Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = mitochondrial cristae membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 10579 KiB  
Article
Infectious Spleen and Kidney Necrosis Virus Triggers Ferroptosis in CPB Cells to Enhance Virus Replication
by Qiushuang Zhang, Ouqin Chang, Qiang Lin, Hongru Liang, Yinjie Niu, Xia Luo, Baofu Ma, Ningqiu Li and Xiaozhe Fu
Viruses 2025, 17(5), 713; https://doi.org/10.3390/v17050713 - 16 May 2025
Viewed by 496
Abstract
The role of ferroptosis—a novel iron-dependent programmed cell death pathway—in infectious spleen and kidney necrosis virus (ISKNV) infection remains poorly understood. Here, we demonstrate that ISKNV infection induces ferroptosis in CPB cells. Following ISKNV challenge, CPB cells exhibited hallmark morphological alterations including mitochondrial [...] Read more.
The role of ferroptosis—a novel iron-dependent programmed cell death pathway—in infectious spleen and kidney necrosis virus (ISKNV) infection remains poorly understood. Here, we demonstrate that ISKNV infection induces ferroptosis in CPB cells. Following ISKNV challenge, CPB cells exhibited hallmark morphological alterations including mitochondrial shrinkage, increased membrane density, and cristae reduction. Biochemical assays confirmed significant time-dependent elevations in ferroptosis markers: malondialdehyde (MDA, 1.7-fold), reactive oxygen species (ROS, 3.14-fold), and ferrous iron (Fe2+, 1.42-fold) compared to controls (p < 0.05). Mechanistic studies revealed that ISKNV downregulated glutathione peroxidase 4 (GPx4) while upregulating acyl-CoA synthetase long-chain family member 4 (ACSL4), as validated by quantitative real-time PCR (qRT-PCR) and immunoblotting. Ferroptosis induction with erastin enhanced ISKNV replication, whereas inhibition with liproxstatin-1 suppressed viral yield. These findings establish that ISKNV exploits ferroptosis to facilitate its replication, and pharmacological blockade of this pathway significantly suppresses viral propagation, providing a new strategy and intervention approach for controlling ISKNV infection. Full article
(This article belongs to the Special Issue Aquatic Animal Viruses and Antiviral Immunity)
Show Figures

Figure 1

15 pages, 15102 KiB  
Article
The Curse of the Red Pearl: A Fibroblast-Specific Pearl-Necklace Mitochondrial Phenotype Caused by Phototoxicity
by Irene M. G. M. Hemel, Kèvin Knoops, Carmen López-Iglesias and Mike Gerards
Biomolecules 2025, 15(2), 304; https://doi.org/10.3390/biom15020304 - 19 Feb 2025
Viewed by 723
Abstract
The dynamic nature of mitochondria makes live cell imaging an important tool in mitochondrial research. Although imaging using fluorescent probes is the golden standard in studying mitochondrial morphology, these probes might introduce aspecific features. In this study, live cell fluorescent imaging was applied [...] Read more.
The dynamic nature of mitochondria makes live cell imaging an important tool in mitochondrial research. Although imaging using fluorescent probes is the golden standard in studying mitochondrial morphology, these probes might introduce aspecific features. In this study, live cell fluorescent imaging was applied to investigate a pearl-necklace-shaped mitochondrial phenotype that arises when mitochondrial fission is restricted. In this fibroblast-specific pearl-necklace phenotype, constricted and expanded mitochondrial regions alternate. Imaging studies revealed that the formation time of this pearl-necklace phenotype differs between laser scanning confocal, widefield and spinning disk confocal microscopy. We found that the phenotype formation correlates with the excitation of the fluorescent probe and is the result of phototoxicity. Interestingly, the phenotype only arises in cells stained with red mitochondrial dyes. Serial section electron tomography of the pearl-necklace mitochondria revealed that the mitochondrial membranes remained intact, while the cristae structure was altered. Furthermore, filaments and ER were present at the constricted sites. This study illustrates the importance of considering experimental conditions for live cell imaging to prevent imaging artifacts that can have a major impact on the obtained results. Full article
Show Figures

Figure 1

23 pages, 5276 KiB  
Article
How the Topology of the Mitochondrial Inner Membrane Modulates ATP Production
by Raquel Adams, Nasrin Afzal, Mohsin Saleet Jafri and Carmen A. Mannella
Cells 2025, 14(4), 257; https://doi.org/10.3390/cells14040257 - 11 Feb 2025
Cited by 1 | Viewed by 1213
Abstract
Cells in heart muscle need to generate ATP at or near peak capacity to meet their energy demands. Over 90% of this ATP comes from mitochondria, strategically located near myofibrils and densely packed with cristae to concentrate ATP generation per unit volume. However, [...] Read more.
Cells in heart muscle need to generate ATP at or near peak capacity to meet their energy demands. Over 90% of this ATP comes from mitochondria, strategically located near myofibrils and densely packed with cristae to concentrate ATP generation per unit volume. However, a consequence of dense inner membrane (IM) packing is that restricted metabolite diffusion inside mitochondria may limit ATP production. Under physiological conditions, the flux of ATP synthase is set by ADP levels in the matrix, which in turn depends on diffusion-dependent concentration of ADP inside cristae. Computer simulations show how ADP diffusion and consequently rates of ATP synthesis are modulated by IM topology, in particular (i) number, size, and positioning of crista junctions that connect cristae to the IM boundary region, and (ii) branching of cristae. Predictions are compared with the actual IM topology of a cardiomyocyte mitochondrion in which cristae vary systematically in length and morphology. The analysis indicates that this IM topology decreases but does not eliminate the “diffusion penalty” on ATP output. It is proposed that IM topology normally attenuates mitochondrial ATP output under conditions of low workload and can be regulated by the cell to better match ATP supply to demand. Full article
(This article belongs to the Section Mitochondria)
Show Figures

Graphical abstract

19 pages, 5416 KiB  
Article
The Potential Mechanism of Cuproptosis in Hemocytes of the Pacific Oyster Crassostrea gigas upon Elesclomol Treatment
by Yuxin Zhang, Jiejie Sun, Shurong Li, Lingling Wang and Linsheng Song
Cells 2025, 14(3), 199; https://doi.org/10.3390/cells14030199 - 29 Jan 2025
Cited by 2 | Viewed by 1094
Abstract
Cuproptosis is a novel cell death dependent on mitochondrial respiration and regulated by copper. While the study of it is mainly focused on tumor therapy, in the present study, two key cuproptosis-related genes, ferredoxin (FDX1) and dihydrolipoamide S-acetyltransferase (DLAT) [...] Read more.
Cuproptosis is a novel cell death dependent on mitochondrial respiration and regulated by copper. While the study of it is mainly focused on tumor therapy, in the present study, two key cuproptosis-related genes, ferredoxin (FDX1) and dihydrolipoamide S-acetyltransferase (DLAT) homologs (designated as CgFDX1 and CgDLAT), were identified from Crassostrea gigas. CgFDX1 has a Fer2 domain with a 2Fe-2S cluster forming a unique ferredoxin. CgDLAT is composed of a biotin_lipoyl domain, an E3-binding domain, and a 2-oxoacid_dh domain. CgFDX1 and CgDLAT mRNA were expressed in all the examined tissues. After elesclomol treatment, both mRNA and protein expressions of them were reduced in the hemocytes. The mortality rate of the hemocytes increased significantly, and the hemocytes were accompanied with noticeable adhesive abnormalities and heightened secretion after elesclomol treatment. Additionally, the accumulation or depletion of actin was observed in the hemocytes. The integrity of the double membrane structure of the mitochondria was compromised, and the organization of mitochondrial cristae was disrupted. The contents of copper, malondialdehyde (MDA), pyruvic acid and mitoSOX as well as the ratio of cells with low mitochondrial potential increased significantly in the hemocytes upon elesclomol treatment and the content of citric acid decreased significantly. These findings suggest the potential presence of cuproptosis in oysters and its activation mechanism is relatively conserved in evolution. Full article
Show Figures

Figure 1

15 pages, 1422 KiB  
Review
Elamipretide: A Review of Its Structure, Mechanism of Action, and Therapeutic Potential
by Cheryl Tung, Fahimeh Varzideh, Emanuele Farroni, Pasquale Mone, Urna Kansakar, Stanislovas S. Jankauskas and Gaetano Santulli
Int. J. Mol. Sci. 2025, 26(3), 944; https://doi.org/10.3390/ijms26030944 - 23 Jan 2025
Cited by 7 | Viewed by 4956
Abstract
Mitochondria serve an essential metabolic and energetic role in cellular activity, and their dysfunction has been implicated in a wide range of disorders, including cardiovascular conditions, neurodegenerative disorders, and metabolic syndromes. Mitochondria-targeted therapies, such as Elamipretide (SS-31, MTP-131, Bendavia), have consequently emerged as [...] Read more.
Mitochondria serve an essential metabolic and energetic role in cellular activity, and their dysfunction has been implicated in a wide range of disorders, including cardiovascular conditions, neurodegenerative disorders, and metabolic syndromes. Mitochondria-targeted therapies, such as Elamipretide (SS-31, MTP-131, Bendavia), have consequently emerged as a topic of scientific and clinical interest. Elamipretide has a unique structure allowing for uptake in a variety of cell types and highly selective mitochondrial targeting. This mitochondria-targeting tetrapeptide selectively binds cardiolipin (CL), a lipid found in the inner mitochondrial membrane, thus stabilizing mitochondrial cristae structure, reducing oxidative stress, and enhancing adenosine triphosphate (ATP) production. Preclinical studies have demonstrated the protective and restorative efficacy of Elamipretide in models of heart failure, neurodegeneration, ischemia–reperfusion injury, metabolic syndromes, and muscle atrophy and weakness. Clinical trials such as PROGRESS-HF, TAZPOWER, MMPOWER-3, and ReCLAIM elaborate on preclinical findings and highlight the significant therapeutic potential of Elamipretide. Further research may expand its application to other diseases involving mitochondrial dysfunction as well as investigate long-term efficacy and safety of the drug. The following review synthesizes current knowledge of the structure, mechanisms of action, and the promising therapeutic role of Elamipretide in stabilizing mitochondrial fitness, improving mitochondrial bioenergetics, and minimizing oxidative stress. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

11 pages, 1074 KiB  
Communication
Ezetimibe Enhances Lipid Droplet and Mitochondria Contact Formation, Improving Fatty Acid Transfer and Reducing Lipotoxicity in Alport Syndrome Podocytes
by Jin-Ju Kim, Eun-Jeong Yang, Judith Molina David, Sunjoo Cho, Maria Ficarella, Nils Pape, Josephin Elizabeth Schiffer, Rachel Njeim, Stephanie S. Kim, Claudia Lo Re, Antonio Fontanella, Maria Kaber, Alexis Sloan, Sandra Merscher and Alessia Fornoni
Int. J. Mol. Sci. 2024, 25(23), 13134; https://doi.org/10.3390/ijms252313134 - 6 Dec 2024
Cited by 2 | Viewed by 1794
Abstract
Mitochondrial dysfunction is a critical factor in the pathogenesis of Alport syndrome (AS), contributing to podocyte injury and disease progression. Ezetimibe, a lipid-lowering drug, is known to inhibit cholesterol and fatty acid uptake and to reduce triglyceride content in the kidney cortex of [...] Read more.
Mitochondrial dysfunction is a critical factor in the pathogenesis of Alport syndrome (AS), contributing to podocyte injury and disease progression. Ezetimibe, a lipid-lowering drug, is known to inhibit cholesterol and fatty acid uptake and to reduce triglyceride content in the kidney cortex of mice with AS. However, its effects on lipid droplet (LD) utilization by mitochondria have not been explored. Transmission electron microscopy (TEM) and mitochondrial functional assays (ATP production, mitochondrial membrane potential, and citrate synthase activity) were used to investigate the impact of ezetimibe on LD–mitochondria contact formation and mitochondrial function in Col4a3KO (AS) and wildtype (WT) podocytes. TEM analysis revealed significant mitochondrial abnormalities in AS podocytes, including swollen mitochondria and reduced cristae density, while mitochondrial function assays showed decreased ATP production and lowered mitochondrial membrane potential. AS podocytes also demonstrated a higher content of LD but with reduced LD–mitochondria contact sites. Ezetimibe treatment significantly increased the number of LD–mitochondria contact sites, enhanced fatty acid transfer efficiency, and reduced intracellular lipid accumulation. These changes were associated with a marked reduction in the markers of lipotoxicity, such as apoptosis and oxidative stress. Mitochondrial function was significantly improved, evidenced by increased basal respiration, ATP production, maximal respiration capacity, and the restoration of mitochondrial membrane potential. Additionally, mitochondrial swelling was significantly reduced in ezetimibe-treated AS podocytes. Our findings reveal a novel role for ezetimibe in enhancing LD–mitochondria contact formation, leading to more efficient fatty acid transfer, reduced lipotoxicity, and improved mitochondrial function in AS podocytes. These results suggest that ezetimibe could be a promising therapeutic agent for treating mitochondrial dysfunction and lipid metabolism abnormalities in AS. Full article
Show Figures

Figure 1

17 pages, 4502 KiB  
Article
Molecular Profiling of Mouse Models of Loss or Gain of Function of the KCNT1 (Slack) Potassium Channel and Antisense Oligonucleotide Treatment
by Fangxu Sun, Huafeng Wang, Jing Wu, Imran H. Quraishi, Yalan Zhang, Maysam Pedram, Benbo Gao, Elizabeth A. Jonas, Viet Nguyen, Sijia Wu, Omar S. Mabrouk, Paymaan Jafar-nejad and Leonard K. Kaczmarek
Biomolecules 2024, 14(11), 1397; https://doi.org/10.3390/biom14111397 - 2 Nov 2024
Cited by 1 | Viewed by 2411
Abstract
The potassium sodium-activated channel subtype T member 1 (KCNT1) gene encodes the Slack channel KNa1.1, which is expressed in neurons throughout the brain. Gain-of-function variants in KCNT1 are associated with a spectrum of epilepsy syndromes, and mice carrying those [...] Read more.
The potassium sodium-activated channel subtype T member 1 (KCNT1) gene encodes the Slack channel KNa1.1, which is expressed in neurons throughout the brain. Gain-of-function variants in KCNT1 are associated with a spectrum of epilepsy syndromes, and mice carrying those variants exhibit a robust phenotype similar to that observed in patients. Kcnt1 knockout (KO) mice, however, have a normal lifespan without any epileptic phenotype. To understand the molecular differences between these two models, we conducted a comprehensive proteomic analysis of the cerebral cortices of Kcnt1 KO and Kcnt1R455H/+ mice, an animal model bearing a cytoplasmic C-terminal mutation homologous to a human R474H variant that results in EIMFS. The greatest change observed in Kcnt1 KO mice compared to the wild-type mice was the increased expression of multiple proteins of the inner mitochondrial membrane. Electron microscopy studies of cortical mitochondria from Kcnt1 KO mice further confirmed a significant increase in the density of mitochondrial cristae compared to that in wild-type mice. Kcnt1 reduction by a murine-specific Kcnt1 antisense oligonucleotide (ASO) in Kcnt1R455H/+ mice partially corrected the proteomic dysregulations in the disease model. The results support the hypothesis that ASO-mediated KCNT1 reduction could be therapeutically useful in the treatment of KCNT1 epilepsies. Full article
(This article belongs to the Special Issue Advances in Neuroproteomics)
Show Figures

Figure 1

15 pages, 6531 KiB  
Article
Effects on Iron Metabolism and System Xc /GPX4 Pathway from Hydroquinone Suggest Ferroptosis of Jurkat Cells
by Nana Liu, Ge Liu, Qiang Li, Yipeng Hu and Hong Wang
Toxics 2024, 12(9), 644; https://doi.org/10.3390/toxics12090644 - 31 Aug 2024
Cited by 1 | Viewed by 1440
Abstract
Prolonged exposure to hydroquinone (HQ), a metabolite of benzene, can cause severe haematologic disorders in humans. However, the mechanism is still unclear. In the present study, we investigated whether HQ can induce haematological diseases through ferroptosis, which is another form of cell death [...] Read more.
Prolonged exposure to hydroquinone (HQ), a metabolite of benzene, can cause severe haematologic disorders in humans. However, the mechanism is still unclear. In the present study, we investigated whether HQ can induce haematological diseases through ferroptosis, which is another form of cell death apart from apoptosis. The results showed that HQ inhibited the viability of Jurkat cells in a dose-dependent and time-dependent manner. The half inhibitory concentrations (IC50s) of HQ-treated Jurkat cells for 12 h, 24 h and 48 h were 107.16 μmol/L, 33.29 μmol/L, and 14.78 μmol/L. The exposure of Jurkat cells to HQ increased intracellular Fe2+, malondialdehyde (MDA) and lipid reactive oxygen species (ROS) levels and down-regulated glutathione (GSH) levels. We used erastin-treated cells as a positive control and cells treated with HQ combined with deferoxamine mesylate (DFO) and ferrostain-1 (Fer-1)-treated cells as the negative controls. DFO and Fer-1 partially restored the degradation of cell viability and GSH content and the accumulation of Fe2+, MDA and lipid ROS caused by HQ. In addition, we found that cellular mitochondria in the HQ-treated group showed a decrease in volume, an increase in the density of the bilayer membrane and a decrease or disappearance of mitochondrial cristae. Changes in the erastin-treated group were similar to those in the HQ-treated group. We inferred that HQ induces ferroptosis in Jurkat cells. Subsequently, we found that HQ up-regulated the levels of transferrin receptor 1 (TFRC) mRNA and protein expression and down-regulated FTH1, SLC7A11 and synthetic substrate of antioxidant enzyme 4 (GPX4) mRNA levels and protein expression levels. However, the exposure of Jurkat cells to HQ with DFO and Fer-1 alleviated these changes. Notably, the activation of TFRC and the inhibition of FTH1 and System Xc (cystine–glutamate reverse transporter protein) /GPX4 were associated with HQ-induced ferroptosis. These results provide novel insights into how HQ exacerbates haematopoietic cytotoxicity and provide potential targets for the prevention of HQ-induced diseases. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

14 pages, 4930 KiB  
Article
Apoptosis and Oxidative Stress in Human Intestinal Epithelial Caco-2 Cells Caused by Marine Phycotoxin Azaspiracid-2
by Liye Zhao, Jiangbing Qiu, Jingrui Zhang, Aifeng Li and Guixiang Wang
Toxins 2024, 16(9), 381; https://doi.org/10.3390/toxins16090381 - 31 Aug 2024
Cited by 2 | Viewed by 2346
Abstract
When humans consume seafood contaminated by lipophilic polyether phycotoxins, such as azaspiracids (AZAs), the toxins are mainly leached and absorbed in the small intestine, potentially causing intestinal damage. In this study, human intestinal epithelial Caco-2 cells were used to investigate the adverse effects [...] Read more.
When humans consume seafood contaminated by lipophilic polyether phycotoxins, such as azaspiracids (AZAs), the toxins are mainly leached and absorbed in the small intestine, potentially causing intestinal damage. In this study, human intestinal epithelial Caco-2 cells were used to investigate the adverse effects of azaspiracid-2 (AZA-2) on human intestinal epithelial cells. Cell viability, apoptosis, oxidative damage and mitochondrial ultrastructure were investigated, and ribonucleic acid sequence (RNA-seq) analysis was applied to explore the potential mechanisms of AZA-2 toxicity to Caco-2 cells. Results showed that AZA-2 significantly reduced the proliferation of Caco-2 cells in a concentration-dependent response, and the 48 h EC50 of AZA-2 was 12.65 nmol L−1. AZA-2 can induce apoptosis in Caco-2 cells in a dose-dependent manner. Visible mitochondrial swelling, cristae disintegration, membrane rupture and autophagy were observed in Caco-2 cells exposed to AZA-2. Reactive oxygen species (ROS) and malondialdehyde (MDA) content were significantly increased in Caco-2 cells after 48 h of exposure to 1 and 10 nmol L−1 of AZA-2. Transcriptome analysis showed that KEGG pathways related to cellular oxidative damage and lipid metabolism were affected, mainly including mitophagy, oxidative phosphorylation, cholesterol metabolism, vitamin digestion and absorption, bile secretion and the peroxisome proliferator-activated receptor signaling pathway. The cytotoxic effects of AZA-2 on Caco-2 cells may be associated with ROS-mediated autophagy and apoptosis in mitochondrial cells. Results of this study improve understanding of the cytotoxicity and molecular mechanisms of AZA-2 on Caco-2 cells, which is significant for protecting human health. Full article
Show Figures

Figure 1

18 pages, 5871 KiB  
Article
Plasmodium falciparum Mitochondrial Complex III, the Target of Atovaquone, Is Essential for Progression to the Transmissible Sexual Stages
by Pradeep Kumar Sheokand, Sabyasachi Pradhan, Andrew E. Maclean, Alexander Mühleip and Lilach Sheiner
Int. J. Mol. Sci. 2024, 25(17), 9239; https://doi.org/10.3390/ijms25179239 - 26 Aug 2024
Cited by 5 | Viewed by 2215
Abstract
The Plasmodium falciparum mitochondrial electron transport chain (mETC) is responsible for essential metabolic pathways such as de novo pyrimidine synthesis and ATP synthesis. The mETC complex III (cytochrome bc1 complex) is responsible for transferring electrons from ubiquinol to cytochrome c and generating [...] Read more.
The Plasmodium falciparum mitochondrial electron transport chain (mETC) is responsible for essential metabolic pathways such as de novo pyrimidine synthesis and ATP synthesis. The mETC complex III (cytochrome bc1 complex) is responsible for transferring electrons from ubiquinol to cytochrome c and generating a proton gradient across the inner mitochondrial membrane, which is necessary for the function of ATP synthase. Recent studies have revealed that the composition of Plasmodium falciparum complex III (PfCIII) is divergent from humans, highlighting its suitability as a target for specific inhibition. Indeed, PfCIII is the target of the clinically used anti-malarial atovaquone and of several inhibitors undergoing pre-clinical trials, yet its role in parasite biology has not been thoroughly studied. We provide evidence that the universally conserved subunit, PfRieske, and the new parasite subunit, PfC3AP2, are part of PfCIII, with the latter providing support for the prediction of its divergent composition. Using inducible depletion, we show that PfRieske, and therefore, PfCIII as a whole, is essential for asexual blood stage parasite survival, in line with previous observations. We further found that depletion of PfRieske results in gametocyte maturation defects. These phenotypes are linked to defects in mitochondrial functions upon PfRieske depletion, including increased sensitivity to mETC inhibitors in asexual stages and decreased cristae abundance alongside abnormal mitochondrial morphology in gametocytes. This is the first study that explores the direct role of the PfCIII in gametogenesis via genetic disruption, paving the way for a better understanding of the role of mETC in the complex life cycle of these important parasites and providing further support for the focus of antimalarial drug development on this pathway. Full article
(This article belongs to the Special Issue Advances in Therapeutics against Eukaryotic Pathogens)
Show Figures

Figure 1

21 pages, 3518 KiB  
Article
Protective Effect of Uridine on Structural and Functional Rearrangements in Heart Mitochondria after a High-Dose Isoprenaline Exposure Modelling Stress-Induced Cardiomyopathy in Rats
by Natalia V. Belosludtseva, Lubov L. Pavlik, Irina B. Mikheeva, Eugeny Yu. Talanov, Dmitriy A. Serov, Dmitriy A. Khurtin, Konstantin N. Belosludtsev and Galina D. Mironova
Int. J. Mol. Sci. 2023, 24(24), 17300; https://doi.org/10.3390/ijms242417300 - 9 Dec 2023
Cited by 5 | Viewed by 2373
Abstract
The pyrimidine nucleoside uridine and its phosphorylated derivates have been shown to be involved in the systemic regulation of energy and redox balance and promote the regeneration of many tissues, including the myocardium, although the underlying mechanisms are not fully understood. Moreover, rearrangements [...] Read more.
The pyrimidine nucleoside uridine and its phosphorylated derivates have been shown to be involved in the systemic regulation of energy and redox balance and promote the regeneration of many tissues, including the myocardium, although the underlying mechanisms are not fully understood. Moreover, rearrangements in mitochondrial structure and function within cardiomyocytes are the predominant signs of myocardial injury. Accordingly, this study aimed to investigate whether uridine could alleviate acute myocardial injury induced by isoprenaline (ISO) exposure, a rat model of stress-induced cardiomyopathy, and to elucidate the mechanisms of its action related to mitochondrial dysfunction. For this purpose, a biochemical analysis of the relevant serum biomarkers and ECG monitoring were performed in combination with transmission electron microscopy and a comprehensive study of cardiac mitochondrial functions. The administration of ISO (150 mg/kg, twice with an interval of 24 h, s.c.) to rats caused myocardial degenerative changes, a sharp increase in the serum cardiospecific markers troponin I and the AST/ALT ratio, and a decline in the ATP level in the left ventricular myocardium. In parallel, alterations in the organization of sarcomeres with focal disorganization of myofibrils, and ultrastructural and morphological defects in mitochondria, including disturbances in the orientation and packing density of crista membranes, were detected. These malfunctions were improved by pretreatment with uridine (30 mg/kg, twice with an interval of 24 h, i.p.). Uridine also led to the normalization of the QT interval. Moreover, uridine effectively inhibited ISO-induced ROS overproduction and lipid peroxidation in rat heart mitochondria. The administration of uridine partially recovered the protein level of the respiratory chain complex V, along with the rates of ATP synthesis and mitochondrial potassium transport, suggesting the activation of the potassium cycle through the mitoKATP channel. Taken together, these results indicate that uridine ameliorates acute ISO-induced myocardial injury and mitochondrial malfunction, which may be due to the activation of mitochondrial potassium recycling and a mild uncoupling leading to decreased ROS generation and oxidative damage. Full article
(This article belongs to the Special Issue Mitochondrial Function in Health and Disease, 3rd Edition)
Show Figures

Figure 1

18 pages, 3843 KiB  
Article
A Naturally Derived Watercress Flower-Based Phenethyl Isothiocyanate-Enriched Extract Induces the Activation of Intrinsic Apoptosis via Subcellular Ultrastructural and Ca2+ Efflux Alterations in an In Vitro Model of Human Malignant Melanoma
by Sotiris Kyriakou, Louiza Potamiti, Nikoletta Demosthenous, Tom Amery, Kyle Stewart, Paul G. Winyard, Rodrigo Franco, Aglaia Pappa and Mihalis I. Panayiotidis
Nutrients 2023, 15(18), 4044; https://doi.org/10.3390/nu15184044 - 18 Sep 2023
Cited by 7 | Viewed by 2669
Abstract
The aim of the current study was to (i) extract isolated fractions of watercress flowers enriched in polyphenols, phenethyl isothiocyanate and glucosinolates and (ii) characterize the anticancer mode of action of non-lethal, sub-lethal and lethal concentrations of the most potent extract fraction in [...] Read more.
The aim of the current study was to (i) extract isolated fractions of watercress flowers enriched in polyphenols, phenethyl isothiocyanate and glucosinolates and (ii) characterize the anticancer mode of action of non-lethal, sub-lethal and lethal concentrations of the most potent extract fraction in primary (A375) and metastatic (COLO-679) melanoma cells as well as non-tumorigenic immortalized keratinocyte (HaCaT) cells. Cytotoxicity was assessed via the Alamar Blue assay, whereas ultrastructural alterations in mitochondria and the endoplasmic reticulum were determined via transmission electron microscopy. Mitochondrial membrane depolarization was determined using Mito-MP dye, whereas apoptosis was evaluated through the activation of caspases-3, -8 and -9. Among all extract fractions, the phenethyl isothiocyanate-enriched one (PhEF) possessed significant cytotoxicity against A375 and COLO-679 cells, while HaCaT cells remained relatively resistant at sub-lethal and lethal concentrations. Additionally, ultrastructural subcellular alterations associated with apoptosis were observed by means of increased mitochondrial area and perimeter, decreased cristae density and a shorter distance of the endoplasmic reticulum to the mitochondria, all taking place during “early” time points (2–4 h) of exposure. Moreover, PhEF induced mitochondrial membrane depolarization associated with “late” time points (24 h) of exposure, thereby leading to the activation of intrinsic apoptosis. Finally, the inhibition of cytosolic Ca2+ efflux reduced levels of caspases-9 and -3 activity, suggesting the involvement of Ca2+ efflux in modulating the activation of intrinsic apoptosis. To conclude, our data demonstrate an association of “early” ultrastructural alterations in mitochondria and the endoplasmic reticulum with the “late” induction of intrinsic apoptosis via the modulation of Ca2+ efflux. Full article
(This article belongs to the Special Issue Nutritional Regulation of Plant Extracts on Human Health)
Show Figures

Figure 1

15 pages, 1948 KiB  
Article
The Role of Swelling in the Regulation of OPA1-Mediated Mitochondrial Function in the Heart In Vitro
by Xavier R. Chapa-Dubocq, Keishla M. Rodríguez-Graciani, Jorge García-Báez, Alyssa Vadovsky, Jason N. Bazil and Sabzali Javadov
Cells 2023, 12(16), 2017; https://doi.org/10.3390/cells12162017 - 8 Aug 2023
Cited by 5 | Viewed by 2225
Abstract
Optic atrophy-1 (OPA1) plays a crucial role in the regulation of mitochondria fusion and participates in maintaining the structural integrity of mitochondrial cristae. Here we elucidate the role of OPA1 cleavage induced by calcium swelling in the presence of Myls22 (an OPA1 GTPase [...] Read more.
Optic atrophy-1 (OPA1) plays a crucial role in the regulation of mitochondria fusion and participates in maintaining the structural integrity of mitochondrial cristae. Here we elucidate the role of OPA1 cleavage induced by calcium swelling in the presence of Myls22 (an OPA1 GTPase activity inhibitor) and TPEN (an OMA1 inhibitor). The rate of ADP-stimulated respiration was found diminished by both inhibitors, and they did not prevent Ca2+-induced mitochondrial respiratory dysfunction, membrane depolarization, or swelling. L-OPA1 cleavage was stimulated at state 3 respiration; therefore, our data suggest that L-OPA1 cleavage produces S-OPA1 to maintain mitochondrial bioenergetics in response to stress. Full article
(This article belongs to the Special Issue Mitochondria at the Crossroad of Health and Disease)
Show Figures

Graphical abstract

17 pages, 1557 KiB  
Review
ATAD3A: A Key Regulator of Mitochondria-Associated Diseases
by Liting Chen, Yuchang Li, Alexander Zambidis and Vassilios Papadopoulos
Int. J. Mol. Sci. 2023, 24(15), 12511; https://doi.org/10.3390/ijms241512511 - 7 Aug 2023
Cited by 13 | Viewed by 5464
Abstract
Mitochondrial membrane protein ATAD3A is a member of the AAA-domain-containing ATPases superfamily. It is important for the maintenance of mitochondrial DNA, structure, and function. In recent years, an increasing number of ATAD3A mutations have been identified in patients with neurological symptoms. Many of [...] Read more.
Mitochondrial membrane protein ATAD3A is a member of the AAA-domain-containing ATPases superfamily. It is important for the maintenance of mitochondrial DNA, structure, and function. In recent years, an increasing number of ATAD3A mutations have been identified in patients with neurological symptoms. Many of these mutations disrupt mitochondrial structure, function, and dynamics and are lethal to patients at a young age. Here, we summarize the current understanding of the relationship between ATAD3A and mitochondria, including the interaction of ATAD3A with mitochondrial DNA and mitochondrial/ER proteins, the regulation of ATAD3A in cholesterol mitochondrial trafficking, and the effect of known ATAD3A mutations on mitochondrial function. In the current review, we revealed that the oligomerization and interaction of ATAD3A with other mitochondrial/ER proteins are vital for its various functions. Despite affecting different domains of the protein, nearly all documented mutations observed in ATAD3A exhibit either loss-of-function or dominant-negative effects, potentially leading to disruption in the dimerization of ATAD3A; autophagy; mitophagy; alteration in mitochondrial number, size, and cristae morphology; and diminished activity of mitochondrial respiratory chain complexes I, IV, and V. These findings imply that ATAD3A plays a critical role in mitochondrial dynamics, which can be readily perturbed by ATAD3A mutation variants. Full article
(This article belongs to the Special Issue Mitochondrial Function in Human Health and Disease)
Show Figures

Figure 1

19 pages, 3934 KiB  
Article
Structural Analysis of Mitochondria in Cardiomyocytes: Insights into Bioenergetics and Membrane Remodeling
by Raquel A. Adams, Zheng Liu, Chongere Hsieh, Michael Marko, W. Jonathan Lederer, M. Saleet Jafri and Carmen Mannella
Curr. Issues Mol. Biol. 2023, 45(7), 6097-6115; https://doi.org/10.3390/cimb45070385 - 21 Jul 2023
Cited by 15 | Viewed by 3532
Abstract
Mitochondria in mammalian cardiomyocytes display considerable structural heterogeneity, the significance of which is not currently understood. We use electron microscopic tomography to analyze a dataset of 68 mitochondrial subvolumes to look for correlations among mitochondrial size and shape, crista morphology and membrane density, [...] Read more.
Mitochondria in mammalian cardiomyocytes display considerable structural heterogeneity, the significance of which is not currently understood. We use electron microscopic tomography to analyze a dataset of 68 mitochondrial subvolumes to look for correlations among mitochondrial size and shape, crista morphology and membrane density, and organelle location within rat cardiac myocytes. A tomographic analysis guided the definition of four classes of crista morphology: lamellar, tubular, mixed and transitional, the last associated with remodeling between lamellar and tubular cristae. Correlations include an apparent bias for mitochondria with lamellar cristae to be located in the regions between myofibrils and a two-fold larger crista membrane density in mitochondria with lamellar cristae relative to mitochondria with tubular cristae. The examination of individual cristae inside mitochondria reveals local variations in crista topology, such as extent of branching, alignment of fenestrations and progressive changes in membrane morphology and packing density. The findings suggest both a rationale for the interfibrillar location of lamellar mitochondria and a pathway for crista remodeling from lamellar to tubular morphology. Full article
(This article belongs to the Special Issue Mitochondrial Function and Dysfunction)
Show Figures

Figure 1

Back to TopTop