Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = mixotrophic flagellate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1722 KB  
Article
Transformation of Phytoplankton Communities in the High Arctic: Ecological Properties of Species
by Larisa Pautova, Vladimir Silkin, Marina Kravchishina and Alexey Klyuvitkin
Diversity 2025, 17(10), 703; https://doi.org/10.3390/d17100703 - 8 Oct 2025
Viewed by 817
Abstract
During the 84th cruise of the R/V Akademik Mstislav Keldysh in August 2021, patterns of phytoplankton composition transformation were revealed along a northward gradient. The study involved three transects in the Fram Strait and adjacent Arctic waters: a southern transect (from the Barents [...] Read more.
During the 84th cruise of the R/V Akademik Mstislav Keldysh in August 2021, patterns of phytoplankton composition transformation were revealed along a northward gradient. The study involved three transects in the Fram Strait and adjacent Arctic waters: a southern transect (from the Barents Sea shelf to the Greenland shelf), a middle transect across the Fram Strait, and a northern transect along the ice edge. Ten species of diatoms and eleven of dinoflagellates were identified, and their ecological preferences were characterized by determining the minimum, maximum, mean, and median values for abundance, biomass, depth of the biomass maximum, salinity, temperature, and the concentrations and ratios of nitrogen, phosphorus, and silicon. Significant gradients in temperature, salinity, silicon, and nitrogen concentrations were recorded along the south–north direction in the study area. The phytoplankton community responds to these changing factors through restructuring. Dinoflagellates predominantly dominate the southern and middle transects, whereas large diatoms make a substantial contribution to the phytoplankton biomass in the northern transect. Diatom biomass is determined by nitrogen concentration. The dependence of dinoflagellate biomass on that of small flagellates confirms the importance of mixotrophic nutrition. A hypothesis is proposed that the most probable criterion for the selective selection of diatoms northward is the half-saturation constant for nitrogen uptake, while for dinoflagellates, it is temperature. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

28 pages, 10388 KB  
Article
Two-Decade Changes in the Ciliate Assemblage Feeding Pattern Reflect the Reservoir Nutrient Load
by Miroslav Macek, Jaroslav Vrba, Josef Hejzlar, Klára Řeháková, Jiří Jarošík, Michal Šorf and Karel Šimek
Diversity 2024, 16(9), 534; https://doi.org/10.3390/d16090534 - 1 Sep 2024
Cited by 1 | Viewed by 2670
Abstract
The perception of the importance of ciliate in freshwater has changed dramatically since the “microbial loop” conceptualisation, reflecting methodological attempts. The data from two decades (1994–2018) on the surface (0–3 m) ciliate assemblage in the Slapy reservoir (Vltava River, Czech Republic) during two [...] Read more.
The perception of the importance of ciliate in freshwater has changed dramatically since the “microbial loop” conceptualisation, reflecting methodological attempts. The data from two decades (1994–2018) on the surface (0–3 m) ciliate assemblage in the Slapy reservoir (Vltava River, Czech Republic) during two different nutrient-load defined periods were analysed. We grouped the identified, quantified, and biomass-evaluated ciliates in the quantitative protargol-impregnated preparations according to their feeding behaviour. The sampling median and interquartile range data of the ciliates were plotted; the modelled water age, nutrients, bacteria, heterotrophic nanoflagellates, and Rhodomonas spp. were applied as the main explanatory background variables. We validated the differences between the periods, engaging multivariate analyses. The picoplankton-filtering species dominated the assemblages in an annual mean (halteriids and minute strobilidiids followed by peritrichs). Algae hunting urotrichs, Balanion planctonicum, and nanoplankton filtering tintinnids were significant before the spring phytoplankton peak when a maximum of ciliate biomass reflected mixotrophic nanoplankton filtering pelagostrombidiids. Only there did ciliate biomass tightly follow their quantified prey. Heterotrophic and mixotrophic Askenasia and Lagynophrya were typical raptorial/flagellate-hunting cilates; only Mesodinium spp. reached the maximum during autumn. The observed oligotrophication of the reservoir increased the ciliate assemblage biomass in the surface layer during stratification in concordance with the Plankton Ecology Group (PEG) model. Full article
(This article belongs to the Special Issue Diversity, Ecology and Genetics of Ciliates)
Show Figures

Figure 1

13 pages, 2852 KB  
Article
Mixotrophic Cultivation Optimization of Microalga Euglena pisciformis AEW501 for Paramylon Production
by Panpan Fan, Yanhua Li, Rui Deng, Feixia Zhu, Fengfeng Cheng, Gaofei Song, Wujuan Mi and Yonghong Bi
Mar. Drugs 2022, 20(8), 518; https://doi.org/10.3390/md20080518 - 14 Aug 2022
Cited by 9 | Viewed by 4446
Abstract
Euglena, a flagellated unicellular protist, has recently received widespread attention for various high-value metabolites, especially paramylon, which was only found in Euglenophyta. The limited species and low biomass of Euglena has impeded paramylon exploitation and utilization. This study established an optimal cultivation [...] Read more.
Euglena, a flagellated unicellular protist, has recently received widespread attention for various high-value metabolites, especially paramylon, which was only found in Euglenophyta. The limited species and low biomass of Euglena has impeded paramylon exploitation and utilization. This study established an optimal cultivation method of Euglena pisciformis AEW501 for paramylon production under mixotrophic cultivation. The results showed that the optimum mixotrophic conditions were 20 °C, pH 7.0, and 63 μmol photons m−2∙s−1, and the concentrations of sodium acetate and diammonium hydrogen phosphate were 0.98 g L−1 and 0.79 g L−1, respectively. The maximal biomass and paramylon content were 0.72 g L−1 and 71.39% of dry weight. The algal powder contained more than 16 amino acids, 6 vitamins, and 10 unsaturated fatty acids under the optimal cultivation. E. pisciformis paramylon was pure β-1,3-glucan-type polysaccharide (the purity was up to 99.13 ± 0.61%) composed of linear glucose chains linked together by β-1,3-glycosidic bonds. These findings present a valuable basis for the industrial exploitation of paramylon with E. pisciformis AEW501. Full article
(This article belongs to the Special Issue Marine Microalgal Functional Foods)
Show Figures

Figure 1

15 pages, 1931 KB  
Article
Effects of Nutritional Mode on the Physiological and Biochemical Characteristics of the Mixotrophic Flagellate Poterioochromonas malhamensis and the Potential Ecological Implications
by Mingyang Ma, Chaojun Wei, Man Chen, Hongxia Wang, Yingchun Gong and Qiang Hu
Microorganisms 2022, 10(5), 852; https://doi.org/10.3390/microorganisms10050852 - 20 Apr 2022
Cited by 7 | Viewed by 3748
Abstract
Mixotrophic flagellates play an important role in connecting the classical food chain and microbial food loop. The feeding characteristics of the mixotrophic flagellate Poterioochromonasmalhamensis have been well studied, but its role as a food source for other large zooplankton is less studied. [...] Read more.
Mixotrophic flagellates play an important role in connecting the classical food chain and microbial food loop. The feeding characteristics of the mixotrophic flagellate Poterioochromonasmalhamensis have been well studied, but its role as a food source for other large zooplankton is less studied. This study focuses on the physiological and biochemical changes in P. malhamensis when using autotrophy, chemoheterotrophy, and phagotrophy, and the effect of these changes on the feeding ability of one of its predators, the ciliate Paramecium caudatum. The results showed that chemoheterotrophic P. malhamensis had a higher growth rate and larger cell size than autotrophic and phagotrophic P. malhamensis. The biochemical composition of P. malhamensis also varied greatly between the three nutritional modes. The protein, total absolute amino acid, and fucoxanthin contents were highest for autotrophic P. malhamensis, while chemoheterotrophic P. malhamensis had the highest contents of total sugar and total absolute fatty acid. The contents of most biochemical components in phagotrophic P. malhamensis fell between those in autotrophic and chemoheterotrophic P. malhamensis. A feeding experiment showed that the grazing ability of P. caudatum on chemoheterotrophic P. malhamensis was significantly higher than that on phagotrophic P. malhamensis and autotrophic P. malhamensis. This study showed that the transformation of nutritional modes can alter the biochemical composition of the mixotrophic flagellate P. malhamensis and, as a result, affect the grazing ability of its predator P. caudatum. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 2489 KB  
Article
Toxins and Other Bioactive Metabolites in Deep Chlorophyll Layers Containing the Cyanobacteria Planktothrix cf. isothrix in Two Georgian Bay Embayments, Lake Huron
by Arthur Zastepa, Todd R. Miller, L. Cynthia Watson, Hedy Kling and Susan B. Watson
Toxins 2021, 13(7), 445; https://doi.org/10.3390/toxins13070445 - 27 Jun 2021
Cited by 15 | Viewed by 4624
Abstract
The understanding of deep chlorophyll layers (DCLs) in the Great Lakes—largely reported as a mix of picoplankton and mixotrophic nanoflagellates—is predominantly based on studies of deep (>30 m), offshore locations. Here, we document and characterize nearshore DCLs from two meso-oligotrophic embayments, Twelve Mile [...] Read more.
The understanding of deep chlorophyll layers (DCLs) in the Great Lakes—largely reported as a mix of picoplankton and mixotrophic nanoflagellates—is predominantly based on studies of deep (>30 m), offshore locations. Here, we document and characterize nearshore DCLs from two meso-oligotrophic embayments, Twelve Mile Bay (TMB) and South Bay (SB), along eastern Georgian Bay, Lake Huron (Ontario, Canada) in 2014, 2015, and 2018. Both embayments showed the annual formation of DCLs, present as dense, thin, metalimnetic plates dominated by the large, potentially toxic, and bloom-forming cyanobacteria Planktothrix cf. isothrix. The contribution of P. cf. isothrix to the deep-living total biomass (TB) increased as thermal stratification progressed over the ice-free season, reaching 40% in TMB (0.6 mg/L at 9.5 m) and 65% in South Bay (3.5 mg/L at 7.5 m) in 2015. The euphotic zone in each embayment extended down past the mixed layer, into the nutrient-enriched hypoxic hypolimnia, consistent with other studies of similar systems with DCLs. The co-occurrence of the metal-oxidizing bacteria Leptothrix spp. and bactivorous flagellates within the metalimnetic DCLs suggests that the microbial loop plays an important role in recycling nutrients within these layers, particularly phosphate (PO4) and iron (Fe). Samples taken through the water column in both embayments showed measurable concentrations of the cyanobacterial toxins microcystins (max. 0.4 µg/L) and the other bioactive metabolites anabaenopeptins (max. ~7 µg/L) and cyanopeptolins (max. 1 ng/L), along with the corresponding genes (max. in 2018). These oligopeptides are known to act as metabolic inhibitors (e.g., in chemical defence against grazers, parasites) and allow a competitive advantage. In TMB, the 2018 peaks in these oligopeptides and genes coincided with the P. cf. isothrix DCLs, suggesting this species as the main source. Our data indicate that intersecting physicochemical gradients of light and nutrient-enriched hypoxic hypolimnia are key factors in supporting DCLs in TMB and SB. Microbial activity and allelopathy may also influence DCL community structure and function, and require further investigation, particularly related to the dominance of potentially toxigenic species such as P. cf. isothrix. Full article
Show Figures

Figure 1

20 pages, 4312 KB  
Review
Limnology and Aquatic Microbial Ecology of Byers Peninsula: A Main Freshwater Biodiversity Hotspot in Maritime Antarctica
by Carlos Rochera and Antonio Camacho
Diversity 2019, 11(10), 201; https://doi.org/10.3390/d11100201 - 21 Oct 2019
Cited by 16 | Viewed by 5245
Abstract
Here we present a comprehensive review of the diversity revealed by research in limnology and microbial ecology conducted in Byers Peninsula (Livingston Island, South Shetland Islands, Antarctica) during the last two decades. The site constitutes one of the largest ice-free areas within the [...] Read more.
Here we present a comprehensive review of the diversity revealed by research in limnology and microbial ecology conducted in Byers Peninsula (Livingston Island, South Shetland Islands, Antarctica) during the last two decades. The site constitutes one of the largest ice-free areas within the Antarctic Peninsula region. Since it has a high level of environmental protection, it is less human-impacted compared to other sites within the South Shetland archipelago. The main investigations in Byers Peninsula focused on the physical and chemical limnology of the lakes, ponds, rivers, and wetlands, as well as on the structure of their planktonic and benthic microbial communities, and on the functional ecology of the microbial food webs. Lakes and ponds in Byers range along a productivity gradient that extends from the less productive lakes located upland to the eutrophic coastal lakes. Their planktonic assemblages include viruses, bacteria, a metabolically diverse community of protists (i.e., autotrophs, heterotrophs, and mixotrophs), and a few metazooplankton species. Most of the studies conducted in the site demonstrate the strong influence of the physical environment (i.e., temperature, availability of light, and water) and nutrient availability in structuring these microbial communities. However, top-down biotic processes may occur in summer, when predation by zooplankton can exert a strong influence on the abundance of protists, including flagellates and ciliated protozoa. As a consequence, bacterioplankton could be partly released from the grazing pressure exerted by these protists, and proliferates fueled by external nutrient subsidies from the lake’s catchment. As summer temperatures in this region are slightly above the melting point of water, biotic processes, such as those related to the productivity of lakes during ice-free periods, could become even more relevant as warming induced by climate change progresses. The limnological research carried out at the site proves that Byers Peninsula deserves special attention in the framework of the research in extreme environments. Together with nearby sites, such as Signy Island, Byers Peninsula comprises a featuring element of the Maritime Antarctic region that represents a benchmark area relative to the global distribution and diversity of aquatic microorganisms. Full article
Show Figures

Figure 1

16 pages, 3209 KB  
Article
Production of Cyanotoxins by Microcystis aeruginosa Mediates Interactions with the Mixotrophic Flagellate Cryptomonas
by Sarah DeVaul Princiotta, Susan P. Hendricks and David S. White
Toxins 2019, 11(4), 223; https://doi.org/10.3390/toxins11040223 - 15 Apr 2019
Cited by 22 | Viewed by 5147
Abstract
Eutrophication of inland waters is expected to increase the frequency and severity of harmful algal blooms (HABs). Toxin-production associated with HABs has negative effects on human health and aquatic ecosystem functioning. Despite evidence that flagellates can ingest toxin-producing cyanobacteria, interactions between members of [...] Read more.
Eutrophication of inland waters is expected to increase the frequency and severity of harmful algal blooms (HABs). Toxin-production associated with HABs has negative effects on human health and aquatic ecosystem functioning. Despite evidence that flagellates can ingest toxin-producing cyanobacteria, interactions between members of the microbial loop are underestimated in our understanding of the food web and algal bloom dynamics. Physical and allelopathic interactions between a mixotrophic flagellate (Cryptomonas sp.) and two strains of a cyanobacteria (Microcystis aeruginosa) were investigated in a full-factorial experiment in culture. The maximum population growth rate of the mixotroph (0.25 day−1) occurred during incubation with filtrate from toxic M. aeruginosa. Cryptomonas was able to ingest toxic and non-toxic M. aeruginosa at maximal rates of 0.5 and 0.3 cells day−1, respectively. The results establish that although Cryptomonas does not derive benefits from co-incubation with M. aeruginosa, it may obtain nutritional supplement from filtrate. We also provide evidence of a reduction in cyanotoxin concentration (microcystin-LR) when toxic M. aeruginosa is incubated with the mixotroph. Our work has implications for “trophic upgrading” within the microbial food web, where cyanobacterivory by nanoflagellates may improve food quality for higher trophic levels and detoxify secondary compounds. Full article
(This article belongs to the Special Issue Environmental Drivers of Algal and Cyanobacterial Toxin Dynamics)
Show Figures

Figure 1

Back to TopTop