how astrocytes contribute to forming an aberrant substrate during early neurodevelopment, potentially predisposing individuals to later neurodegeneration. Astrocytes regulate neurotransmitter homeostasis and synaptic plasticity, influencing early vulnerability and disease progression through their involvement in Ca2⁺ signaling and dopamine–glutamate interaction—key pathways implicated in schizophrenia pathophysiology. Astrocytes differentiate via nuclear factor I-A, Sox9, and Notch pathways, occurring within a neuronal environment that may already be compromised in the early stages due to the genetic factors associated with the ‘two-hits’ model of schizophrenia. As a result, astrocytes may contribute to the development of an altered neural matrix, disrupting neuronal signaling, exacerbating the dopamine–glutamate imbalance, and causing excessive synaptic pruning and demyelination. These processes may underlie both the core symptoms of schizophrenia and the increased susceptibility to cognitive decline—clinically resembling neurodegeneration but driven by a distinct, poorly understood molecular substrate. Finally, astrocytes are emerging as potential pharmacological targets for antipsychotics such as clozapine, which may modulate their function by regulating glutamate clearance, redox balance, and synaptic remodeling. Full article
(This article belongs to the Special Issue The Role of Astrocytes in Neurodegenerative Diseases)
Show Figures

Figure 1

20 pages, 363 KiB  
Review
The Mechanisms of Lithium Action: The Old and New Findings
by Kosma Sakrajda and Janusz K. Rybakowski
Pharmaceuticals 2025, 18(4), 467; https://doi.org/10.3390/ph18040467 - 26 Mar 2025
Viewed by 4311
Abstract
Despite lithium’s presence in modern psychiatry for three-quarters of a century, the mechanisms of its therapeutic action have not been fully elucidated. This article presents the evolution of the views on these mechanisms, and both the old and new findings are discussed. Among [...] Read more.
Despite lithium’s presence in modern psychiatry for three-quarters of a century, the mechanisms of its therapeutic action have not been fully elucidated. This article presents the evolution of the views on these mechanisms, and both the old and new findings are discussed. Among the old mechanisms, lithium’s effect on the purinergic system; electrolyte metabolism; membrane transport; and second messenger systems, namely, cyclic nucleotide and phosphatidylinositol (PI), glycogen synthase kinase-3beta (GSK-3β), brain-derived neurotrophic factor, and neurotransmitters, are discussed. The new data were obtained from in vitro studies, molecular biology, and genetic research. They showed the effects of lithium on the immune system, biological rhythms, telomere functions, and mitochondria. In this article, each lithium mechanism is considered in the light of its association with the pathogenesis of bipolar disorder or/and as a marker of the lithium response. Although not exhaustive, this review elucidates the multiple potential mechanisms of lithium action. It was also observed that many seemingly “old” mechanisms have experienced a resurgence in research conducted during the 21st century. Additionally, many studies converged on the previously postulated mechanisms of lithium inhibiting GSK-3β and PI. Full article
(This article belongs to the Special Issue Lithium in Psychiatric Therapy: Celebrating 75th Anniversary)
34 pages, 1835 KiB  
Review
Rethinking Depression—Beyond Neurotransmitters: An Integrated Psychoneuroendocrineimmunology Framework for Depression’s Pathophysiology and Tailored Treatment
by Anna Giulia Bottaccioli, Mauro Bologna and Francesco Bottaccioli
Int. J. Mol. Sci. 2025, 26(6), 2759; https://doi.org/10.3390/ijms26062759 - 19 Mar 2025
Viewed by 3089
Abstract
It is known that the effectiveness of drug treatment for depression, ammine deficit based, is largely unsatisfactory. In this review, we examine the proposal of a precision therapy has emerged and has received a strong push by the identification of the role of [...] Read more.
It is known that the effectiveness of drug treatment for depression, ammine deficit based, is largely unsatisfactory. In this review, we examine the proposal of a precision therapy has emerged and has received a strong push by the identification of the role of inflammation in depression. However, precision psychiatry risks being caught in the reductionist trap of searching for the molecular switch that resets the whole system and switches off the disease. This is an illusion since the human being is complex and depression is a systemic and variable disorder. In this study, we show the inadequacy of the reductionist paradigm, and, at the same time, illustrate the superiority of the systemic paradigm centered on psychoneuroendocrineimmunology (PNEI). According to the PNEI paradigm, depression is a disease of the whole human being, caused by different sources working together: psychological, biological, and behavioral. This means knowing the biological and psychological history of the subject, identifying relational and biological crisis factors, and building personalized treatments targeting those factors with the tools of medicine and psychology, which are not reducible to the combination of drugs and psychotherapy. Our proposal presents a paradigm shift that is both theoretical and practical, which enables clinicians to assess patients experiencing depression in a unified way and treat them in an integrated manner. Full article
Show Figures

Graphical abstract

34 pages, 1734 KiB  
Review
Artificial Intelligence in Psychiatry: A Review of Biological and Behavioral Data Analyses
by İsmail Baydili, Burak Tasci and Gülay Tasci
Diagnostics 2025, 15(4), 434; https://doi.org/10.3390/diagnostics15040434 - 11 Feb 2025
Cited by 9 | Viewed by 5869
Abstract
Artificial intelligence (AI) has emerged as a transformative force in psychiatry, improving diagnostic precision, treatment personalization, and early intervention through advanced data analysis techniques. This review explores recent advancements in AI applications within psychiatry, focusing on EEG and ECG data analysis, speech analysis, [...] Read more.
Artificial intelligence (AI) has emerged as a transformative force in psychiatry, improving diagnostic precision, treatment personalization, and early intervention through advanced data analysis techniques. This review explores recent advancements in AI applications within psychiatry, focusing on EEG and ECG data analysis, speech analysis, natural language processing (NLP), blood biomarker integration, and social media data utilization. EEG-based models have significantly enhanced the detection of disorders such as depression and schizophrenia through spectral and connectivity analyses. ECG-based approaches have provided insights into emotional regulation and stress-related conditions using heart rate variability. Speech analysis frameworks, leveraging large language models (LLMs), have improved the detection of cognitive impairments and psychiatric symptoms through nuanced linguistic feature extraction. Meanwhile, blood biomarker analyses have deepened our understanding of the molecular underpinnings of mental health disorders, and social media analytics have demonstrated the potential for real-time mental health surveillance. Despite these advancements, challenges such as data heterogeneity, interpretability, and ethical considerations remain barriers to widespread clinical adoption. Future research must prioritize the development of explainable AI models, regulatory compliance, and the integration of diverse datasets to maximize the impact of AI in psychiatric care. Full article
Show Figures

Figure 1

31 pages, 1009 KiB  
Review
The Balance in the Head: How Developmental Factors Explain Relationships Between Brain Asymmetries and Mental Diseases
by Martina Manns, Georg Juckel and Nadja Freund
Brain Sci. 2025, 15(2), 169; https://doi.org/10.3390/brainsci15020169 - 9 Feb 2025
Viewed by 1859
Abstract
Cerebral lateralisation is a core organising principle of the brain that is characterised by a complex pattern of hemispheric specialisations and interhemispheric interactions. In various mental disorders, functional and/or structural hemispheric asymmetries are changed compared to healthy controls, and these alterations may contribute [...] Read more.
Cerebral lateralisation is a core organising principle of the brain that is characterised by a complex pattern of hemispheric specialisations and interhemispheric interactions. In various mental disorders, functional and/or structural hemispheric asymmetries are changed compared to healthy controls, and these alterations may contribute to the primary symptoms and cognitive impairments of a specific disorder. Since multiple genetic and epigenetic factors influence both the pathogenesis of mental illness and the development of brain asymmetries, it is likely that the neural developmental pathways overlap or are even causally intertwined, although the timing, magnitude, and direction of interactions may vary depending on the specific disorder. However, the underlying developmental steps and neuronal mechanisms are still unclear. In this review article, we briefly summarise what we know about structural, functional, and developmental relationships and outline hypothetical connections, which could be investigated in appropriate animal models. Altered cerebral asymmetries may causally contribute to the development of the structural and/or functional features of a disorder, as neural mechanisms that trigger neuropathogenesis are embedded in the asymmetrical organisation of the developing brain. Therefore, the occurrence and severity of impairments in neural processing and cognition probably cannot be understood independently of the development of the lateralised organisation of intra- and interhemispheric neuronal networks. Conversely, impaired cellular processes can also hinder favourable asymmetry development and lead to cognitive deficits in particular. Full article
(This article belongs to the Special Issue Recent Advances in Brain Lateralization)
Show Figures

Figure 1

33 pages, 935 KiB  
Review
Pharmaco-Multiomics: A New Frontier in Precision Psychiatry
by Dhoha Dhieb and Kholoud Bastaki
Int. J. Mol. Sci. 2025, 26(3), 1082; https://doi.org/10.3390/ijms26031082 - 26 Jan 2025
Cited by 4 | Viewed by 3322
Abstract
The landscape of psychiatric care is poised for transformation through the integration of pharmaco-multiomics, encompassing genomics, proteomics, metabolomics, transcriptomics, epigenomics, and microbiomics. This review discusses how these approaches can revolutionize personalized treatment strategies in psychiatry by providing a nuanced understanding of the molecular [...] Read more.
The landscape of psychiatric care is poised for transformation through the integration of pharmaco-multiomics, encompassing genomics, proteomics, metabolomics, transcriptomics, epigenomics, and microbiomics. This review discusses how these approaches can revolutionize personalized treatment strategies in psychiatry by providing a nuanced understanding of the molecular bases of psychiatric disorders and individual pharmacotherapy responses. With nearly one billion affected individuals globally, the shortcomings of traditional treatments, characterized by inconsistent efficacy and frequent adverse effects, are increasingly evident. Advanced computational technologies such as artificial intelligence (AI) and machine learning (ML) play crucial roles in processing and integrating complex omics data, enhancing predictive accuracy, and creating tailored therapeutic strategies. To effectively harness the potential of pharmaco-multiomics approaches in psychiatry, it is crucial to address challenges such as high costs, technological demands, and disparate healthcare systems. Additionally, navigating stringent ethical considerations, including data security, potential discrimination, and ensuring equitable access, is essential for the full realization of this approach. This process requires ongoing validation and comprehensive integration efforts. By analyzing recent advances and elucidating how different omic dimensions contribute to therapeutic customization, this review aims to highlight the promising role of pharmaco-multiomics in enhancing patient outcomes and shifting psychiatric treatments from a one-size-fits-all approach towards a more precise and patient-centered model of care. Full article
(This article belongs to the Special Issue Innovative Therapeutic Approaches in Neuropsychiatric Disorders)
Show Figures

Figure 1

15 pages, 1191 KiB  
Article
Genetic Prοpensity for Different Aspects of Dementia Pathology and Cognitive Decline in a Community Elderly Population
by Stefanos N. Sampatakakis, Niki Mourtzi, Alex Hatzimanolis, Georgios Koutsis, Sokratis Charisis, Iliana Gkelmpesi, Eirini Mamalaki, Eva Ntanasi, Alfredo Ramirez, Mary Yannakoulia, Mary H. Kosmidis, Efthimios Dardiotis, Georgios Hadjigeorgiou, Paraskevi Sakka and Nikolaos Scarmeas
Int. J. Mol. Sci. 2025, 26(3), 910; https://doi.org/10.3390/ijms26030910 - 22 Jan 2025
Viewed by 1105
Abstract
In the present study, we investigated the association of genetic predisposition with specific dimensions of dementia pathophysiology for global and domain-specific cognitive decline in older adults. The sample was drawn from the Hellenic Longitudinal Investigation of Aging and Diet (HELIAD) study, comprising 512 [...] Read more.
In the present study, we investigated the association of genetic predisposition with specific dimensions of dementia pathophysiology for global and domain-specific cognitive decline in older adults. The sample was drawn from the Hellenic Longitudinal Investigation of Aging and Diet (HELIAD) study, comprising 512 cognitively normal individuals over 64 years of age, with a mean follow-up of 2.9 years. Cognitive function was evaluated through a neuropsychological test battery, while genetic predisposition was assessed based on two distinct Polygenic Risk Scores (PRS) for amyloid-beta 42 (Aβ42) and white matter hyperintensities (WMH). The association of each PRS with the cognitive decline rate was examined using generalized estimating equation models. In the whole sample, higher PRSs Aβ42 (β = −0.042) and WMH (β =−0.029) were associated with a higher rate of global cognitive decline per year, an association which remained significant in age, sex, and education subgroups. Moreover, higher PRSs Aβ42 and WMH were related to significant memory decline only in females, older, and highly educated participants. Thus, while the association of both PRSs with global cognitive decline over time was independent of age, sex, or education, the relationship of the specific PRSs with the memory decline rate appeared to vary depending on these factors. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

13 pages, 446 KiB  
Article
Genetic Predisposition to Hippocampal Atrophy and Risk of Amnestic Mild Cognitive Impairment and Alzheimer’s Dementia
by Ioannis Liampas, Vasileios Siokas, Niki Mourtzi, Sokratis Charisis, Stefanos N. Sampatakakis, Ioannis Foukarakis, Alex Hatzimanolis, Alfredo Ramirez, Jean-Charles Lambert, Mary Yannakoulia, Mary H. Kosmidis, Efthimios Dardiotis, Georgios M. Hadjigeorgiou, Paraskevi Sakka, Konstantinos Rouskas and Nikolaos Scarmeas
Geriatrics 2025, 10(1), 14; https://doi.org/10.3390/geriatrics10010014 - 16 Jan 2025
Viewed by 1752
Abstract
Background: There is a paucity of evidence on the association between genetic propensity for hippocampal atrophy with cognitive outcomes. Therefore, we examined the relationship of the polygenic risk score for hippocampal atrophy (PRShp) with the incidence of amnestic mild cognitive impairment (aMCI) and [...] Read more.
Background: There is a paucity of evidence on the association between genetic propensity for hippocampal atrophy with cognitive outcomes. Therefore, we examined the relationship of the polygenic risk score for hippocampal atrophy (PRShp) with the incidence of amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) as well as the rates of cognitive decline. Methods: Participants were drawn from the population-based HELIAD cohort. Comprehensive neuropsychological assessments were performed at baseline and at follow-up. PRShp was derived from the summary statistics of a large genome-wide association study for hippocampal volume. Cox proportional hazards models as well as generalized estimating equations (GEEs) were used to evaluate the association of PRShp with the combined incidence of aMCI/AD and cognitive changes over time, respectively. All models were adjusted for age, sex, education, and apolipoprotein E (APOE) genotype. Results: Our analysis included 618 older adults, among whom 73 developed aMCI/AD after an average follow-up of 2.96 ± 0.8 years. Each additional SD of PRShp elevated the relative hazard for incident aMCI/AD by 46%. Participants at the top quartile of PRShp had an almost three times higher risk of converting to aMCI/AD compared to the lowest quartile group. Higher PRShp scores were also linked to steeper global cognitive and memory decline. The impact of PRShp was greater among women and younger adults. Conclusions: Our findings support the association of PRShp with aMCI/AD incidence and with global cognitive and memory decline over time. The PRS association was sex- and age-dependent, suggesting that these factors should be considered in genetic modelling for AD. Full article
(This article belongs to the Section Geriatric Neurology)
Show Figures

Figure 1

31 pages, 1066 KiB  
Review
From Serendipity to Precision: Integrating AI, Multi-Omics, and Human-Specific Models for Personalized Neuropsychiatric Care
by Masaru Tanaka
Biomedicines 2025, 13(1), 167; https://doi.org/10.3390/biomedicines13010167 - 12 Jan 2025
Cited by 8 | Viewed by 5133
Abstract
Background/Objectives: The dual forces of structured inquiry and serendipitous discovery have long shaped neuropsychiatric research, with groundbreaking treatments such as lithium and ketamine resulting from unexpected discoveries. However, relying on chance is becoming increasingly insufficient to address the rising prevalence of mental [...] Read more.
Background/Objectives: The dual forces of structured inquiry and serendipitous discovery have long shaped neuropsychiatric research, with groundbreaking treatments such as lithium and ketamine resulting from unexpected discoveries. However, relying on chance is becoming increasingly insufficient to address the rising prevalence of mental health disorders like depression and schizophrenia, which necessitate precise, innovative approaches. Emerging technologies like artificial intelligence, induced pluripotent stem cells, and multi-omics have the potential to transform this field by allowing for predictive, patient-specific interventions. Despite these advancements, traditional methodologies such as animal models and single-variable analyses continue to be used, frequently failing to capture the complexities of human neuropsychiatric conditions. Summary: This review critically evaluates the transition from serendipity to precision-based methodologies in neuropsychiatric research. It focuses on key innovations such as dynamic systems modeling and network-based approaches that use genetic, molecular, and environmental data to identify new therapeutic targets. Furthermore, it emphasizes the importance of interdisciplinary collaboration and human-specific models in overcoming the limitations of traditional approaches. Conclusions: We highlight precision psychiatry’s transformative potential for revolutionizing mental health care. This paradigm shift, which combines cutting-edge technologies with systematic frameworks, promises increased diagnostic accuracy, reproducibility, and efficiency, paving the way for tailored treatments and better patient outcomes in neuropsychiatric care. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

24 pages, 3458 KiB  
Article
Unveiling the Mechanisms of a Remission in Major Depressive Disorder (MDD)-like Syndrome: The Role of Hippocampal Palmitoyltransferase Expression and Stress Susceptibility
by Careen A. Schroeter, Anna Gorlova, Michael Sicker, Aleksei Umriukhin, Alisa Burova, Boris Shulgin, Sergey Morozov, Joao P. Costa-Nunes and Tatyana Strekalova
Biomolecules 2025, 15(1), 67; https://doi.org/10.3390/biom15010067 - 5 Jan 2025
Cited by 1 | Viewed by 1422
Abstract
Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic [...] Read more.
Post-translational modifications of proteins via palmitoylation, a thioester linkage of a 16-carbon fatty acid to a cysteine residue, reversibly increases their affinity for cholesterol-rich lipid rafts in membranes, changing their function. Little is known about how altered palmitoylation affects function at the systemic level and contributes to CNS pathology. However, recent studies suggested a role for the downregulation of palmitoyl acetyltransferase (DHHC) 21 gene expression in the development of Major Depressive Disorder (MDD)-like syndrome. Here, we sought to investigate how susceptibility (sucrose preference below 65%) or resilience (sucrose preference > 65%) to stress-induced anhedonia affects DHHC gene expression in the hippocampus of C57BL/6J mice during the phase of spontaneous recovery from anhedonia. Because MDD is a recurrent disorder, it is important to understand the molecular mechanisms underlying not only the symptomatic phase of the disease but also a state of temporary remission. Indeed, molecular changes associated with the application of pharmacotherapy at the remission stage are currently not well understood. Therefore, we used a mouse model of chronic stress to address these questions. The stress protocol consisted of rat exposure, social defeat, restraint stress, and tail suspension. Mice from the stress group were not treated, received imipramine via drinking water (7 mg/kg/day), or received intraperitoneal injections of dicholine succinate (DS; 25 mg/kg/day) starting 7 days prior to stress and continuing during a 14-day stress procedure. Controls were either untreated or treated with either of the two drugs. At the 1st after-stress week, sucrose preference, forced swim, novel cage, and fear-conditioning tests were carried out; the sucrose test and 5-day Morris water maze test followed by a sacrifice of mice on post-stress day 31 for all mice were performed. Transcriptome Illumina analysis of hippocampi was carried out. Using the RT-PCR, the hippocampal gene expression of Dhhc3, Dhhc7, Dhhc8, Dhhc13, Dhhc14, and Dhhc21 was studied. We found that chronic stress lowered sucrose preference in a subgroup of mice that also exhibited prolonged floating behavior, behavioral invigoration, and impaired contextual fear conditioning, while auditory conditioning was unaltered. At the remission phase, no changes in the sucrose test were found, and the acquisition of the Morris water maze was unchanged in all groups. In anhedonic, but not resilient animals, Dhhc8 expression was lowered, and the expression of Dhhc14 was increased. Antidepressant treatment with either drug partially preserved gene expression changes and behavioral abnormalities. Our data suggest that Dhhc8 and Dhhc14 are likely to be implicated in the mechanisms of depression at the remission stage, serving as targets for preventive therapy. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

23 pages, 2473 KiB  
Article
Head-to-Head Comparison of Aptamer- and Antibody-Based Proteomic Platforms in Human Cerebrospinal Fluid Samples from a Real-World Memory Clinic Cohort
by Raquel Puerta, Amanda Cano, Pablo García-González, Fernando García-Gutiérrez, Maria Capdevila, Itziar de Rojas, Clàudia Olivé, Josep Blázquez-Folch, Oscar Sotolongo-Grau, Andrea Miguel, Laura Montrreal, Pamela Martino-Adami, Asif Khan, Adelina Orellana, Yun Ju Sung, Ruth Frikke-Schmidt, Natalie Marchant, Jean Charles Lambert, Maitée Rosende-Roca, Montserrat Alegret, Maria Victoria Fernández, Marta Marquié, Sergi Valero, Lluís Tárraga, Carlos Cruchaga, Alfredo Ramírez, Mercè Boada, Bart Smets, Alfredo Cabrera-Socorro and Agustín Ruizadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(1), 286; https://doi.org/10.3390/ijms26010286 - 31 Dec 2024
Cited by 3 | Viewed by 2529
Abstract
High-throughput proteomic platforms are crucial to identify novel Alzheimer’s disease (AD) biomarkers and pathways. In this study, we evaluated the reproducibility and reliability of aptamer-based (SomaScan® 7k) and antibody-based (Olink® Explore 3k) proteomic platforms in cerebrospinal fluid (CSF) samples from the [...] Read more.
High-throughput proteomic platforms are crucial to identify novel Alzheimer’s disease (AD) biomarkers and pathways. In this study, we evaluated the reproducibility and reliability of aptamer-based (SomaScan® 7k) and antibody-based (Olink® Explore 3k) proteomic platforms in cerebrospinal fluid (CSF) samples from the Ace Alzheimer Center Barcelona real-world cohort. Intra- and inter-platform reproducibility were evaluated through correlations between two independent SomaScan® assays analyzing the same samples, and between SomaScan® and Olink® results. Association analyses were performed between proteomic measures, CSF biological traits, sample demographics, and AD endophenotypes. Our 12-category metric of reproducibility combining correlation analyses identified 2428 highly reproducible SomaScan CSF measures, with over 600 proteins well reproduced on another proteomic platform. The association analyses among AD clinical phenotypes revealed that the significant associations mainly involved reproducible proteins. The validation of reproducibility in these novel proteomics platforms, measured using this scarce biomaterial, is essential for accurate analysis and proper interpretation of innovative results. This classification metric could enhance confidence in multiplexed proteomic platforms and improve the design of future panels. Full article
Show Figures

Figure 1

17 pages, 1896 KiB  
Review
The Anti-AGEing and RAGEing Potential of Isothiocyanates
by Bradley A. Krisanits, Bhoomika Kaur, Jed W. Fahey and David P. Turner
Molecules 2024, 29(24), 5986; https://doi.org/10.3390/molecules29245986 - 19 Dec 2024
Cited by 3 | Viewed by 2057
Abstract
Isothiocyanates (ITCs), found in edible plants such as cruciferous vegetables, are a group of reactive organo-sulfur phytochemicals produced by the hydrolysis of precursors known as glucosinolates. ITCs have been studied extensively both in vivo and in vitro to define their therapeutic potential for [...] Read more.
Isothiocyanates (ITCs), found in edible plants such as cruciferous vegetables, are a group of reactive organo-sulfur phytochemicals produced by the hydrolysis of precursors known as glucosinolates. ITCs have been studied extensively both in vivo and in vitro to define their therapeutic potential for the treatment of chronic health conditions. Therapeutically, they have shown an intrinsic ability to inhibit oxidative and inflammatory phenotypes to support enhanced health. This review summarizes the current evidence supporting the observation that the antioxidant and anti-inflammatory activities of ITCs temper the pathogenic effects of a group of reactive metabolites called advanced glycation end products (AGEs). AGE exposure has significantly increased across the lifespan due to health risk factors that include dietary intake, a sedentary lifestyle, and comorbid conditions. By contributing to a chronic cycle of inflammatory stress through the aberrant activation of the transmembrane receptor for AGE (RAGE), increased AGE bioavailability is associated with chronic disease onset, progression, and severity. This review debates the potential molecular mechanisms by which ITCs may inhibit AGE bioavailability to reduce RAGE-mediated pro-oxidant and pro-inflammatory phenotypes. Bringing to light the molecular impact that ITCs may have on AGE biogenesis may stimulate novel intervention strategies for reversing or preventing the impact of lifestyle factors on chronic disease risk. Full article
Show Figures

Figure 1

14 pages, 1456 KiB  
Article
Effects of Early Stress Exposure on Anxiety-like Behavior and MORC1 Expression in Rats
by Annakarina Mundorf and Nadja Freund
Biomolecules 2024, 14(12), 1587; https://doi.org/10.3390/biom14121587 - 12 Dec 2024
Viewed by 1025
Abstract
Exposure to stress during early and late childhood can lead to long-lasting neurobiological and behavioral impairments. Although sensitive periods for stress exposure are well established, less is known about the trajectory of induced alterations throughout development. In this study, we investigated the impact [...] Read more.
Exposure to stress during early and late childhood can lead to long-lasting neurobiological and behavioral impairments. Although sensitive periods for stress exposure are well established, less is known about the trajectory of induced alterations throughout development. In this study, we investigated the impact of maternal separation (MS), social isolation, and their combination on anxiety-like behavior and gene expression across developmental stages. Sprague Dawley rats were exposed to one or both stressors and later assessed for anxiety-like behavior in juvenility, adolescence, and adulthood. mRNA levels of Morc1, a gene linked to early-life stress and depression, were measured in the medial prefrontal cortex to assess developmental changes. The results showed that MS had age- and sex-dependent effects on anxiety-like behavior. Juveniles exhibited less anxiety after MS, while adolescents showed more pronounced behavioral changes following social isolation. No behavioral changes were observed in adults. Males exhibited greater anxiety-like behavior than females in adolescence and adulthood, but not in juvenility. Female adults exposed to both MS and social isolation had significantly lower Morc1 expression compared to controls. These findings highlight the dynamic effects of early stress across the lifespan, underscoring the critical role of adolescence and differential stress susceptibility by age and sex. Full article
(This article belongs to the Special Issue Molecular Basis of Stress- and Trauma-Related Disorders)
Show Figures

Figure 1

Back to TopTop