Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = modified EMF observer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2183 KiB  
Article
A Study of MTPA Applied to Sensorless Control of the Synchronous Reluctance Machine (SynRM)
by Vasilios C. Ilioudis
Automation 2025, 6(1), 11; https://doi.org/10.3390/automation6010011 - 4 Mar 2025
Viewed by 1005
Abstract
The present paper proposes a new Maximum Torque Per Ampere (MTPA) algorithm applied to sensorless speed control for the Synchronous Reluctance Machine (SynRM). The SynRM mathematical model is suitably modified and expressed in the γδ estimated reference frame, which could be applied in [...] Read more.
The present paper proposes a new Maximum Torque Per Ampere (MTPA) algorithm applied to sensorless speed control for the Synchronous Reluctance Machine (SynRM). The SynRM mathematical model is suitably modified and expressed in the γδ estimated reference frame, which could be applied in sensorless implementations. In the controller–observer scheme, an MTPA controller is coupled with a sliding mode observer (SMO) of first order. The provided equivalent control inputs are directly utilized by a modified EMF observer to estimate the rotor speed and position. Also, the MTPA control, SMO, and modified EMF observer are accordingly expressed in the γδ reference frame. In the duration of the SynRM operation, the developed MTPA algorithm succeeds in adjusting both stator current components in the γ-axis and δ-axis to the maximum torque point, while the SMO converges rapidly, achieving the coincidence between the γδ and dq reference frames. In addition, a simple torque decoupling technique is used to determine the γ-axis and δ-axis reference currents connected with the Anti-Windup Controller (AWC) for stator current control. Despite conventional MTPA methods, the proposed MTPA control strategy is designed to be robust in a wide speed range, exhibiting a high dynamic performance, regardless of the presence of external torque disturbances, reference speed variation, and even current measurement noise. The performance of the overall observer–control system is examined and evaluated using MATLAB/Simulink and considering noisy current feedback. Simulation results demonstrate the robustness and effectiveness of the proposed MTPA-based control method. Full article
Show Figures

Figure 1

26 pages, 3464 KiB  
Article
A Model-Based Method Applying Sliding Mode Methodology for SynRM Sensorless Control
by Vasilios C. Ilioudis
Magnetism 2025, 5(1), 4; https://doi.org/10.3390/magnetism5010004 - 4 Feb 2025
Cited by 2 | Viewed by 1248
Abstract
In this paper, a new sensorless approach is proposed to address the speed and position estimation of the Synchronous Reluctance Machine (SynRM). The design of the sensorless control algorithm is developed on the basis of the modified SynRM mathematical model employing a simple [...] Read more.
In this paper, a new sensorless approach is proposed to address the speed and position estimation of the Synchronous Reluctance Machine (SynRM). The design of the sensorless control algorithm is developed on the basis of the modified SynRM mathematical model employing a simple sliding mode observer (SMO) and a modified EMF observer that are connected in series. All variables of the modified SynRM model are expressed in the arbitrary rotating frame, which is the so-called estimated γδ reference frame. The derived modified rotor flux terms contain angle error information in the form of trigonometric functions. Initially, the modified rotor flux is expressed as a function of saliency and the stator current id, including the angular deviation between the dq and γδ reference frames, which are rotating at synchronous and estimated speeds, respectively. A suitably designed SMO is utilized to estimate the modified stator flux components in the γδ reference frame. Once the SMO operates in sliding mode, the derived equivalent control inputs of the flux/current observer are used to obtain the required angular position and speed information of rotor by means of the modified EMF and Speed/Position observer. Only measures of stator voltages and currents are required for the speed and position estimation. In addition, Lyapunov Candidate Functions (LCFs) have been applied to determine the sliding mode existence conditions and the gains of the modified EMF observer. The SynRM observer–controller system is tested and evaluated in a wide speed range, even at very low speeds, in the presence of torque load disturbances. Simulation results demonstrate the overall efficacy and robustness of the proposed sensorless approach. Moreover, simulation tests verify the fast convergence and high performance of the modified EMF/speed/angle observer. Full article
Show Figures

Figure 1

25 pages, 11967 KiB  
Article
Quadrature-Phase-Locked-Loop-Based Back-Electromotive Force Observer for Sensorless Brushless DC Motor Drive Control in Solar-Powered Electric Vehicles
by Biswajit Saha, Aryadip Sen, Bhim Singh, Kumar Mahtani and José A. Sánchez-Fernández
Appl. Sci. 2025, 15(2), 574; https://doi.org/10.3390/app15020574 - 9 Jan 2025
Cited by 1 | Viewed by 1299
Abstract
This work presents a sensorless brushless DC motor (BLDCM) drive control, optimized for solar photovoltaic (PV)- and battery-fed light electric vehicles (LEVs). A back-electromotive force (EMF) observer integrated with an enhanced quadrature-phase-locked-loop (QPLL) structure is proposed for accurate rotor position estimation, addressing limitations [...] Read more.
This work presents a sensorless brushless DC motor (BLDCM) drive control, optimized for solar photovoltaic (PV)- and battery-fed light electric vehicles (LEVs). A back-electromotive force (EMF) observer integrated with an enhanced quadrature-phase-locked-loop (QPLL) structure is proposed for accurate rotor position estimation, addressing limitations of existing control methods at low speeds and under dynamic conditions. The study replaces the conventional arc-tangent technique with a QPLL-based approach, eliminating low-pass filters to enhance system adaptability and reduce delays. The experimental results demonstrate a significant reduction in commutation error, with a nearly flat value at 0 degrees during steady-state and less than 8 degrees under dynamic conditions. Furthermore, the performance of a modified single-ended primary-inductor converter (SEPIC) for maximum power point tracking (MPPT) in solar-powered LEVs is verified, minimizing current ripple and ensuring smooth motor operation. The system also incorporates a regenerative braking mechanism, extending the vehicle’s range by efficiently recovering kinetic energy through the battery with 30.60% efficiency. The improved performance of the proposed method and system over conventional approaches contributes to the advancement of efficient and sustainable solar-powered BLDC motor-based EV technologies. Full article
(This article belongs to the Special Issue Design and Synthesis of Electric Energy Conversion Systems)
Show Figures

Figure 1

23 pages, 10856 KiB  
Article
A Modified Reduced-Order Generalized Integrator–Frequency-Locked Loop-Based Sensorless Vector Control Scheme Including the Maximum Power Point Tracking Algorithm for Grid-Connected Squirrel-Cage Induction Generator Wind Turbine Systems
by Tuynh Van Pham and Anh Tan Nguyen
Inventions 2024, 9(2), 44; https://doi.org/10.3390/inventions9020044 - 18 Apr 2024
Viewed by 2076
Abstract
In this paper, an improved speed sensorless control method including the maximum power point tracking (MPPT) algorithm for grid-connected squirrel-cage induction generator (SCIG) wind turbine systems using modified reduced-order generalized integrator (ROGI)–frequency-locked loop (FLL) with the DC offset compensation capability is proposed. The [...] Read more.
In this paper, an improved speed sensorless control method including the maximum power point tracking (MPPT) algorithm for grid-connected squirrel-cage induction generator (SCIG) wind turbine systems using modified reduced-order generalized integrator (ROGI)–frequency-locked loop (FLL) with the DC offset compensation capability is proposed. The rotor flux linkages are estimated by the modified ROGI-FLL-based observer, of which the inputs are d-q axis rotor EMFs, and hence the position of rotor flux linkage can be obtained directly based on these estimated flux linkages using the arc tangent function. The DC offset in the estimated rotor flux linkages, which can cause oscillations in estimated rotor speed, leading to oscillations in SCIG stator active power due to power signal feedback (PSF)-MPPT algorithm, can be significantly reduced using the DC offset compensators included in modified ROGI-FLL structure. Moreover, the negative effects of high-frequency components on the performance of the rotor flux linkage estimation can be remarkably mitigated owing to the excellent high-frequency component rejection capability of ROGI. The dynamic response analysis of the modified ROGI-FLL with DC offset compensators is provided as well. The feasibility of the proposed method has been demonstrated in comparison with dual SOGI-FLL with DC offset compensator-based existing method. Full article
(This article belongs to the Special Issue Innovative Strategy of Protection and Control for the Grid)
Show Figures

Figure 1

26 pages, 6068 KiB  
Article
Research on Position Sensorless Control of RDT Motor Based on Improved SMO with Continuous Hyperbolic Tangent Function and Improved Feedforward PLL
by Hongfen Bai, Bo Yu and Wei Gu
J. Mar. Sci. Eng. 2023, 11(3), 642; https://doi.org/10.3390/jmse11030642 - 17 Mar 2023
Cited by 19 | Viewed by 2541
Abstract
With the increasing use of electric propulsion ships, the emergence of the shaftless rim-driven thruster (RDT) as a revolutionary integrated motor thruster is gradually becoming an important development direction for green ships. The shaftless structure of RDTs leads to their dependence on position [...] Read more.
With the increasing use of electric propulsion ships, the emergence of the shaftless rim-driven thruster (RDT) as a revolutionary integrated motor thruster is gradually becoming an important development direction for green ships. The shaftless structure of RDTs leads to their dependence on position sensorless control techniques. In this study, a novel control algorithm using a composite sliding mode observer (SMO) with a modified feed-forward phase-locked loop (PLL) is presented for achieving high accuracy position and speed control of shaftless RDT motors. The deviation between the observed and actual currents is exploited to develop a current SMO to extract back electromotive force (back-EMF) errors. On this basis, a back-EMF observer is established to achieve accurate estimation of the back-EMF. The basic structure of the PLL was modified and incorporates a speed feedforward mechanism, which enhances the performance of rotor position estimation and facilitates bidirectional rotation. The stability of the algorithm has been verified in Matlab/Simulink for a range of steady-state, dynamic, and ship propeller loading conditions. Remarkably, the control algorithm boasts an impressive adjustment time of approximately 0.006 s and its position estimation error may be as low as 0.03 rad. Simulation results highlight the performance of the algorithm to achieve bidirectional rotation, while exhibiting fast convergence, minimal vibration, exceptional control accuracy, and robustness. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Maritime Transportation)
Show Figures

Figure 1

20 pages, 1431 KiB  
Article
Nested High Order Sliding Mode Controller with Back-EMF Sliding Mode Observer for a Brushless Direct Current Motor
by Alma Y. Alanis, Gustavo Munoz-Gomez and Jorge Rivera
Electronics 2020, 9(6), 1041; https://doi.org/10.3390/electronics9061041 - 24 Jun 2020
Cited by 9 | Viewed by 4318
Abstract
This work presents a nested super-twisting second-order sliding mode speed controller for a brushless direct current motor with a high order sliding mode observer used for back electromotive force (back-EMF) estimation. Due to the trapezoidal nature of the back-EMF, a modified Park transformation [...] Read more.
This work presents a nested super-twisting second-order sliding mode speed controller for a brushless direct current motor with a high order sliding mode observer used for back electromotive force (back-EMF) estimation. Due to the trapezoidal nature of the back-EMF, a modified Park transformation is used in order to achieve proper field orientation. Such transformation requires information from the back-EMF that is not accessible. A second-order sliding mode observer is used to estimate the back electromotive forces needed in the modified transformation. Sliding mode control is known to be robust to matched uncertain disturbances and parametric variations but it is prone to unmatched perturbations that affect the performance of the system. A nested scheme is used to improve the response of the controller in presence of unmatched disturbances. Simulations performed under similar conditions to real-time experimentation show a good regulation of the rotor speed in terms of transient and steady-state responses along with a reduced torque ripple. Full article
(This article belongs to the Special Issue Recent Issues on Motors and Motor Drives)
Show Figures

Graphical abstract

Back to TopTop