Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = modified cat swarm optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 7005 KB  
Article
Research on Load Forecasting Prediction Model Based on Modified Sand Cat Swarm Optimization and SelfAttention TCN
by Haotong Han, Jishen Peng, Jun Ma, Hao Liu and Shanglin Liu
Symmetry 2025, 17(8), 1270; https://doi.org/10.3390/sym17081270 - 8 Aug 2025
Cited by 1 | Viewed by 517
Abstract
The core structure of modern power systems reflects a fundamental symmetry between electricity supply and demand, and accurate load forecasting is essential for maintaining this dynamic balance. To improve the accuracy of short-term load forecasting in power systems, this paper proposes a novel [...] Read more.
The core structure of modern power systems reflects a fundamental symmetry between electricity supply and demand, and accurate load forecasting is essential for maintaining this dynamic balance. To improve the accuracy of short-term load forecasting in power systems, this paper proposes a novel model that combines a Multi-Strategy Improved Sand Cat Swarm Optimization algorithm (MSCSO) with a Self-Attention Temporal Convolutional Network (SA TCN). The model constructs efficient input features through data denoising, correlation filtering, and dimensionality reduction using UMAP. MSCSO integrates Uniform Tent Chaos Mapping, a sensitivity enhancement mechanism, and Lévy flight to optimize key parameters of the SA TCN, ensuring symmetrical exploration and stable convergence in the solution space. The self-attention mechanism exhibits structural symmetry when processing each position in the input sequence and does not rely on fixed positional order, enabling the model to more effectively capture long-term dependencies and preserve the symmetry of the sequence structure—demonstrating its advantage in symmetry-based modeling. Experimental results on historical load data from Panama show that the proposed model achieves excellent forecasting accuracy (RMSE = 24.7072, MAE = 17.5225, R2 = 0.9830), highlighting its innovation and applicability in symmetrical system environments. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

30 pages, 5468 KB  
Article
Modified Sparrow Search Algorithm by Incorporating Multi-Strategy for Solving Mathematical Optimization Problems
by Yunpeng Ma, Wanting Meng, Xiaolu Wang, Peng Gu and Xinxin Zhang
Biomimetics 2025, 10(5), 299; https://doi.org/10.3390/biomimetics10050299 - 8 May 2025
Viewed by 769
Abstract
The Sparrow Search Algorithm (SSA), proposed by Jiankai Xue in 2020, is a swarm intelligence optimization algorithm that has received extensive attention due to its powerful optimization-seeking ability and rapid convergence. However, similar to other swarm intelligence algorithms, the SSA has the problem [...] Read more.
The Sparrow Search Algorithm (SSA), proposed by Jiankai Xue in 2020, is a swarm intelligence optimization algorithm that has received extensive attention due to its powerful optimization-seeking ability and rapid convergence. However, similar to other swarm intelligence algorithms, the SSA has the problem of being prone to falling into local optimal solutions during the optimization process, which limits its application effectiveness. To overcome this limitation, this paper proposes a Modified Sparrow Search Algorithm (MSSA), which enhances the algorithm’s performance by integrating three optimization strategies. Specifically, the Latin Hypercube Sampling (LHS) method is employed to achieve a uniform distribution of the initial population, laying a solid foundation for global search. An adaptive weighting mechanism is introduced in the producer update phase to dynamically adjust the search step size, effectively reducing the risk of the algorithm falling into local optima in later iterations. Meanwhile, the cat mapping perturbation and Cauchy mutation operations are integrated to further enhance the algorithm’s global exploration ability and local development efficiency, accelerating the convergence process and improving the quality of the solutions. This study systematically validates the performance of the MSSA through multi-dimensional experiments. The MSSA demonstrates excellent optimization performance on 23 benchmark test functions and the CEC2019 standard test function set. Its application to three practical engineering problems, namely the design of welded beams, reducers, and cantilever beams, successfully verifies the effectiveness of the algorithm in real-world scenarios. By comparing it with deterministic algorithms such as DIRET and BIRMIN, and based on the five-dimensional test functions generated by the GKLS generator, the global optimization ability of the MSSA is thoroughly evaluated. In addition, the successful application of the MSSA to the problem of robot path planning further highlights its application advantages in complex practical scenarios. Experimental results show that, compared with the original SSA, the MSSA has achieved significant improvements in terms of convergence speed, optimization accuracy, and robustness, providing new ideas and methods for the research and practical application of swarm intelligence optimization algorithms. Full article
Show Figures

Figure 1

25 pages, 6985 KB  
Article
MSCSO: A Modified Sand Cat Swarm Algorithm for 3D UAV Path Planning in Complex Environments with Multiple Threats
by Zhengsheng Zhan, Dangyue Lai, Canjian Huang, Zhixiang Zhang, Yongle Deng and Jian Yang
Sensors 2025, 25(9), 2730; https://doi.org/10.3390/s25092730 - 25 Apr 2025
Viewed by 741
Abstract
To improve the global search efficiency and dynamic adaptability of the Sand Cat Swarm Optimization (SCSO) algorithm for UAV path planning in complex 3D environments, this study proposes a Modified Sand Cat Swarm Optimization (MSCSO) algorithm by integrating chaotic mapping initialization, Lévy flight–Metropolis [...] Read more.
To improve the global search efficiency and dynamic adaptability of the Sand Cat Swarm Optimization (SCSO) algorithm for UAV path planning in complex 3D environments, this study proposes a Modified Sand Cat Swarm Optimization (MSCSO) algorithm by integrating chaotic mapping initialization, Lévy flight–Metropolis hybrid exploration mechanisms, simulated annealing–particle swarm hybrid exploitation strategies, and elite mutation techniques. These strategies not only significantly enhance the convergence speed while ensuring algorithmic precision but also provide effective avenues for enhancing the performance of SCSO. We successfully apply these modifications to UAV path planning scenarios in complex environments. Experimental results on 18 benchmark functions demonstrate the enhanced convergence speed and stability of MSCSO. The proposed method has a superior performance in multimodal optimization tasks. The performance of MSCSO in eight complex scenarios that derived from real-world terrain data by comparing MSCSO with three state-of-the-art algorithms, MSCSO generates shorter average path lengths, reduces collision risks by 21–35%, and achieves higher computational efficiency. Its robustness in obstacle-dense and multi-waypoint environments confirms its practicality in engineering contexts. Overall, MSCSO demonstrates substantial potential in low-altitude resource exploration and emergency rescue operations. These innovative strategies offer theoretical and technical foundations for autonomous decision-making in intelligent unmanned systems. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

31 pages, 5080 KB  
Article
Detection of Subarachnoid Hemorrhage Using CNN with Dynamic Factor and Wandering Strategy-Based Feature Selection
by Jewel Sengupta, Robertas Alzbutas, Tomas Iešmantas, Vytautas Petkus, Alina Barkauskienė, Vytenis Ratkūnas, Saulius Lukoševičius, Aidanas Preikšaitis, Indre Lapinskienė, Mindaugas Šerpytis, Edgaras Misiulis, Gediminas Skarbalius, Robertas Navakas and Algis Džiugys
Diagnostics 2024, 14(21), 2417; https://doi.org/10.3390/diagnostics14212417 - 30 Oct 2024
Viewed by 1170
Abstract
Objectives: Subarachnoid Hemorrhage (SAH) is a serious neurological emergency case with a higher mortality rate. An automatic SAH detection is needed to expedite and improve identification, aiding timely and efficient treatment pathways. The existence of noisy and dissimilar anatomical structures in NCCT [...] Read more.
Objectives: Subarachnoid Hemorrhage (SAH) is a serious neurological emergency case with a higher mortality rate. An automatic SAH detection is needed to expedite and improve identification, aiding timely and efficient treatment pathways. The existence of noisy and dissimilar anatomical structures in NCCT images, limited availability of labeled SAH data, and ineffective training causes the issues of irrelevant features, overfitting, and vanishing gradient issues that make SAH detection a challenging task. Methods: In this work, the water waves dynamic factor and wandering strategy-based Sand Cat Swarm Optimization, namely DWSCSO, are proposed to ensure optimum feature selection while a Parametric Rectified Linear Unit with a Stacked Convolutional Neural Network, referred to as PRSCNN, is developed for classifying grades of SAH. The DWSCSO and PRSCNN surpass current practices in SAH detection by improving feature selection and classification accuracy. DWSCSO is proposed to ensure optimum feature selection, avoiding local optima issues with higher exploration capacity and avoiding the issue of overfitting in classification. Firstly, in this work, a modified region-growing method was employed on the patient Non-Contrast Computed Tomography (NCCT) images to segment the regions affected by SAH. From the segmented regions, the wide range of patterns and irregularities, fine-grained textures and details, and complex and abstract features were extracted from pre-trained models like GoogleNet, Visual Geometry Group (VGG)-16, and ResNet50. Next, the PRSCNN was developed for classifying grades of SAH which helped to avoid the vanishing gradient issue. Results: The DWSCSO-PRSCNN obtained a maximum accuracy of 99.48%, which is significant compared with other models. The DWSCSO-PRSCNN provides an improved accuracy of 99.62% in CT dataset compared with the DL-ICH and GoogLeNet + (GLCM and LBP), ResNet-50 + (GLCM and LBP), and AlexNet + (GLCM and LBP), which confirms that DWSCSO-PRSCNN effectively reduces false positives and false negatives. Conclusions: the complexity of DWSCSO-PRSCNN was acceptable in this research, for while simpler approaches appeared preferable, they failed to address problems like overfitting and vanishing gradients. Accordingly, the DWSCSO for optimized feature selection and PRSCNN for robust classification were essential for handling these challenges and enhancing the detection in different clinical settings. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

31 pages, 18437 KB  
Article
A Modified Sand Cat Swarm Optimization Algorithm Based on Multi-Strategy Fusion and Its Application in Engineering Problems
by Huijie Peng, Xinran Zhang, Yaping Li, Jiangtao Qi, Za Kan and Hewei Meng
Mathematics 2024, 12(14), 2153; https://doi.org/10.3390/math12142153 - 9 Jul 2024
Cited by 6 | Viewed by 1482
Abstract
Addressing the issues of the sand cat swarm optimization algorithm (SCSO), such as its weak global search ability and tendency to fall into local optima, this paper proposes an improved strategy called the multi-strategy integrated sand cat swarm optimization algorithm (MSCSO). The MSCSO [...] Read more.
Addressing the issues of the sand cat swarm optimization algorithm (SCSO), such as its weak global search ability and tendency to fall into local optima, this paper proposes an improved strategy called the multi-strategy integrated sand cat swarm optimization algorithm (MSCSO). The MSCSO algorithm improves upon the SCSO in several ways. Firstly, it employs the good point set strategy instead of a random strategy for population initialization, effectively enhancing the uniformity and diversity of the population distribution. Secondly, a nonlinear adjustment strategy is introduced to dynamically adjust the search range of the sand cats during the exploration and exploitation phases, significantly increasing the likelihood of finding more high-quality solutions. Lastly, the algorithm integrates the early warning mechanism of the sparrow search algorithm, enabling the sand cats to escape from their original positions and rapidly move towards the optimal solution, thus avoiding local optima. Using 29 benchmark functions of 30, 50, and 100 dimensions from CEC 2017 as experimental subjects, this paper further evaluates the MSCSO algorithm through Wilcoxon rank-sum tests and Friedman’s test, verifying its global solid search ability and convergence performance. In practical engineering problems such as reducer and welded beam design, MSCSO also demonstrates superior performance compared to five other intelligent algorithms, showing a remarkable ability to approach the optimal solutions for these engineering problems. Full article
Show Figures

Figure 1

20 pages, 6263 KB  
Article
Global Maximum Power Point Tracking of a Photovoltaic Module Array Based on Modified Cat Swarm Optimization
by Kuei-Hsiang Chao and Thi Bao-Ngoc Nguyen
Appl. Sci. 2024, 14(7), 2853; https://doi.org/10.3390/app14072853 - 28 Mar 2024
Cited by 8 | Viewed by 1456
Abstract
The main purpose of this study was to research and develop maximum power point tracking (MPPT) of a photovoltaic module array (PVMA) with partial module shading and sudden changes in solar irradiance. Modified cat swarm optimization (MCSO) was adopted to track the global [...] Read more.
The main purpose of this study was to research and develop maximum power point tracking (MPPT) of a photovoltaic module array (PVMA) with partial module shading and sudden changes in solar irradiance. Modified cat swarm optimization (MCSO) was adopted to track the global maximum power point (GMPP) of the PVMA. Upon a sudden changes in solar irradiance or when certain modules in the PVMA were shaded, the maximum power point (MPP) of the PVMA will change accordingly, and multiple peak values may appear on the power–voltage (P-V) characteristic curve. Therefore, if the tracking pace is constant, the time required to track the MPP might extend, and under certain circumstances, the GMPP might not be tracked, as only the local maximum power point (LMPP) can be tracked. To prevent this problem, a maximum power point tracker based on MCSO is proposed in this paper in order to adjust the tracking pace along with the slope of the P-V characteristic curve and the inertia weight of the iteration formula. The initial voltage for tracking commencement was set to 0.8 times the voltage at the maximum power point of the PVMA under standard test conditions. Firstly, MATLAB 2022a was used to construct the four-series, three-parallel PVMA model under zero shading and partial shading. The feedback of PVMA voltage and current was obtained, where the GMPP was tracked with MCSO. From the simulation results, it was proven that, under different shading percentages and sudden changes in solar irradiance for partial modules in the PVMA, the MCSO proposed in this paper provided better tracking speed, dynamic response, and steady performance compared to the conventional CSO. Full article
(This article belongs to the Special Issue Photovoltaic Power System: Modeling and Performance Analysis)
Show Figures

Figure 1

18 pages, 1991 KB  
Article
Internet of Things Data Cloud Jobs Scheduling Using Modified Distance Cat Swarm Optimization
by Adil Yousif, Monika Shohdy, Alzubair Hassan and Awad Ali
Electronics 2023, 12(23), 4784; https://doi.org/10.3390/electronics12234784 - 26 Nov 2023
Cited by 2 | Viewed by 1535
Abstract
IoT cloud computing provides all functions of traditional computing as services through the Internet for the users. Big data processing is one of the most crucial advantages of IoT cloud computing. However, IoT cloud job scheduling is considered an NP-hard problem due to [...] Read more.
IoT cloud computing provides all functions of traditional computing as services through the Internet for the users. Big data processing is one of the most crucial advantages of IoT cloud computing. However, IoT cloud job scheduling is considered an NP-hard problem due to the hardness of allocating the clients’ jobs to suitable IoT cloud provider resources. Previous work on job scheduling tried to minimize the execution time of the job scheduling in the IoT cloud, but it still needs improvement. This paper proposes an enhanced job scheduling mechanism using cat swarm optimization (CSO) with modified distance to minimize the execution time. The proposed job scheduling mechanism first creates a set of jobs and resources to generate the population by randomly assigning the jobs to resources. Then, it evaluates the population using the fitness value, which represents the execution time of the jobs. In addition, we use iterations to regenerate populations based on the cat’s behaviour to produce the best job schedule that gives the minimum execution time for the jobs. We evaluated the proposed mechanism by implementing an initial simulation using Java Language and then conducted a complete simulation using the CloudSim simulator. We ran several experimentation scenarios using different numbers of jobs and resources to evaluate the proposed mechanism regarding the execution time. The proposed mechanism significantly reduces the execution time when we compare the proposed mechanism against the firefly algorithm and glowworm swarm optimization. The average execution time of the proposed cat swarm optimization was 131, while the average execution times for the firefly algorithm and glowworm optimization were 237 and 220, respectively. Hence, the experimental findings demonstrated that the proposed mechanism performs better than the firefly algorithm and glowworm swarm optimization in reducing the execution time of the jobs. Full article
(This article belongs to the Special Issue Advances in Cloud Computing and IoT Systems)
Show Figures

Figure 1

28 pages, 10441 KB  
Article
Program Source-Code Re-Modularization Using a Discretized and Modified Sand Cat Swarm Optimization Algorithm
by Bahman Arasteh, Amir Seyyedabbasi, Jawad Rasheed and Adnan M. Abu-Mahfouz
Symmetry 2023, 15(2), 401; https://doi.org/10.3390/sym15020401 - 2 Feb 2023
Cited by 24 | Viewed by 2774
Abstract
One of expensive stages of the software lifecycle is its maintenance. Software maintenance will be much simpler if its structural models are available. Software module clustering is thought to be a practical reverse engineering method for building software structural models from source code. [...] Read more.
One of expensive stages of the software lifecycle is its maintenance. Software maintenance will be much simpler if its structural models are available. Software module clustering is thought to be a practical reverse engineering method for building software structural models from source code. The most crucial goals in software module clustering are to minimize connections between created clusters, maximize internal connections within clusters, and maximize clustering quality. It is thought that finding the best software clustering model is an NP-complete task. The key shortcomings of the earlier techniques are their low success rates, low stability, and insufficient modularization quality. In this paper, for effective clustering of software source code, a discretized sand cat swarm optimization (SCSO) algorithm has been proposed. The proposed method takes the dependency graph of the source code and generates the best clusters for it. Ten standard and real-world benchmarks were used to assess the performance of the suggested approach. The outcomes show that the quality of clustering is improved when a discretized SCSO algorithm was used to address the software module clustering issue. The suggested method beats the previous heuristic approaches in terms of modularization quality, convergence speed, and success rate. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

41 pages, 9560 KB  
Article
Modified Sand Cat Swarm Optimization Algorithm for Solving Constrained Engineering Optimization Problems
by Di Wu, Honghua Rao, Changsheng Wen, Heming Jia, Qingxin Liu and Laith Abualigah
Mathematics 2022, 10(22), 4350; https://doi.org/10.3390/math10224350 - 19 Nov 2022
Cited by 109 | Viewed by 6438
Abstract
The sand cat swarm optimization algorithm (SCSO) is a recently proposed metaheuristic optimization algorithm. It stimulates the hunting behavior of the sand cat, which attacks or searches for prey according to the sound frequency; each sand cat aims to catch better prey. Therefore, [...] Read more.
The sand cat swarm optimization algorithm (SCSO) is a recently proposed metaheuristic optimization algorithm. It stimulates the hunting behavior of the sand cat, which attacks or searches for prey according to the sound frequency; each sand cat aims to catch better prey. Therefore, the sand cat will search for a better location to catch better prey. In the SCSO algorithm, each sand cat will gradually approach its prey, which makes the algorithm a strong exploitation ability. However, in the later stage of the SCSO algorithm, each sand cat is prone to fall into the local optimum, making it unable to find a better position. In order to improve the mobility of the sand cat and the exploration ability of the algorithm. In this paper, a modified sand cat swarm optimization (MSCSO) algorithm is proposed. The MSCSO algorithm adds a wandering strategy. When attacking or searching for prey, the sand cat will walk to find a better position. The MSCSO algorithm with a wandering strategy enhances the mobility of the sand cat and makes the algorithm have stronger global exploration ability. After that, the lens opposition-based learning strategy is added to enhance the global property of the algorithm so that the algorithm can converge faster. To evaluate the optimization effect of the MSCSO algorithm, we used 23 standard benchmark functions and CEC2014 benchmark functions to evaluate the optimization performance of the MSCSO algorithm. In the experiment, we analyzed the data statistics, convergence curve, Wilcoxon rank sum test, and box graph. Experiments show that the MSCSO algorithm with a walking strategy and a lens position-based learning strategy had a stronger exploration ability. Finally, the MSCSO algorithm was used to test seven engineering problems, which also verified the engineering practicability of the proposed algorithm. Full article
(This article belongs to the Special Issue Computational Intelligence Methods in Bioinformatics)
Show Figures

Figure 1

Back to TopTop