Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = mipsagargin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 34477 KB  
Review
Mipsagargin: The Beginning—Not the End—of Thapsigargin Prodrug-Based Cancer Therapeutics
by John T. Isaacs, William Nathaniel Brennen, Søren Brøgger Christensen and Samuel R. Denmeade
Molecules 2021, 26(24), 7469; https://doi.org/10.3390/molecules26247469 - 9 Dec 2021
Cited by 27 | Viewed by 7057
Abstract
Søren Brøgger Christensen isolated and characterized the cell-penetrant sesquiterpene lactone Thapsigargin (TG) from the fruit Thapsia garganica. In the late 1980s/early 1990s, TG was supplied to multiple independent and collaborative groups. Using this TG, studies documented with a large variety of mammalian cell [...] Read more.
Søren Brøgger Christensen isolated and characterized the cell-penetrant sesquiterpene lactone Thapsigargin (TG) from the fruit Thapsia garganica. In the late 1980s/early 1990s, TG was supplied to multiple independent and collaborative groups. Using this TG, studies documented with a large variety of mammalian cell types that TG rapidly (i.e., within seconds to a minute) penetrates cells, resulting in an essentially irreversible binding and inhibiting (IC50~10 nM) of SERCA 2b calcium uptake pumps. If exposure to 50–100 nM TG is sustained for >24–48 h, prostate cancer cells undergo apoptotic death. TG-induced death requires changes in the cytoplasmic Ca2+, initiating a calmodulin/calcineurin/calpain-dependent signaling cascade that involves BAD-dependent opening of the mitochondrial permeability transition pore (MPTP); this releases cytochrome C into the cytoplasm, activating caspases and nucleases. Chemically unmodified TG has no therapeutic index and is poorly water soluble. A TG analog, in which the 8-acyl groups is replaced with the 12-aminododecanoyl group, afforded 12-ADT, retaining an EC50 for killing of <100 nM. Conjugation of 12-ADT to a series of 5–8 amino acid peptides was engineered so that they are efficiently hydrolyzed by only one of a series of proteases [e.g., KLK3 (also known as Prostate Specific Antigen); KLK2 (also known as hK2); Fibroblast Activation Protein Protease (FAP); or Folh1 (also known as Prostate Specific Membrane Antigen)]. The obtained conjugates have increased water solubility for systemic delivery in the blood and prevent cell penetrance and, thus, killing until the TG-prodrug is hydrolyzed by the targeting protease in the vicinity of the cancer cells. We summarize the preclinical validation of each of these TG-prodrugs with special attention to the PSMA TG-prodrug, Mipsagargin, which is in phase II clinical testing. Full article
Show Figures

Figure 1

12 pages, 1110 KB  
Review
Thapsigargin—From Traditional Medicine to Anticancer Drug
by Agata Jaskulska, Anna Ewa Janecka and Katarzyna Gach-Janczak
Int. J. Mol. Sci. 2021, 22(1), 4; https://doi.org/10.3390/ijms22010004 - 22 Dec 2020
Cited by 99 | Viewed by 10235
Abstract
A sesquiterpene lactone, thapsigargin, is a phytochemical found in the roots and fruits of Mediterranean plants from Thapsia L. species that have been used for centuries in folk medicine to treat rheumatic pain, lung diseases, and female infertility. More recently thapsigargin was found [...] Read more.
A sesquiterpene lactone, thapsigargin, is a phytochemical found in the roots and fruits of Mediterranean plants from Thapsia L. species that have been used for centuries in folk medicine to treat rheumatic pain, lung diseases, and female infertility. More recently thapsigargin was found to be a potent cytotoxin that induces apoptosis by inhibiting the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pump, which is necessary for cellular viability. This biological activity encouraged studies on the use of thapsigargin as a novel antineoplastic agent, which were, however, hampered due to high toxicity of this compound to normal cells. In this review, we summarized the recent knowledge on the biological activity and molecular mechanisms of thapsigargin action and advances in the synthesis of less-toxic thapsigargin derivatives that are being developed as novel anticancer drugs. Full article
Show Figures

Figure 1

11 pages, 1010 KB  
Article
Large Scale Conversion of Trilobolide into the Payload of Mipsagargin: 8-O-(12-Aminododecanoyl)-8-O-Debutanoylthapsigargin
by Tomáš Zimmermann, Pavel Drašar, Silvie Rimpelová, Søren Brøgger Christensen, Vladimir A. Khripach and Michal Jurášek
Biomolecules 2020, 10(12), 1640; https://doi.org/10.3390/biom10121640 - 5 Dec 2020
Cited by 11 | Viewed by 4302
Abstract
In spite of the impressing cytotoxicity of thapsigargin (Tg), this compound cannot be used as a chemotherapeutic drug because of general toxicity, causing unacceptable side effects. Instead, a prodrug targeted towards tumors, mipsagargin, was brought into clinical trials. What substantially reduces [...] Read more.
In spite of the impressing cytotoxicity of thapsigargin (Tg), this compound cannot be used as a chemotherapeutic drug because of general toxicity, causing unacceptable side effects. Instead, a prodrug targeted towards tumors, mipsagargin, was brought into clinical trials. What substantially reduces the clinical potential is the limited access to Tg and its derivatives and cost-inefficient syntheses with unacceptably low yields. Laser trilobum, which contains a structurally related sesquiterpene lactone, trilobolide (Tb), is successfully cultivated. Here, we report scalable isolation of Tb from L. trilobum and a transformation of Tb to 8-O-(12-aminododecanoyl)-8-O-debutanoylthapsigargin in seven steps. The use of cultivated L. trilobum offers an unlimited source of the active principle in mipsagargin. Full article
(This article belongs to the Collection Pharmacology of Medicinal Plants)
Show Figures

Graphical abstract

15 pages, 1748 KB  
Article
A Phase II, Multicenter, Single-Arm Study of Mipsagargin (G-202) as a Second-Line Therapy Following Sorafenib for Adult Patients with Progressive Advanced Hepatocellular Carcinoma
by Devalingam Mahalingam, Julio Peguero, Putao Cen, Sukeshi P. Arora, John Sarantopoulos, Julie Rowe, Victoria Allgood, Benjamin Tubb and Luis Campos
Cancers 2019, 11(6), 833; https://doi.org/10.3390/cancers11060833 - 17 Jun 2019
Cited by 80 | Viewed by 6605
Abstract
Background: Mipsagargin (G-202) is a thapsigargin-based prodrug with cytotoxic activity masked by a peptide that is cleaved by prostate-specific membrane antigen (PSMA), a protease expressed in prostate cancer cells and the endothelium of tumor vasculature. It was hypothesized that PSMA-mediated activation of [...] Read more.
Background: Mipsagargin (G-202) is a thapsigargin-based prodrug with cytotoxic activity masked by a peptide that is cleaved by prostate-specific membrane antigen (PSMA), a protease expressed in prostate cancer cells and the endothelium of tumor vasculature. It was hypothesized that PSMA-mediated activation of mipsagargin would result in disruption of the tumor vasculature, leading to a decrease in blood flow, and in direct cytotoxic effects on tumor cells, resulting in anti-tumor activity. Method: In this open-label, Phase II study, mipsagargin was administered intravenously on Days 1, 2, and 3 of a 28-day cycle to patients with hepatocellular carcinoma (HCC) who progressed on or after treatment with sorafenib or intolerant of sorafenib. Assessments included time to disease progression (TTP), response rate, progression-free survival (PFS), overall survival (OS), and safety. Blood flow metrics in hepatic lesions were evaluated using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Results: Of 25 treated patients, 19 were evaluable for efficacy. None had an objective response, 12 (63.2%) had a best response of stable disease, and 12 (63.2%) showed radiologic progression; seven patients (36.8%) were censored. The median TTP was 134.0 days, median PFS was 129.0 days, and median OS was 205.0 days. Of five patients with DCE-MRI data for 11 HCC lesions, all demonstrated a reduced Ktrans (mean, 52%). The most common treatment-emergent AEs were Grade 1–2 and consisted of increased blood creatinine (68.0%), fatigue (56.0%), and nausea (44.0%). Conclusions: Mipsagargin is relatively well tolerated and promotes prolonged disease stabilization in patients with advanced HCC that had progressed on prior treatment with sorafenib. A significant decrease in Ktrans upon treatment suggests mipsagargin reduces blood flow in hepatic lesions. Full article
(This article belongs to the Special Issue Hepatocellular Cancer Treatment)
Show Figures

Figure 1

13 pages, 1643 KB  
Article
Preparation of Enzyme-Activated Thapsigargin Prodrugs by Solid-Phase Synthesis
by Tomas Zimmermann, Søren Brøgger Christensen and Henrik Franzyk
Molecules 2018, 23(6), 1463; https://doi.org/10.3390/molecules23061463 - 15 Jun 2018
Cited by 10 | Viewed by 5417
Abstract
Since cells in solid tumors divide less rapidly than cells in the bone marrow or cells of the immune system, mitotic inhibitors often cause severe side effects when used for treatment of diseases like prostate cancer and breast cancer. One approach to overcome [...] Read more.
Since cells in solid tumors divide less rapidly than cells in the bone marrow or cells of the immune system, mitotic inhibitors often cause severe side effects when used for treatment of diseases like prostate cancer and breast cancer. One approach to overcome this problem involves attempts at developing drugs based on general cytotoxins, like calicheamicin and thapsigargin, which kill cells at all phases of the cell cycle. However, such toxins can only be used when efficient targeting to the malignant tissue is possible. In the case of thapsigargin, selectivity for tumor-associated cells is achieved by conjugating the drug to a peptide that is only cleaved in the vicinity of tumors to release the cytotoxic drug or an analog with retained activity. Solid-phase synthesis protocols were developed for preparation of three already validated prodrugs of thapsigargin: one prodrug cleavable by human kallikrein 2, one prodrug cleavable by prostate-specific antigen, and one prodrug cleavable by prostate-specific membrane antigen. Full article
(This article belongs to the Special Issue Solid Phase Synthesis)
Show Figures

Figure 1

15 pages, 1541 KB  
Review
Thapsigargin—From Thapsia L. to Mipsagargin
by Trine Bundgaard Andersen, Carmen Quiñonero López, Tom Manczak, Karen Martinez and Henrik Toft Simonsen
Molecules 2015, 20(4), 6113-6127; https://doi.org/10.3390/molecules20046113 - 8 Apr 2015
Cited by 99 | Viewed by 20507
Abstract
The sesquiterpene lactone thapsigargin is found in the plant Thapsia garganica L., and is one of the major constituents of the roots and fruits of this Mediterranean species. In 1978, the first pharmacological effects of thapsigargin were established and the full structure was [...] Read more.
The sesquiterpene lactone thapsigargin is found in the plant Thapsia garganica L., and is one of the major constituents of the roots and fruits of this Mediterranean species. In 1978, the first pharmacological effects of thapsigargin were established and the full structure was elucidated in 1985. Shortly after, the overall mechanism of the Sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) inhibition that leads to apoptosis was discovered. Thapsigargin has a potent antagonistic effect on the SERCA and is widely used to study Ca2+-signaling. The effect on SERCA has also been utilized in the treatment of solid tumors. A prodrug has been designed to target the blood vessels of cancer cells; the death of these blood vessels then leads to tumor necrosis. The first clinical trials of this drug were initiated in 2008, and the potent drug is expected to enter the market in the near future under the generic name Mipsagargin (G-202). This review will describe the discovery of the new drug, the on-going elucidation of the biosynthesis of thapsigargin in the plant and attempts to supply the global market with a novel potent anti-cancer drug. Full article
Show Figures

Figure 1

Back to TopTop