Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = molecular epidemiology, nosocomial outbreak

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5203 KiB  
Article
Population Structure Based on Microsatellite Length Polymorphism, Antifungal Susceptibility Profile, and Enzymatic Activity of Candida auris Clinical Isolates in Russia
by Ellina Oganesyan, Victoria Klimenteva, Irina Vybornova, Valentina Venchakova, Ekaterina Parshikova, Sergey Kovyrshin, Olga Orlova, Alexander Kruglov, Svetlana Gordeeva, Natalya Vasilyeva and Anastasiya Taraskina
J. Fungi 2025, 11(1), 35; https://doi.org/10.3390/jof11010035 - 4 Jan 2025
Viewed by 1543
Abstract
Candida auris is an emerging multidrug-resistant fungal pathogen causing nosocomial transmission and invasive infections with high mortality. This study aimed to investigate the genetic relationships, enzymatic activities, and drug-resistance profiles of C. auris isolates to evaluate the population and epidemiological diversity of candidiasis [...] Read more.
Candida auris is an emerging multidrug-resistant fungal pathogen causing nosocomial transmission and invasive infections with high mortality. This study aimed to investigate the genetic relationships, enzymatic activities, and drug-resistance profiles of C. auris isolates to evaluate the population and epidemiological diversity of candidiasis in Russia. A total of 112 clinical isolates of C. auris were analyzed from May 2017 to March 2023 in 18 hospitals across Saint Petersburg, the Leningrad Region, and Moscow. Species identification was confirmed by ITS sequencing, and genotyping was performed using 12 short tandem repeat (STR) markers. Antifungal susceptibility was tested using Sensititre™ YeastOne™ plates, and hydrolytic enzyme production was measured by the plate method. ITS sequencing confirmed that all isolates belonged to a single ITS cluster (clades I and III). Fifteen distinct STR genotypes were identified, with genotype I being dominant (n = 53). The most variable of the analyzed markers turned out to be M3-Ia, which was represented in the Russian population by eight different variants. Fluconazole resistance was found in 111 isolates, 17% were resistant to amphotericin B, and 3.6% to 5-flucytosine. Phospholipase activity was strong in most strains, especially in urine isolates (p = 0.014). Conclusion: The predominance of STR genotype I and its variability at the M3-Ia locus suggest its association with nosocomial outbreaks and transmissibility in Russia. Full article
Show Figures

Figure 1

17 pages, 3164 KiB  
Article
Complex Infection-Control Measures with Disinfectant Switch Help the Successful Early Control of Carbapenem-Resistant Acinetobacter baumannii Outbreak in Intensive Care Unit
by Jozsef Kelemen, Marton Sztermen, Eva Krisztina Dakos, Jozsef Budai, Jozsef Katona, Zsuzsanna Szekeressy, Laszlo Sipos, Zoltan Papp, Balazs Stercz, Zsuzsanna A. Dunai, Bela Kocsis, Janos Juhasz, Fruzsina Michelisz, Zsuzsanna Daku, Judit Domokos, Dora Szabo and Lorand Eross
Antibiotics 2024, 13(9), 869; https://doi.org/10.3390/antibiotics13090869 - 11 Sep 2024
Cited by 4 | Viewed by 2317
Abstract
A carbapenem-resistant Acinetobacter baumannii (CRAB) outbreak in an intensive care unit (ICU) was contained by an improved infection-control measure that included a disinfectant policy. In our retrospective cohort study, we describe the epidemiological investigations and infection-control measures during this outbreak. Descriptive analysis was [...] Read more.
A carbapenem-resistant Acinetobacter baumannii (CRAB) outbreak in an intensive care unit (ICU) was contained by an improved infection-control measure that included a disinfectant policy. In our retrospective cohort study, we describe the epidemiological investigations and infection-control measures during this outbreak. Descriptive analysis was used to summarize patient demographics, neurological diseases, surgical treatment, underlying diseases, infection, and outcomes. In December 2023, two CARB-positive patients were observed in the ICU, and four more patients became CRAB-positive in January. During this outbreak, there was an overlap of hospitalization periods among the CRAB-positive patients, and CRAB was isolated from the environment; the isolated CRAB strain was identical. Infection-control measures, including hand hygiene, contact precautions and isolation, surveillance, decolonization, environmental cleaning, and disinfection, were reviewed and modified. The aim of this study was to examine the molecular background of the effectiveness of the disinfectant shift used during successful outbreak control. Experiments were carried out to study the phenotypic sensitivity and genetic background of different disinfectant agents. A thorough analysis of the detected CRAB strain included whole-genome sequencing (WGS), investigation of the qacE and qacEΔ1 genes’ relative expression by qPCR after exposure to different disinfectant solutions, as well as an analysis of biofilm formation. WGS analysis of the CRAB strain identified that an ST2 high-risk clone was responsible for the outbreak, which produced OXA-83 and ADC-30 beta-lactamases; in addition, qacE and qacEΔ1 genes were also detected, which confer resistance to disinfectants containing quaternary ammonium compounds (QACs). A qPCR analysis demonstrated that after exposure to different disinfectants, the gene expression levels of qacE and qacEΔ1 increased and correlated with concentrations of QACs of disinfectants. During the outbreak, the standard-of-care QAC-based disinfectant was changed to a mainly alcohol-based agent in the ICU, which contributed to the successful control of this outbreak, and no additional patients were identified with CRAB. We conclude that continuous surveillance and hand hygiene training combined with fast identification and reaction to new cases, as well as an in-depth analysis of multidrug-resistant outbreak strains and investigation of their disinfectant tolerance/resistance during an outbreak, are essential to effectively control the spread of nosocomial pathogens. The smart policy of disinfectant agent selection played a crucial role in controlling the outbreak and ensuring patient safety in the ICU. Full article
Show Figures

Figure 1

13 pages, 1181 KiB  
Article
Characteristics of the Genetic Spread of Carbapenem-Resistant Acinetobacter baumannii in a Tertiary Greek Hospital
by Martha Papadopoulou, Ioannis Deliolanis, Michalis Polemis, Alkiviadis Vatopoulos, Mina Psichogiou and Panagiota Giakkoupi
Genes 2024, 15(4), 458; https://doi.org/10.3390/genes15040458 - 5 Apr 2024
Cited by 8 | Viewed by 2428
Abstract
Acinetobacter baumannii (Ab) has increasingly been identified as a cause of hospital-acquired infections and epidemics. The rise of carbapenem-resistant Acinetobacter baumannii (CRAB) poses significant challenges in treatment. Nosocomial outbreaks linked to CRAΒ A. baumannii strains have been reported worldwide, including in Greece. This [...] Read more.
Acinetobacter baumannii (Ab) has increasingly been identified as a cause of hospital-acquired infections and epidemics. The rise of carbapenem-resistant Acinetobacter baumannii (CRAB) poses significant challenges in treatment. Nosocomial outbreaks linked to CRAΒ A. baumannii strains have been reported worldwide, including in Greece. This study aimed to analyze the molecular epidemiology trends of multidrug-resistant A. baumannii isolates in a tertiary hospital in Athens, Greece. A total of 43 clinical isolates of extensively drug-resistant (XDRAB), pan-drug-resistant (PDRAB), and CRAB were collected from patients suffering from blood infection, hospitalized between 2016 and 2020 at the internal medicine clinics and the ICU. A.baumannii isolates underwent testing for Ambler class B and D carbapenemases and the detection of ISAba1, and were typed, initially, using pulsed-field gel electrophoresis, and, subsequently, using sequence-based typing and multiplex PCR to determine European Clone lineages. The blaOXA-23 gene accompanied by ISAba1 was prevalent in nearly all A. baumannii isolates, except for one carrying blaOXA-58. The intrinsic blaOXA-51-like gene was found in all isolates. No Ambler class B carbapenemases (VIM, NDM) were detected. Isolates were grouped into four PF-clusters and no one-cluster spread was documented, consistent with the absence of outbreak. The study indicated that XDR/PDR-CRAB isolates predominantly produce OXA-23 carbapenemase and belong to European Clone II. Further research is needed to understand the distribution of resistant bacteria and develop effective prevention and control strategies. Full article
Show Figures

Figure 1

21 pages, 1157 KiB  
Review
Navigating the New Reality: A Review of the Epidemiological, Clinical, and Microbiological Characteristics of Candida auris, with a Focus on Children
by Liat Ashkenazi-Hoffnung and Chen Rosenberg Danziger
J. Fungi 2023, 9(2), 176; https://doi.org/10.3390/jof9020176 - 28 Jan 2023
Cited by 13 | Viewed by 4662
Abstract
During the past decade, Candida auris emerged across the world, causing nosocomial outbreaks in both pediatric and adult populations, particularly in intensive care settings. We reviewed the epidemiological trends and the clinical and microbiological characteristics of C. auris infection, focusing on the pediatric [...] Read more.
During the past decade, Candida auris emerged across the world, causing nosocomial outbreaks in both pediatric and adult populations, particularly in intensive care settings. We reviewed the epidemiological trends and the clinical and microbiological characteristics of C. auris infection, focusing on the pediatric population. The review is based on 22 studies, which included about 250 pediatric patients with C. auris infection, across multiple countries; neonates and premature babies were the predominant pediatric patient group affected. The most common type of infection reported was bloodstream infection, which was associated with exceptionally high mortality rates. Antifungal treatment varied widely between the patients; this signifies a serious knowledge gap that should be addressed in future research. Advances in molecular diagnostic methods for rapid and accurate identification and for detection of resistance may prove especially valuable in future outbreak situations, as well as the development of investigational antifungals. However, the new reality of a highly resistant and difficult-to-treat pathogen calls for preparedness of all aspects of patient care. This spans from laboratory readiness, to raising awareness among epidemiologists and clinicians for global collaborative efforts to improve patient care and limit the spread of C. auris. Full article
(This article belongs to the Special Issue Fungal Infections in Children 2022)
Show Figures

Figure 1

13 pages, 622 KiB  
Review
Recent Advances in the Use of Molecular Methods for the Diagnosis of Bacterial Infections
by Elisabetta Gerace, Giuseppe Mancuso, Angelina Midiri, Stefano Poidomani, Sebastiana Zummo and Carmelo Biondo
Pathogens 2022, 11(6), 663; https://doi.org/10.3390/pathogens11060663 - 8 Jun 2022
Cited by 45 | Viewed by 9558
Abstract
Infections caused by bacteria have a major impact on public health-related morbidity and mortality. Despite major advances in the prevention and treatment of bacterial infections, the latter continue to represent a significant economic and social burden worldwide. The WHO compiled a list of [...] Read more.
Infections caused by bacteria have a major impact on public health-related morbidity and mortality. Despite major advances in the prevention and treatment of bacterial infections, the latter continue to represent a significant economic and social burden worldwide. The WHO compiled a list of six highly virulent multidrug-resistant bacteria named ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) responsible for life-threatening diseases. Taken together with Clostridioides difficile, Escherichia coli, Campylobacter spp., (C. jejuni and C. coli), Legionella spp., Salmonella spp., and Neisseria gonorrhoeae, all of these microorganisms are the leading causes of nosocomial infections. The rapid and accurate detection of these pathogens is not only important for the early initiation of appropriate antibiotic therapy, but also for resolving outbreaks and minimizing subsequent antimicrobial resistance. The need for ever-improving molecular diagnostic techniques is also of fundamental importance for improving epidemiological surveillance of bacterial infections. In this review, we aim to discuss the recent advances on the use of molecular techniques based on genomic and proteomic approaches for the diagnosis of bacterial infections. The advantages and limitations of each of the techniques considered are also discussed. Full article
(This article belongs to the Collection New Insights into Bacterial Pathogenesis)
Show Figures

Figure 1

12 pages, 7793 KiB  
Article
Genomic Characterization of Clinical Extensively Drug-Resistant Acinetobacter pittii Isolates
by Peechanika Chopjitt, Nuntiput Putthanachote, Ratchadaporn Ungcharoen, Rujirat Hatrongjit, Parichart Boueroy, Yukihiro Akeda, Kazunori Tomono, Shigeyuki Hamada and Anusak Kerdsin
Microorganisms 2021, 9(2), 242; https://doi.org/10.3390/microorganisms9020242 - 25 Jan 2021
Cited by 16 | Viewed by 3317
Abstract
Carbapenem-resistant Acinetobacter pittii (CRAP) is a causative agent of nosocomial infections. This study aimed to characterize clinical isolates of CRAP from a tertiary hospital in Northeast Thailand. Six isolates were confirmed as extensively drug-resistant Acinetobacter pittii (XDRAP). The blaNDM-1 gene was detected [...] Read more.
Carbapenem-resistant Acinetobacter pittii (CRAP) is a causative agent of nosocomial infections. This study aimed to characterize clinical isolates of CRAP from a tertiary hospital in Northeast Thailand. Six isolates were confirmed as extensively drug-resistant Acinetobacter pittii (XDRAP). The blaNDM-1 gene was detected in three isolates, whereas blaIMP-14 and blaIMP-1 were detected in the others. Multilocus sequence typing with the Pasteur scheme revealed ST220 in two isolates, ST744 in two isolates, and ST63 and ST396 for the remaining two isolates, respectively. Genomic characterization revealed that six XDRAP genes contained antimicrobial resistance genes: ST63 (A436) and ST396 (A1) contained 10 antimicrobial resistance genes, ST220 (A984 and A864) and ST744 (A56 and A273) contained 9 and 8 antimicrobial resistance genes, respectively. The single nucleotide polymorphism (SNP) phylogenetic tree revealed that the isolates A984 and A864 were closely related to A. pittii YB-45 (ST220) from China, while A436 was related to A. pittii WCHAP100020, also from China. A273 and A56 isolates (ST744) were clustered together; these isolates were closely related to strains 2014S07-126, AP43, and WCHAP005069, which were isolated from Taiwan and China. Strict implementation of infection control based upon the framework of epidemiological analyses is essential to prevent outbreaks and contain the spread of the pathogen. Continued surveillance and close monitoring with molecular epidemiological tools are needed. Full article
(This article belongs to the Special Issue Molecular Epidemiology of Antimicrobial Resistance)
Show Figures

Figure 1

19 pages, 908 KiB  
Article
Evaluation of Microsatellite Typing, ITS Sequencing, AFLP Fingerprinting, MALDI-TOF MS, and Fourier-Transform Infrared Spectroscopy Analysis of Candida auris
by Mansoureh Vatanshenassan, Teun Boekhout, Norman Mauder, Vincent Robert, Thomas Maier, Jacques F. Meis, Judith Berman, Euníce Then, Markus Kostrzewa and Ferry Hagen
J. Fungi 2020, 6(3), 146; https://doi.org/10.3390/jof6030146 - 25 Aug 2020
Cited by 37 | Viewed by 5815
Abstract
Candida auris is an emerging opportunistic yeast species causing nosocomial outbreaks at a global scale. A few studies have focused on the C. auris genotypic structure. Here, we compared five epidemiological typing tools using a set of 96 C. auris isolates from 14 [...] Read more.
Candida auris is an emerging opportunistic yeast species causing nosocomial outbreaks at a global scale. A few studies have focused on the C. auris genotypic structure. Here, we compared five epidemiological typing tools using a set of 96 C. auris isolates from 14 geographical areas. Isolates were analyzed by microsatellite typing, ITS sequencing, amplified fragment length polymorphism (AFLP) fingerprint analysis, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), and Fourier-transform infrared (FTIR) spectroscopy methods. Microsatellite typing grouped the isolates into four main clusters, corresponding to the four known clades in concordance with whole genome sequencing studies. The other investigated typing tools showed poor performance compared with microsatellite typing. A comparison between the five methods showed the highest agreement between microsatellite typing and ITS sequencing with 45% similarity, followed by microsatellite typing and the FTIR method with 33% similarity. The lowest agreement was observed between FTIR spectroscopy, MALDI-TOF MS, and ITS sequencing. This study indicates that microsatellite typing is the tool of choice for C. auris outbreak investigations. Additionally, FTIR spectroscopy requires further optimization and evaluation before it can be used as an epidemiological typing method, comparable with microsatellite typing, as a rapid method for tracing nosocomial fungal outbreaks. Full article
(This article belongs to the Special Issue Candida auris 2.0)
Show Figures

Figure 1

12 pages, 727 KiB  
Article
Antimicrobial Resistance and Molecular Epidemiology of Corynebacterium striatum Isolated in a Tertiary Hospital in Turkey
by Nergis Asgin and Baris Otlu
Pathogens 2020, 9(2), 136; https://doi.org/10.3390/pathogens9020136 - 19 Feb 2020
Cited by 27 | Viewed by 4799
Abstract
Although Corynebacterium striatum is part of the human flora, it has recently drawn attention both for its multidrug resistance and its role as an invasive infection/outbreak agent. This cross-sectional study aimed to determine the antimicrobial resistance and clonal relationships among C. striatum strains. [...] Read more.
Although Corynebacterium striatum is part of the human flora, it has recently drawn attention both for its multidrug resistance and its role as an invasive infection/outbreak agent. This cross-sectional study aimed to determine the antimicrobial resistance and clonal relationships among C. striatum strains. In total, 81 C. striatum strains were identified using Phoenix-100TM (BD, Sparks, MD, USA). The antimicrobial resistance of the strains was determined using the Kirby–Bauer disk diffusion method. Clonal relatedness among the strains was performed via arbitrarily primed polymerase chain reaction (AP-PCR). All 81 C. striatum strains were resistant to penicillin, cefotaxime, ciprofloxacin, and tetracycline, but susceptible to vancomycin and linezolid. The resistance rates to gentamicin, erythromycin, and clindamycin were 34.6%, 79%, and 87.7% respectively. AP-PCR results showed no predominant clone among the C. striatum strains. Corynebacterium striatum is reportedly the cause of an increasing number of invasive infections/outbreaks. Moreover, treatment options are limited. The study showed that vancomycin, linezolid, and gentamicin can be selected for the empirical treatment of C. striatum infections. Although no single-clone outbreak was observed in our hospital, small clonal circulations were observed within some units, indicating cross-contamination. Therefore, a comprehensive infection control program is warranted in future. Full article
(This article belongs to the Section Human Pathogens)
Show Figures

Figure 1

13 pages, 2105 KiB  
Article
Molecular Epidemiology of HIV-1 Subtype G in the Russian Federation
by Anastasia Murzakova, Dmitry Kireev, Pavel Baryshev, Alexey Lopatukhin, Ekaterina Serova, Andrey Shemshura, Sergey Saukhat, Dmitry Kolpakov, Anna Matuzkova, Alexander Suladze, Marina Nosik, Vladimir Eremin, German Shipulin and Vadim Pokrovsky
Viruses 2019, 11(4), 348; https://doi.org/10.3390/v11040348 - 16 Apr 2019
Cited by 15 | Viewed by 4404
Abstract
Although HIV-1 subtype A has predominated in Russia since the end of the 20th century, other viral variants also circulate in this country. The dramatic outbreak of HIV-1 subtype G in 1988-1990 represents the origin of this variant spreading in Russia. However, full [...] Read more.
Although HIV-1 subtype A has predominated in Russia since the end of the 20th century, other viral variants also circulate in this country. The dramatic outbreak of HIV-1 subtype G in 1988-1990 represents the origin of this variant spreading in Russia. However, full genome sequencing of the nosocomial viral variant and an analysis of the current circulating variants have not been conducted. We performed near full-length genome sequencing and phylogenetic and recombination analyses of 11 samples; the samples were determined to be subtype G based on an analysis of the pol region. Three samples were reliably obtained from patients infected during the nosocomial outbreak. The other 8 samples were obtained from patients who were diagnosed in 2010–2015. Phylogenetic analysis confirmed that a man from the Democratic Republic of the Congo was the origin of the outbreak. We also found that currently circulating viral variants that were genotyped as subtype G according to their pol region are in fact unique recombinant forms. These recombinant forms are similar to the BG-recombinants from Western Europe, particularly Spain and Portugal. The limitations of subtyping based on the pol region suggest that these viral variants are more widespread in Europe than is currently supposed. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop