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Abstract: Carbapenem-resistant Acinetobacter pittii (CRAP) is a causative agent of nosocomial infec-
tions. This study aimed to characterize clinical isolates of CRAP from a tertiary hospital in Northeast
Thailand. Six isolates were confirmed as extensively drug-resistant Acinetobacter pittii (XDRAP).
The blaNDM-1 gene was detected in three isolates, whereas blaIMP-14 and blaIMP-1 were detected in
the others. Multilocus sequence typing with the Pasteur scheme revealed ST220 in two isolates,
ST744 in two isolates, and ST63 and ST396 for the remaining two isolates, respectively. Genomic
characterization revealed that six XDRAP genes contained antimicrobial resistance genes: ST63
(A436) and ST396 (A1) contained 10 antimicrobial resistance genes, ST220 (A984 and A864) and ST744
(A56 and A273) contained 9 and 8 antimicrobial resistance genes, respectively. The single nucleotide
polymorphism (SNP) phylogenetic tree revealed that the isolates A984 and A864 were closely related
to A. pittii YB-45 (ST220) from China, while A436 was related to A. pittii WCHAP100020, also from
China. A273 and A56 isolates (ST744) were clustered together; these isolates were closely related
to strains 2014S07-126, AP43, and WCHAP005069, which were isolated from Taiwan and China.
Strict implementation of infection control based upon the framework of epidemiological analyses is
essential to prevent outbreaks and contain the spread of the pathogen. Continued surveillance and
close monitoring with molecular epidemiological tools are needed.

Keywords: Acinetobacter pittii; carbapenem-resistance; whole genome sequencing; extensively drug-
resistant; XDR; Thailand

1. Introduction

Acinetobacter calcoaceticus-baumannii complex (ACB complex) includes A. baumannii,
A. calcoaceticus, A. pittii, A. nosocomialis, A. seifertii, and A. dijkshoorniae [1–3]. They are the
primary bacteria causing nosocomial infection [1–3]. Among these, A. baumannii is known
as the most clinically relevant and common nosocomial infection worldwide. So far, most
studies have focused on A. baumannii, with relatively fewer studies on A. pittii because of
its low prevalence and low rates of resistance in past decades. However, recently, A. pitii
has shown increased carbapenem resistance and changes in its resistance mechanisms.
Carbapenem-resistant A. pittii (CRAP) has been extensively reported and disseminated
worldwide [4,5]. It is associated with human infection and intestinal carriage and is
recognized as a significant cause of nosocomial infection in various countries, particularly
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in intensive care unit settings [1,4,5]. In Taiwan, the percentage of A. pittii increased by
4.6%, and the rates of resistance to carbapenems increased from 4.5% in 2010 to 9.3%
and 25.8% in 2012 and 2014, respectively [6]. A study in a French hospital from January
2010 to December 2017 revealed 73 out of 120 cases were classified as hospital-acquired
bacteraemia; 54.8% (n = 40) were associated with A. pittii, 39.7% (n = 29) were associated
with A. baumannii, and 5.5% (n = 4) were associated A. nosocomialis [5].

Horizontal gene transfer is an important contributor to the spread of carbapenem-
hydrolyzing class D β-lactamases (CHDLs) among other Acinetobacter species, and par-
ticularly of A. pittii, mainly in Asia [7]. Previously, OXA-58-like and metallo-β-lactamase
(MBLs) were primarily responsible for CRAP, but blaOXA-23-like and blaOXA-24-like have re-
cently become more common [6]. The major mechanisms of resistance in CRAP found
in Thailand include production of OXA-23 and OXA-58 [7,8]. Apart from blaOXA genes
with MBLs, genes such as blaIMP-14a have been reported in CRAP isolates from Thailand,
while blaNDM-carrying organisms have been reported in countries like Malaysia, Taiwan,
South Korea, Japan, and Brazil, but not in Thailand [4,6,8–11]. Genomic characterization
of metallo-β-lactamase harboring A. pittii has not yet been investigated in the isolates
from Thailand.

In this study, we characterized the antimicrobial susceptibility, resistance genes, plas-
mid typing, and genetic relationships of CRAP harboring blaNDM and blaIMP isolated from
patients in Northeast Thailand. We demonstrated that almost all the CRAP isolates used in
this study showed extensive drug resistance (XDR). In addition, all genomic sequences of
extensively drug-resistant Acinetobacter pittii (XDRAP) strains were comparative analyzed.

2. Materials and Methods
2.1. Ethics

This study was reviewed and approved by the Roi Et Hospital Ethics Review board
(ERB). The ethic approval number is 034/2560. The medical records of seven patients
were reviewed by the attending physicians at the hospital using the clinical case record
form approved by ERB. The ERB waived the requirement for informed consent for patient
signatures; however, the attending physicians provided written informed consent for all
cases as the study satisfied the conditions of the policy statement on ethical conduct for
research involving humans. This study was conducted according to the principles of the
Declaration of Helsinki.

2.2. Bacterial Identification

From April 2017 to March 2018, we established laboratory-based surveillance to
determine carbapenem-resistant Gram-negative bacteria in an 800-bed tertiary-care hospital
in Roi Et province, northeastern Thailand. A criterion in this study was that all carbapenem-
resistant Acinetobacter calcoaceticus-baumannii complex (CRACB) were collected from any
specimens during the surveillance program. A total of 832 nonrepetitive carbapenem-
resistant ACB (CRACB) isolates were collected. Presumptive identification was performed
at the hospital using a conventional biochemical test [12]. All CRACB isolates were sent
to our laboratory to identify species levels using gyrB-multiplex PCR [13], and to confirm
A. baumannii using PCR for the blaOXA-51-like gene, which is intrinsic of A. baumannii [14].

2.3. Antimicrobial Susceptibility Testing

Minimum inhibitory concentrations (MICs) of 13 antimicrobial agents—ceftazidime,
cefepime, ceftriaxone, cefotaxime, doripenem, imipenem, meropenem, colistin, gentamicin,
amikacin, netimicin, ciprofloxacin, and trimethoprim-sulfamethoxazole—were examined
in the isolates using the Sensititre (Thermo Fisher Scientific, Cleveland, OH, USA). Disk
diffusion with tetracycline, piperacillin, and piperacillin/tazobactam was also performed.
Interpretation was performed according to the Clinical and Laboratory Standards Institute
(CLSI, 2020) guidelines [15].
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2.4. Detection of Antimicrobial Resistance Genes

Multiplex PCR was performed to detect oxacillinase (OXA), carbapenemase, and mo-
bile colistin resistance genes including blaOXA-23-like, blaOXA-24-like, blaOXA-51-like, blaOXA-58-like,
blaOXA-10-like, blaIMP, blaNDM, blaOXA-48like, blaKPC, and mcr-1 (Table S1) [16–18]. All PCR
products were confirmed using Sanger sequencing by Apical Scientific (Sdn Bhd, Selan-
gor, Malaysia).

2.5. PCR-Based Replicon Typing

The plasmid replicons were determined in all CRAP isolates by PCR-based replicon
typing method (Table S2; [19]). The nineteen different homology groups (GRs) were detected
based on similarities of nucleotide sequence in 27 replicase genes.

2.6. Multilocus Sequence Typing

Multilocus sequence typing (MLST) was performed according to the Pasteur scheme
(https://pubmlst.org/abaumannii/) using seven housekeeping genes (gltA, gryB, gdhB,
recA, cpn60, rpoD, and gpi). The sequence types (STs) were identified by comparing the allele
sequences in the MLST database. A goeBURST analysis for sequence types was performed
using the PHYLOViZ 2.0 program [20]. Construction of phylogenetic trees for all STs using
concatenated sequences was performed using MEGA-X (version 10.1.7) software [21].

2.7. Whole-Genome Sequencing and Analysis

Genomic DNA of six XDR A. pittii isolates in this study was extracted using the
E.Z.N.A.® Tissue DNA Kit (OMEGA Bio-tek, Norcross, GA, USA) according to the man-
ufacturer’s instructions. The quality of DNA was assessed using a Nanodrop 2000 Spec-
trophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and by agarose gel elec-
trophoresis. Whole-genome sequencing and assembled DNA sequence data were analyzed
on the Illumina platform as described previously [22]. Confirmation of the species us-
ing the whole-genome sequences was done on KmerFinder 3.1 (https://cge.cbs.dtu.dk/
services/KmerFinder/) [23,24]. Antimicrobial resistance genes were identified with Res-
Finder 3.1 (https://cge.cbs.dtu.dk/services/ResFinder/) [25], CARD version 2020 (https:
//card.mcmaster.ca/analyze/rgi) [26], and the BacWGSTdb 2.0 online tool [27,28]. Plasmid
replicons were analyzed using PlasmidFinder 2.1 [29] (https://cge.cbs.dtu.dk/services/
PlasmidFinder/) and PLACNETw [30] (https://castillo.dicom.unican.es/upload/). Default
parameters were used for all software.

For comprehensive genomic analysis, we used BacWGSTdb (http://bacdb.org/
BacWGSTdb), which allowed us to find the closest isolates that are currently deposited
in the GenBank database [27]. The whole-genome sequences of 37 closely related to our
A. pittii strains were downloaded from the GenBank database. The genomic comparison
was conducted using a reference genome-based single nucleotide polymorphism (SNP)
strategy with CSI Phylogeny [31]. The result was constructed phylogenetic trees using
MEGA-X, via the neighbor-joining method with 500 bootstrap replicates by applying
the Tamura three-parameter model [21]. The phylogenetic tree was visualized using the
Interactive Tree of Life (iTOL) (http://itol.embl.de) [32].

2.8. Statistical Analysis

The clinical characteristics of XDRAP were analyzed by comparing with XDR A. bau-
mannii (XDRAB), also collected during the current study. Of the total 832 CRACB cases,
6 were XDRAP, while 18 were XDRAB. Clinical data of these cases were analyzed by
logistic regression using Stata version 12.0 software (StataCorp, College Station, TX, USA).
Data were considered significant at p < 0.05.

2.9. Nucleotide Sequence Accession Numbers

The assembled genomic sequences were deposited in the NCBI Genbank Database
under the Bioproject accession number of PRJNA602201.

https://pubmlst.org/abaumannii/
https://cge.cbs.dtu.dk/services/KmerFinder/
https://cge.cbs.dtu.dk/services/KmerFinder/
https://cge.cbs.dtu.dk/services/ResFinder/
https://card.mcmaster.ca/analyze/rgi
https://card.mcmaster.ca/analyze/rgi
https://cge.cbs.dtu.dk/services/PlasmidFinder/
https://cge.cbs.dtu.dk/services/PlasmidFinder/
https://castillo.dicom.unican.es/upload/
http://bacdb.org/BacWGSTdb
http://bacdb.org/BacWGSTdb
http://itol.embl.de
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3. Results
3.1. Identification, Susceptibility, and Genotyping

The studied criteria included only carbapenem-resistant Acinetobacter calcoaceticus-
baumannii complex (CRACB). Of the total 832 carbapenem-resistant CRACB isolates used
in this study, 826 were identified as A. baumannii (99.3%), and 6 (0.7%) were identified as
A. pittii. Among the 826 A. baumannii, 18 isolates were XDR (2.2%). All the A. pittii isolates
in this study were resistant to carbapenem and showed presence of blaNDM-1, blaIMP-1, and
blaIMP-14 genes, as well as oxacillinase genes like blaOXA-10, blaOXA-58, and blaOXA-23. Table 1
shows the clinical data of these six patients, of which five were male (83%) and one female
(17%), with an age range of 19–73 years. Three cases were classified as hospital-acquired
infections, whereas the rest were classified as colonization. Five of the six patients survived,
while no data were available for one case.

The results of antimicrobial susceptibility tests are shown in Table 2. All carbapenem-
resistant Acinetobacter pittii (CRAP) isolates were resistant to ceftazidime, cefepime, cefo-
taxime, ceftriaxone, doripenem, imipenem, meropenem piperacillin, and trimethoprim–
sulfamethoxazole. All the isolates were intermediately resistant to colistin. Three isolates
were found to be susceptible to gentamicin and amikacin, while four isolates were sus-
ceptible to ciprofloxacin and tetracycline. Five isolates were identified as extensively
drug-resistant (XDR) which is defined according to the guideline described elsewhere [33].

We confirmed the presence of carbapenemase genes by multiplex PCR and sequencing.
All isolates carried both oxacillinase and metallo-β-lactamase genes (Table 1). The blaNDM-1
was detected among the MBLs genes (3/6; 50%), while blaOXA-58 was predominant among
oxacillinase genes (3/6; 50%), followed by blaOXA-10 (2/6; 33.3%). Plasmid typing based on
PCR revealed all CRAP isolates carried at least 1 plasmid group (GR) and a maximum of
4 GRs out of 19 groups of rep genes (GR12, GR8 and GR3) were mostly found in 5 out of
6 isolates (83.3%).

MLST analysis revealed that six CRAP isolates belonged to four STs: two (A864 and
A984) were assigned to ST220, two (A56 and A273) were ST744, and one each belonged to
ST396 (A1) and ST63 (A436), respectively, according to the Pasteur scheme (Table 1). The
goeBURST displayed a clonal complex of CRAP, as shown in Figure 1. ST396 and ST744
were closely related to ST839, whereas ST220 was related to ST207. ST63 was related to
ST64 and ST208. A phylogenetic tree was constructed using the concatenated sequence of
four STs as shown in Figure S1. It demonstrated that ST63 was closely related to ST208,
while ST744 was closely related to ST122 and ST121. ST396 was closely related to ST839
and ST840. ST220 was related to ST207, ST666, ST227, and ST1206.

3.2. Genomic Characterization of Extensively-Drug Resistant A. pittii

The draft genome sequence of six CRAP isolates is shown in Table S3 in the Sup-
plementary Materials. As shown in Figure 2, three isolates of CRAP (A56, A273, and
A436 strain) carried blaIMP and the following: β-lactamase resistance genes (blaOXA58 and
blaOXA500), aminoglycoside resistance genes (aac(3)-IId, aac(6′)-IIa, aadA2, and aph(3′)VIa),
sulphonamide resistance gene (sul1), trimethoprim resistance gene (dfrA1), phenicol re-
sistance gene (floR), and macrolide resistance genes (mph(E) and msr(E)). The remain-
ing 3 CRAP (A1, A864 and A984 strain) isolates harbored blaNDM-1 and the following:
β-lactamase resistance genes (blaVEB-7, blaADC-25, blaOXA500 and blaOXA526), aminoglycoside
resistance genes (aadA2, ant(2”)-Ia, aph(3”)Ib, and aph(6)Id), sulphonamide resistance gene
(sul2), trimethoprim resistance gene (dfrA1), tetracycline (tet39), phenicol resistance gene
(cmlA1), rifampicin (ARR-2), and macrolide resistance genes (mph(E) and msr(E)). All CRAP
isolates contained a mutation of parC gene (Figure 2).



Microorganisms 2021, 9, 242 5 of 12

Table 1. Clinical features of 6 Acinetobacter pittii isolates carrying carbapenemase gene.

Isolate No. Specimen Age Sex Status Disease Underlying Disease Outcome ST
Genes

Plasmids
OXA MBL

A1 Sputum 71 M Colonization
Ischemic heart disease with

Atrial fabulation with
Staphylococcus

Ischemic heart
disease Survive 396 23, 51 NDM-1 GR12, GR8

A56 Sputum 75 M Colonization Fever of unknown origin Unknown Unknown 744 58 IMP-14 GR3, GR12, GR8, GR16

A273 Sputum 66 M Colonization Hypotension with Pneumonia
with CKD-5 * with DM * CKD-5 * with DM * Survive 744 58 IMP-14 GR3

A436 Sputum 34 F Infection

Heart failure with Respiratory
failure with Atrial fabulation

with Hypertension with
Bacterial pneumonia

Hypertension Survive 63 58 IMP-1 GR3, GR12, GR8, GR6

A864 Sputum 46 M Infection Gastroenteritis with DM * DM * Survive 220 10 NDM-1 GR3, GR12, GR8

A984 Ascitic
Fluid 73 M Infection

CKD-5 * with Gout with
Hypertension Migraine with

Liver cell carcinoma
with Ascitic

CKD-5 * with Gout with
Hypertension with

CA Liver
Survive 220 10 NDM-1 GR3, GR12, GR8

* CKD; chronic kidney disease stage 5, DM; Diabetes mellitus.
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Table 2. Antimicrobial susceptibility profiles of carbapenem resistant A. pittii.

Isolate No.
MIC (µg/L) Disk Diffusion Assay (mm)

CAZ FEP CTX CRO DOR IPM MEM CL GM AMK NET CIP SXT TE TZP PIP

A1
>32 >32 >32 >32 >4 >8 >8 ≤1 ≤2 ≤8 ≤8 0.12 >4 20 12 11
(R) (R) (R) (R) (R) (R) (R) (I) (S) (S) (S) (S) (R) (S) (R) (R) MDR

A56
32 32 >32 >32 >4 >8 >8 ≤1 >8 >32 ≤8 ≤0.06 >4 20 19 18
(R) (R) (R) (R) (R) (R) (R) (I) (R) (R) (S) (S) (R) (S) (R) (R) XDR

A273
16 32 >32 >32 >4 >8 >8 ≤1 >8 >32 >16 1 >4 20 17 16
(I) (R) (R) (R) (R) (R) (R) (I) (R) (R) (I) (S) (R) (S) (R) (R) XDR

A436
>32 32 >32 >32 >4 >8 >8 ≤1 8 >32 ≤8 0.12 >4 23 18 16
(R) (R) (R) (R) (R) (R) (R) (I) (I) (R) (S) (S) (R) (S) (I) (R) XDR

A864
32 >32 32 >32 >4 >8 >8 ≤1 ≤8 ≤8 ≤8 >2 >4 9 12 12
(R) (R) (R) (R) (R) (R) (R) (I) (S) (S) (S) (R) (R) (R) (R) (R) XDR

A984
32 >32 32 >32 >4 >8 >8 ≤1 4 ≤8 ≤8 >2 >4 7 12 12
(R) (R) (R) (R) (R) (R) (R) (I) (S) (S) (S) (R) (R) (R) (R) (R) XDR

CAZ: Ceftazidime; FEP: Cefepime; CTX: Cefotaxime; CRO: Ceftriaxone; DOR: Doripenem; IPM: Imipenem; MEM: Meropenem; CL: Colistin; GM: Gentamicin; AMK: Amikacin; NET: Netimicin; CIP: Ciprofloxacin;
SXT: Trimethoprim–sulfamethoxazole; TE: Tetracyclin; TZP: Piperacillin–tazobactam; PIP: Piperacillin.
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Figure 1. Minimum spanning tree of sequence types (ST) of 65 A. pittii, constructed with goeBURST.
The seven CRAP isolates belonging to four STs are denoted as red circles.

Figure 2. Genomic characterization of antibiotic-resistant genes in carbapenem-resistant A. pittii. The present of antimicrobial
resistance genes is represented in red box.

Analysis of the acquired antibiotic-resistant genes showed that isolate A436 harbored
10 antimicrobial resistance genes including dfrA1, aac(6′)-lla, aadA5, aph(3′)-VIa, blaIMP-1,
blaOXA58, and blaOXA-500, as well as floR, mph(E), and msr(E). Similarly, isolate A1 also
revealed 10 resistant genes but differed from isolate A436 in some genes: blaVEB-7, blaNDM-1,
blaOXA-500, aadA2, ant(2”)-Ia, aph(3′)-Ib, aph(6)Id, dfrA1, cmlA1, and ARR-2 (Figure 2). Isolates
A984 and A864 carried 9 antimicrobial resistance genes, including aph(3”)-lb, aph(6)-ld),
blaNDM-1, blaOXA526, blaADC-25, sul2, mph(E), msr(E), and tet(39), whereas isolates A56 and
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A273 contained 8 resistant genes, including blaIMP-14, blaOXA-58, blaOXA-500, aac(3)-IId, aph(3′)-
VIa, sul1, mph(E), and msr(E) (Figure 2). The blaNDM-1, blaADC-25, and blaOXA-526 were present
in the ST220 isolates (A984, A864 YB-45, AS012594). Similarly, two ST63 isolates, A436 and
WCHAP100020, carried blaOXA-500 and blaOXA-58, respectively. However, blaIMP-1 was also
found in A436. In addition, resistance–nodulation–cell division (RND) antibiotic efflux
pump genes (adeF, adeL), major facilitator superfamily (MFS) antibiotic efflux pump genes
(amvA, abaQ, floR), and small multidrug resistance (SMR) antibiotic efflux pump genes (abeS)
were also present in these six isolates. These pumps are responsible for fluoroquinolone,
macrolide, tetracycline, and phenicol efflux.

Plasmid analysis of genomic sequences of the six isolates using PlasmidFinder revealed
no Inc group replicons. However, PLACNETw showed 4 MOB plasmid types; MOBQ in
4 isolates (A1, A436, A864, A984), MOBV in 2 isolates (A56, A273), MOBP in 2 isolates
(A864, A984), and MOBF in the A436 isolate. Three isolates (A436, A864, A984) contained
2 MOB plasmid types.

As shown in Figure 3, the whole-genome SNP using CSI Phylogeny revealed that
isolates A984 and A864 were closely related to the reference A. pittii YB-45 (ST220) isolate
from China, recovered from sputum, while isolate A436, which was related to A. pittii
strain WCHAP100020, was isolated from China. By contrast, A273 and A56 isolates were
clustered together; these isolates were related to strains 2014S07-126, AP43, WCHAP005069,
which were isolated from Taiwan and China. The isolate A1 was clustered together with
our isolate A436 and WCHAP100020; however, it is located at a different branch.

Figure 3. Whole-genome phylogeny analysis of A. pittii generated by CSI Phylogeny and visualized with interactive tree of
life tool. The whole genome sequence of A. pittii in our studies is shown in yellow highlight and A. pittii-ST220-China as a
reference genome is denote in red square box. Sequence type (STs) and β-lactamase genes are shown in each isolate. The
filled symbols reveal the presentation of the genes, whereas unfilled symbols reveal their absence.

3.3. Clinical Analysis

We compared 18 XDRAB cases and 6 XDRAP cases for demographic association by
logistic regression. For a total of 24 cases, mean age for analysis was 59.52 (SD = 3.65;
min = 19 years old; max = 82 years old), with 19 males (82.6%) and 4 females (17.4%). Uni-
variate analysis did not show any correlation. Multivariate analysis also showed no corre-
lation between XDRAP and XDRAB concerning the elderly (OR = 1.3; 95% CI = 0.09−12.96;
p = 0.586) and male (OR = 1.00; 95% CI = 0.16−16.30; p-value = 0.71) cases. In addition,
antibiotic usage, length of hospitalization, and predisposing conditions did not show
any correlation.
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4. Discussion

Over the last decade, the presence of carbapenemase-producing A. pittii has be-
come dominant in several countries, and it is being increasingly considered a nosocomial
pathogen [34,35]. A previous study in Thailand revealed that 6.4% (22/346) were A. pittii,
of which 22.7% (5/22) were carbapenem-resistant [8]. Our study revealed 0.7% of A. pit-
tii in a hospital in rural Thailand (lower than that reported previously), but all of them
were carbapenem-resistant. All the patients survived. XDRAP showed a correlation with
male and elderly patients; however, the small number of XDRAPs observed in this study
limited their analysis. A retrospective study conducted at a teaching hospital in Taiwan
revealed that the 14-day and 28-day mortality rates of A. pittii bacteremia were 14% and 17%,
respectively [36]. A study in Thailand demonstrated that patients infected with carbapenem-
susceptible A. nosocomialis and A. pittii had lower 30-day mortality than those infected with
carbapenem-susceptible A. baumannii and carbapenem-resistant A. baumannii [37]. More-
over, a recent study demonstrated that A. seifertii and A. pittii presented higher pathogenicity
in in vitro and in vivo models than A. baumannii and A. nosocomialis [38].

The common carbapenemase genes present in CRAP are blaOXA-23 and blaOXA-58 [39–42].
MBL genes such as blaIMP-1, blaIMP-4, blaIMP-19, and blaNDM-1 were also detected in CRAP [43–49].
Coexistence of oxacillinase and MBLs genes in A. pittii has been reported in Australia; blaIMP-4
and blaOXA-96 [50] in Japan; blaIMP-1, and blaOXA-58 [51] in Malaysia; blaNDM-1 and blaOXA-58 [10]
and Thailand; blaIMP-14a and blaOXA-58 [8]. Our study found that all the CRAP isolates harbored
either blaOXA-series, blaNDM-1, blaIMP-65-like, or blaIMP-1. This is the first report of the presence of
blaNDM-1 in CRAP found in Thailand. This suggests that dissemination of blaNDM-1 may occur
among the Enterobacteriaceae A. pittii, and A. baumannii. In addition, A. pittii may play a role
in the dissemination of blaNDM-1 to Enterobacteriaceae [52].

In the present study, four STs (ST63, ST220, ST396, and ST744) were assigned to CRAP,
of which ST220 was the most predominant. This ST was reported in Japan and China, and
carried blaNDM-1, like our isolate [4,53]. ST744 was the second most predominant ST in this
study; it was found in Germany from the MLST database (https://pubmlst.org/bigsdb?
page=profileInfo&db=pubmlst_abaumannii_pasteur_seqdef&scheme_id=2&profile_id=74
4). ST63 was reported in Japan, Korea, and China [11,54,55]. ST396 was also reported in
Korea [11]. Interestingly, ST220 seems to the most susceptible to aminoglycoside agents.
Our study showed that 66.6% (2 isolates) of ST220 were susceptible to netilmicin, gentam-
icin, and amikacin. Two ST220 isolates reported elsewhere revealed that A. pittii SU1805
(ST220), isolated from a hospital sink in Japan, was susceptible to gentamicin and amikacin,
whereas A. pittii YB-45 from China was susceptible to gentamicin and tobramycin [4,53].

Whole-genome sequences of A. pittii have been reported in ST119, ST207 (strain
TCM292), ST220 (strain YB-45), ST865 (strain TCM156), and several strains deposited in
GenBank [44,53,56,57]. Whole-genome SNP phylogeny revealed that our XDRAP isolates
showed that the A436 (ST63) isolate was closely related to the strain WCHAP100020
from China. The XDRAP isolates A984 and A864 (ST220) were clustered with strain YB-
45/ST220 from China and strain ASO12594 from the United States of America. A56 and
A273 isolates were clustered together and are closely related to strains 2014S07-126, AP43,
and WCHAP005069, isolated from Taiwan and China. Isolate A1 (ST396) was clustered
together with isolates A436 and WCHAP100020. However, all of them have common
ancestors for each cluster. Whole-genome sequencing is a powerful tool for source tracking,
surveillance monitoring, and dynamic populations.

Acinetobacter baumannii is of concern to the World Health Organization because it
resists most commercially available antibiotics and causes hospital-acquired infections.
Increasing numbers of multidrug-resistant A. pittii and XDRAP worldwide require strength-
ening of official surveillance and close monitoring in order to prevent outbreaks and contain
the spread in parallel with A. baumannii.

https://pubmlst.org/bigsdb?page=profileInfo&db=pubmlst_abaumannii_pasteur_seqdef&scheme_id=2&profile_id=744
https://pubmlst.org/bigsdb?page=profileInfo&db=pubmlst_abaumannii_pasteur_seqdef&scheme_id=2&profile_id=744
https://pubmlst.org/bigsdb?page=profileInfo&db=pubmlst_abaumannii_pasteur_seqdef&scheme_id=2&profile_id=744
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