Toxins and Other Bioactive Metabolites in Deep Chlorophyll Layers Containing the Cyanobacteria Planktothrix cf. isothrix in Two Georgian Bay Embayments, Lake Huron
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spatiotemporal Changes in Phytoplankton Composition in Near-Surface and Deep Chlorophyll Layers in Twelve Mile Bay
2.2. Spatiotemporal Changes in Phytoplankton Composition Near-Surface and within Deep-Chlorophyll Layers in South Bay
2.3. Light and Pigmentation
2.4. Nutrients and Physicochemical Conditions
2.5. Toxins Produced by Cyanobacteria
2.6. Other Bioactive Metabolites Produced by Cyanobacteria
3. Conclusions
4. Materials and Methods
4.1. Study Sites
4.2. Physicochemical Profiles of Water Column
4.3. Water Sampling
4.4. Sediment Sampling
4.5. Water Quality Analysis
4.6. Extraction and Analysis of Cyanobacterial Bioactive Metabolites
4.7. Taxonomic Identification and Enumeration
4.8. DNA Extraction and PCR Amplification
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Site | Latitude | Longitude | Depth (m) |
---|---|---|---|
Byng Inlet | 45.77056 | −80.56836 | 3 |
Sturgeon Bay North | 45.6133 | −80.4325 | 14 |
Sturgeon Bay South | 45.6055 | −80.4096 | 6 |
Deep Bay | 45.3953 | −80.2236 | 15 |
Woods Bay | 45.13785 | −79.9894 | 8 |
Twelve Mile Bay | 45.0838 | −79.946 | 12 |
Tadenac Bay | 45.0588 | −79.9775 | 24 |
Go Home Bay | 44.9913 | −79.9376 | 10 |
Longuissa Bay | 44.9613 | −79.8884 | 8 |
Cognashene Lake | 44.9510 | −79.9186 | 16 |
Musqwash Bay West | 44.9520 | −79.8787 | 30 |
Musqwash Bay East | 44.9483 | −79.85006 | 20 |
North Bay | 44.8919 | −79.7925 | 18 |
South Bay | 44.8762 | −79.7857 | 10 |
Honey Harbour | 44.8770 | −79.8263 | 7 |
Gene Loci | Primer 1 | Sequence (5′-3′) 2 | Amplicon Length (bp) | Annealing Temperature (°C) |
---|---|---|---|---|
Aeruginoside | ||||
aerD | aerD-F | GAAACCAGTAGTGAACAGACCTTAAATTATC | 493 | 60 |
aerD-R | GACCAACTCATCTCAATTTTCCC | |||
Anabaenopeptin | ||||
apnD | apnDTe-F | GACACGCCTTCTATTTTCGAGA | 581 | 60 |
apnDTe-R | CGCGAAATAAAACAATAGGGG | |||
apnC | apnNMT-F | CGTGCAGATGATGACCTATCCA | 470 | 55 |
apnNMT-R | AAGGTTCGCAATACTTCAGGGTT | |||
Anatoxin 3 | ||||
anaC | anaC-gen-F2 | TCTGGTATTCAGTMCCCTCYAT | 366 | 58 |
anaC-gen-R2 | CCCAATARCCTGTCATCAA | |||
Cyanopeptolin | ||||
ociC | cptDTe-F | GATCTCTATCAACAGTTTGGAGCAA | 690 | 61 |
cptDTe-R | ACTGTTCGGCTAACACTTGAACAT | |||
ociB | ociB-F | TGGTTTTTAGATCAATTTGAGTCCG | 512 | 66 |
ociB-R | CCACTGTTTTTGCCAAAGAGTG | |||
Microcystin | ||||
mcyC | mcyCTe-F | TTACAAGCGATGAATCTCATGG | 503 | 60 |
mcyCTe-R | GGGATTTAATAAGAAACCATCAACC | |||
mcyE | Hep-F | TTTGGGGTTAACTTTTTTGGGCATAGTC | 466 | 60 |
Hep-R | AATTCTTGAGGCTGTAAATCGGGTTT | |||
Microginin | ||||
micD | mgnTe-F | TGGTCAATGGGAGGAGTGATAG | 514 | 60 |
mgnTe-R | CTGTAGTGATCTCCACTAATCCATTG | |||
micA | mcnA-F | AAACCCTTTGATTTGAGCCAG | 428 | 60 |
mcnA-R | CAGCAAGGTACAGCCCTGTT | |||
Prenylagaramide | ||||
pagA | acyA-F | CCCTGGAAAAGATATTTTAGGAGC | 489 | 60 |
acyA-R | ATTTGAAGTACGGTTTGACATGG |
References
- Pick, F.R.; Nalewajko, C.; Lean, D.R.S. The origin of a metalimnetic chrysophyte peak. Limnol. Oceanogr. 1984, 29, 125–134. [Google Scholar] [CrossRef]
- Fee, E.J. The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Area, northwestern Ontario: Implications for primary production estimates. Limnol. Oceanogr. 1976, 21, 767–783. [Google Scholar] [CrossRef]
- Pannard, A.; Planas, D.; Noac’h, P.; Bormans, M.; Jourdain, M.; Beisner, B. Contribution of the deep chlorophyll maximum to primary production, phytoplankton assemblages and diversity in a small stratified lake. J. Plankton Res. 2020, 42, 630–649. [Google Scholar] [CrossRef]
- Pannard, A.; Planas, D.; Beisner, B. Macrozooplankton and the persistence of the deep chlorophyll maximum in a stratified lake. Freshw. Biol. 2015, 60, 1717–1733. [Google Scholar] [CrossRef]
- Lofton, M.; Leach, T.; Beisner, B.; Carey, C. Relative importance of top-down vs. bottom-up control of lake phytoplankton vertical distributions varies among fluorescence-based spectral groups. Limnol. Oceanogr. 2020, 65, 2485–2501. [Google Scholar] [CrossRef]
- Pick, F.R.; Lean, D.R.S.; Nalewajko, C. Nutrient status of metalimnetic phytoplankton peaks. Limnol. Oceanogr. 1984, 29, 960–971. [Google Scholar] [CrossRef]
- Leach, T.H.; Beisner, B.E.; Carey, C.C.; Pernica, P.; Rose, K.C.; Huot, Y.; Brentrup, J.A.; Domaizon, I.; Grossart, H.-P.; Ibelings, B.W.; et al. Patterns and drivers of deep chlorophyll maxima structure in 100 lakes: The relative importance of light and thermal stratification. Limnol. Oceanogr. 2018, 63, 628–646. [Google Scholar] [CrossRef] [Green Version]
- Barbiero, R.P.; Tuchman, M.L. The Deep chlorophyll maximum in Lake Superior. J. Great Lakes Res. 2004, 30, 256–268. [Google Scholar] [CrossRef]
- Bramburger, A.J.; Reavie, E.D. A comparison of phytoplankton communities of the deep chlorophyll layers and epilimnia of the Laurentian Great Lakes. J. Great Lakes Res. 2016, 42, 1016–1025. [Google Scholar] [CrossRef]
- Twiss, M.; Ulrich, C.; Zastepa, A.; Pick, F. On phytoplankton growth and loss rates to microzooplankton in the epilimnion and metalimnion of Lake Ontario in mid-summer. J. Great Lakes Res. 2012, 38, 146–153. [Google Scholar] [CrossRef]
- Scofield, A.E.; Watkins, J.M.; Weidel, B.C.; Luckey, F.J.; Rudstam, L.G. The deep chlorophyll layer in Lake Ontario: Extent, mechanisms of formation, and abiotic predictors. J. Great Lakes Res. 2017, 43, 782–794. [Google Scholar] [CrossRef]
- Legrand, C.; Rengefors, K.; Fistarol, G.; Granéli, E. Allelopathy in phytoplankton—Biochemical, ecological and evolutionary aspects. Phycologia 2003, 42, 406–419. [Google Scholar] [CrossRef] [Green Version]
- Janssen, E.M.L. Cyanobacterial peptides beyond microcystins—A review on co-occurrence, toxicity, and challenges for risk assessment. Water Res. 2019, 151, 488–499. [Google Scholar] [CrossRef]
- Camacho, A. On the occurrence and ecological features of deep chlorophyll maxima (DCM) in Spanish stratified lakes. Limnetica 2006, 25, 453–478. [Google Scholar] [CrossRef]
- Silsbe, G.; Malkin, S. Where light and nutrients collide: The global distribution and activity of subsurface chlorophyll maximum layers. In Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective; Glibert, P.M., Kana, T.M., Eds.; Springer: Cham, Switzerland, 2016; pp. 141–152. [Google Scholar]
- Verschoor, M.; Powe, C.; McQuay, E.; Schiff, S.; Venkiteswaran, J.; Li, J.; Molot, L. Internal iron loading and warm temperatures are pre-conditions for cyanobacterial dominance in embayments along Georgian Bay, Great Lakes. Can. J. Fish. Aquat. Sci. 2017, 74, 1439–1453. [Google Scholar] [CrossRef]
- Bird, D.F.; Kalff, J. Phagotrophic sustenance of a metalimnetic phytoplankton peak. Limnol. Oceanogr. 1989, 34, 155–162. [Google Scholar] [CrossRef]
- Kurmayer, R.; Deng, L.; Entfellner, E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae 2016, 54, 69–86. [Google Scholar] [CrossRef] [Green Version]
- Śliwińska-Wilczewska, S.; Wisniewska, K.; Konarzewska, Z.; Cieszyńska, A.; Felpeto, A.B.; Lewandowska, A.; Latała, A. The current state of knowledge on taxonomy, modulating factors, ecological roles, and mode of action of phytoplankton allelochemicals. Sci. Total. Environ. 2021, 773, 145681. [Google Scholar] [CrossRef]
- Reavie, E.D.; Barbiero, R.P.; Allinger, L.E.; Warren, G.J. Phytoplankton trends in the Great Lakes, 2001–2011. J. Great Lakes Res. 2014, 40, 618–639. [Google Scholar] [CrossRef]
- Findlay, D.L.; Paterson, J.J.; Hendzel, L.L.; Kling, H.J. Factors influencing Gonyostomum semen blooms in a small boreal reservoir lake. Hydrobiologia 2005, 533, 243–252. [Google Scholar] [CrossRef]
- Lebret, K.; Östman, Ö.; Langenheder, S.; Drakare, S.; Guillemette, F.; Lindström, E.S. High abundances of the nuisance raphidophyte Gonyostomum semen in brown water lakes are associated with high concentrations of iron. Sci. Rep. 2018, 8, 13463. [Google Scholar] [CrossRef]
- Head, R.M.; Jones, R.I.; Bailey-Watts, A.E. An assessment of the influence of recruitment from the sediment on the development of planktonic populations of cyanobacteria in a temperate mesotrophic lake. Freshw. Biol. 1999, 41, 759–769. [Google Scholar] [CrossRef]
- Brunberg, A.-K.; Blomqvist, P. Recruitment of Microcystis (Cyanophyceae) from lake sediments: The importance of littoral inocula. J. Phycol. 2003, 39, 58–63. [Google Scholar] [CrossRef]
- Holland, D.P.; Walsby, A.E. Viability of the cyanobacterium Planktothrix rubescens in the cold and dark, related to over-winter survival and summer recruitment in Lake Zürich. Eur. J. Phycol. 2008, 43, 179–184. [Google Scholar] [CrossRef]
- Kravchuk, E.; Ivanova, E.; Gladyshev, M. Spatial distribution of resting stages (akinetes) of the cyanobacteria Anabaena flos-aquae in sediments and its influence on pelagic populations. Mar. Freshw. Res. 2011, 62, 450–461. [Google Scholar] [CrossRef]
- Nürnberg, G.K.; LaZerte, B.D.; Olding, D.D. An Artificially induced Planktothrix rubescens surface bloom in a small kettle lake in Southern Ontario compared to blooms world-wide. Lake Reserv. Manag. 2003, 19, 307–322. [Google Scholar] [CrossRef] [Green Version]
- Grach-Pogrebinsky, O.; Sedmak, B.; Carmeli, S. Seco[D-Asp3]microcystin-RR and [D-Asp3,D-Glu(OMe)6]microcystin-RR, two new microcystins from a toxic water bloom of the cyanobacterium Planktothrix rubescens. J. Nat. Prod. 2004, 67, 337–342. [Google Scholar] [CrossRef]
- Cantin, A.; Beisner, B.E.; Gunn, J.M.; Prairie, Y.T.; Winter, J.G. Effects of thermocline deepening on lake plankton communities. Can. J. Fish. Aquat. Sci. 2011, 68, 260–276. [Google Scholar] [CrossRef]
- Salmaso, N.; Boscaini, A.; Shams, S.; Cerasino, L. Strict coupling between the development of Planktothrix rubescens and microcystin content in two nearby lakes south of the Alps (lakes Garda and Ledro). Ann. Limnol. Int. J. Limnol. 2013, 49, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Kasprzak, P.; Shatwell, T.; Gessner, M.; Gonsiorczyk, T.; Kirillin, G.; Selmeczy, G.; Padisak, J.; Engelhardt, C. Extreme weatherevent triggers cascade towards extreme turbidity in a clear-water Lake. Ecosystems 2017, 20, 1407–1420. [Google Scholar] [CrossRef]
- Giling, D.P.; Nejstgaard, J.C.; Berger, S.A.; Grossart, H.-P.; Kirillin, G.; Penske, A.; Lentz, M.; Casper, P.; Sareyka, J.; Gessner, M.O. Thermocline deepening boosts ecosystem metabolism: Evidence from a large-scale lake enclosure experiment simulating a summer storm. Glob. Chang. Biol. 2017, 23, 1448–1462. [Google Scholar] [CrossRef]
- de Marsac, N.T. Occurrence and nature of chromatic adaptation in cyanobacteria. J. Bacteriol. 1977, 130, 82. [Google Scholar] [CrossRef] [Green Version]
- Micheletti, S.; Schanz, F.; Walsby, A.E. The daily integral of photosynthesis by Planktothrix rubescens during summer stratification and autumnal mixing in Lake Zürich. New Phytol. 1998, 139, 233–246. [Google Scholar] [CrossRef]
- Davis, P.A.; Beard, S.J.; Walsby, A.E. Variation in filament width and gas vesicles of red and green isolates of Planktothrix spp. Arch. Hydrobiol. Suppl. 2003, 146, 15–29. [Google Scholar]
- Legnani, E.; Copetti, D.; Oggioni, A.; Tartari, G.; Maria, T.; Palumbo, G.; Morabito, G. Planktothrix rubescens’ seasonal dynamics and vertical distribution in Lake Pusiano (North Italy). J. Limnol. 2005, 64, 61–73. [Google Scholar] [CrossRef]
- Copetti, D.; Tartari, G.; Morabito, G.; Oggioni, A.; Legnani, E.; Imberger, J. A biogeochemical model of Lake Pusiano (North Italy) and its use in the predictability of phytoplankton blooms: First preliminary results. J. Limnol. 2006, 65, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Halstvedt, C.B.; Rohrlack, T.; Andersen, T.; Skulberg, O.; Edvardsen, B. Seasonal dynamics and depth distribution of Planktothrix spp. in Lake Steinsfjorden (Norway) related to environmental factors. J. Plankton Res. 2007, 29, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Boström, B.; Andersen, J.M.; Fleischer, S.; Jansson, M. Exchange of phosphorus across the sediment-water interface. Hydrobiologia 1988, 170, 229–244. [Google Scholar] [CrossRef]
- Katsev, S.; Dittrich, M. Modeling of decadal scale phosphorus retention in lake sediment under varying redox conditions. Ecol. Model. 2013, 251, 246–259. [Google Scholar] [CrossRef]
- Loh, P.S.; Molot, L.A.; Nowak, E.; Nürnberg, G.K.; Watson, S.B.; Ginn, B. Evaluating relationships between sediment chemistry and anoxic phosphorus and iron release across three different water bodies. Inland Waters 2013, 3, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Rentz, J.; Turner, I.; Ullman, J. Removal of phosphorus from solution using biogenic iron oxides. Water Res. 2009, 43, 2029–2035. [Google Scholar] [CrossRef] [PubMed]
- Buliauskaitė, R.; Wilfert, P.; Kumar, P.S.; de Vet, W.W.J.M.; Witkamp, G.-J.; Korving, L.; van Loosdrecht, M.C.M. Biogenic iron oxides for phosphate removal. Environ. Technol. 2020, 41, 260–266. [Google Scholar] [CrossRef]
- Hamre, K.D.; Lofton, M.E.; McClure, R.P.; Munger, Z.W.; Doubek, J.P.; Gerling, A.B.; Schreiber, M.E.; Carey, C.C. In situ fluorometry reveals a persistent, perennial hypolimnetic cyanobacterial bloom in a seasonally anoxic reservoir. Freshw. Sci. 2018, 37, 483–495. [Google Scholar] [CrossRef]
- Padisak, J.; Barbosa, F.; Koschel, R.; Krienitz, L. Deep layer cyanoprokaryota maxima in temperate and tropical lakes. Arch. Hydrobiol. 2003, 58, 175–199. [Google Scholar]
- Molot, L.A.; Watson, S.B.; Creed, I.F.; Trick, C.G.; McCabe, S.K.; Verschoor, M.J.; Sorichetti, R.J.; Powe, C.; Venkiteswaran, J.J.; Schiff, S.L. A novel model for cyanobacteria bloom formation: The critical role of anoxia and ferrous iron. Freshw. Biol. 2014, 59, 1323–1340. [Google Scholar] [CrossRef]
- Selmeczy, G.; Tapolczai, K.; Casper, P.; Krienitz, L.; Padisak, J. Spatial- and niche segregation of DCM-forming cyanobacteria in Lake Stechlin (Germany). Hydrobiologia 2015, 764, 229–240. [Google Scholar] [CrossRef]
- Padisak, J.; Krienitz, L.; Koschel, R.; Nedoma, J. Deep-layer autotrophic picoplankton maximum in the oligotrophic Lake Stechlin, Germany: Origin, activity, development and erosion. Eur. J. Phycol. 1997, 32, 403–416. [Google Scholar] [CrossRef]
- Taranu, Z.E.; Zastepa, A.; Creed, I.; Pick, F.R. Beyond total microcystins, the importance of examining different microcystin variants. LakeLine 2017, 37, 14–18. [Google Scholar]
- Rantala-Ylinen, A.; Känä, S.; Wang, H.; Rouhiainen, L.; Wahlsten, M.; Rizzi, E.; Berg, K.; Gugger, M.; Sivonen, K. Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. Strain 37 and molecular methods to detect potential producers. Appl. Environ. Microbiol. 2011, 77, 7271–7278. [Google Scholar] [CrossRef] [Green Version]
- Beversdorf, L.J.; Weirich, C.A.; Bartlett, S.L.; Miller, T.R. Variable cyanobacterial toxin and metabolite profiles across six eutrophic lakes of differing physiochemical characteristics. Toxins 2017, 9, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartlett, S.; Brunner, S.; Klump, J.; Houghton, E.M.; Miller, T.R. Spatial analysis of toxic or otherwise bioactive cyanobacterial peptides in Green Bay, Lake Michigan. J. Great Lakes Res. 2018, 44, 924–933. [Google Scholar] [CrossRef] [PubMed]
- Chorus, I.; Sivonen, K.; Codd, G.A.; Börner, T.; Von Doehren, H.; Welker, M.; Dittmann, E.; Claussner, Y.; Christopffersen, K.; Schober, E.; et al. Toxic and Bioactive Peptides in Cyanobacteria. 2006. Available online: https://ci.nii.ac.jp/naid/10030356501/ (accessed on 26 June 2021).
- Rohrlack, T.; Christiansen, G.; Kurmayer, R. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in cyanobacteria of the genus Planktothrix. Appl. Environ. Microbiol. 2013, 79, 2642–2647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charlton, M.; Mayne, G. Science and Monitoring Synthesis for South-Eastern Georgian Bay; Report prepared for Environment Canada. 2013. Available online: https://www.stateofthebay.ca/wp-content/uploads/2019/03/Science-and-Monitoring-Synthesis-for-South-Eastern-Georgian-Bay_Charlton-and-Mayne_2013.pdf (accessed on 26 June 2021).
- NLET (National Laboratory for Environmental Testing). Schedule of Services. Environment and Climate Change Canada, C.C.f.I.W.; NLET (National Laboratory for Environmental Testing): Burlington, ON, Canada, 1997. [Google Scholar]
- Findlay, D.; Kling, H. Protocols for Measuring Biodiversity: Phytoplankton in Freshwater. 2003. Available online: https://www.researchgate.net/publication/264881321_Protocols_for_measuring_biodiversity_Phytoplankton_in_freshwater (accessed on 26 June 2021).
Mixed | Stratified | |||||
---|---|---|---|---|---|---|
Site | Zsite (m) | Zeu (m) | Zeu (m) | Zmix (m) | Zeu:Zmix | DCL (m) |
Byng Inlet | 5 | 3.0 | - | 5 | - | N |
Sturgeon Bay North | 14 | 2.4 | 4.5 | 8 | 0.6 | N |
Sturgeon Bay South | 6 | - | - | - | - | N |
Deep Bay | 15 | 2.7 | 3.7 | 8 | 0.5 | N a |
Woods Bay | 8 | - | - | - | - | N |
Twelve Mile Bay | 12 | 3.4 | 9.1 | 7 | 1.3 | Y (~9) |
Tadenac Bay | 24 | 6.5 | 5.3 | 11 | 0.5 | N |
Go Home Bay | 10 | 3.6 | - | - | - | N |
Longuissa Bay | 9 | 3.8 | 4.7 | 8 | 0.6 | N |
Cognashene Lake | 16 | 3.9 | 9.5 | 7 | 1.4 | N |
Musqwash Bay West | 30 | - | - | - | - | N |
Musqwash Bay East | 20 | - | - | - | - | N |
North Bay | 18 | 3.2 | 6.4 | 8 | 0.8 | N |
South Bay | 10 | 3.9 | 5.7 | 6 | 1.0 | Y (~7) |
Honey Harbour | 7 | 4.6 | 3.6 | 7 | 0.5 | N |
Nutrient | Twelve Mile Bay | South Bay | ||||
---|---|---|---|---|---|---|
Hypo | Epi | Hypo: Epi | Hypo | Epi | Hypo:Epi | |
P | 15 | 14 | 1 | 232 | 13 | 18 |
Fe | 127 | 8 | 16 | 4160 | 10 | 408 |
NO2/3 | 11 | 9 | 1 | 6 | 8 | 0.8 |
Si | 2.5 | 1.3 | 2 | 8 | 4 | 2 |
Mn | 210 | 0.3 | 660 | 1020 | 0.5 | 2040 |
Co | 0.2 | 0.01 | 20 | 0.3 | 0.01 | 26 |
NH4 | 20 | 5 | 4 | 589 | 5.5 | 107 |
SO4 | 10 | 11 | 1 | 2.3 | 7.7 | 0.3 |
DON | 212 | 196 | 1 | 367 | 299 | 1 |
PO4 | 0.4 | 0.8 | 0.5 | 172 | 0.7 | 246 |
Sites | MCs | STXs | APTs | CPTs | MGs | |||||
---|---|---|---|---|---|---|---|---|---|---|
Byng Inlet | - | - | - | - | - | - | - | - | - | - |
Sturgeon Bay North | + | 0.01 | - | - | - | - | - | - | - | - |
Sturgeon Bay South | NM | NM | NM | NM | NM | NM | NM | NM | NM | NM |
Deep Bay | - | - | - | - | - | - | - | - | - | - |
Woods Bay | NM | NM | NM | NM | NM | NM | NM | NM | NM | NM |
Twelve Mile Bay 3 | + | 0.4 | - | - | + | 6.6 | + | 0.001 | - | - |
Tadenac Bay | + | 0.01 | - | - | - | - | - | - | - | - |
Go Home Bay | - | - | - | - | - | - | - | - | - | - |
Longuissa Bay | - | - | - | - | - | - | - | - | - | - |
Cognashene Lake | - | - | - | - | - | - | - | - | - | - |
Musqwash Bay West | NM | NM | NM | NM | NM | NM | NM | NM | NM | NM |
Musqwash Bay East | NM | NM | NM | NM | NM | NM | NM | NM | NM | NM |
North Bay | - | - | + | - | - | - | - | - | - | - |
South Bay | + | 0.03 | - | - | + | 0.01 | + | 0.001 | + | - |
Honey Harbour | + | 0.04 | - | - | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zastepa, A.; Miller, T.R.; Watson, L.C.; Kling, H.; Watson, S.B. Toxins and Other Bioactive Metabolites in Deep Chlorophyll Layers Containing the Cyanobacteria Planktothrix cf. isothrix in Two Georgian Bay Embayments, Lake Huron. Toxins 2021, 13, 445. https://doi.org/10.3390/toxins13070445
Zastepa A, Miller TR, Watson LC, Kling H, Watson SB. Toxins and Other Bioactive Metabolites in Deep Chlorophyll Layers Containing the Cyanobacteria Planktothrix cf. isothrix in Two Georgian Bay Embayments, Lake Huron. Toxins. 2021; 13(7):445. https://doi.org/10.3390/toxins13070445
Chicago/Turabian StyleZastepa, Arthur, Todd R. Miller, L. Cynthia Watson, Hedy Kling, and Susan B. Watson. 2021. "Toxins and Other Bioactive Metabolites in Deep Chlorophyll Layers Containing the Cyanobacteria Planktothrix cf. isothrix in Two Georgian Bay Embayments, Lake Huron" Toxins 13, no. 7: 445. https://doi.org/10.3390/toxins13070445
APA StyleZastepa, A., Miller, T. R., Watson, L. C., Kling, H., & Watson, S. B. (2021). Toxins and Other Bioactive Metabolites in Deep Chlorophyll Layers Containing the Cyanobacteria Planktothrix cf. isothrix in Two Georgian Bay Embayments, Lake Huron. Toxins, 13(7), 445. https://doi.org/10.3390/toxins13070445