Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = miniaturisation effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2436 KiB  
Review
May the Extensive Farming System of Small Ruminants Be Smart?
by Rosanna Paolino, Adriana Di Trana, Adele Coppola, Emilio Sabia, Amelia Maria Riviezzi, Luca Vignozzi, Salvatore Claps, Pasquale Caparra, Corrado Pacelli and Ada Braghieri
Agriculture 2025, 15(9), 929; https://doi.org/10.3390/agriculture15090929 - 24 Apr 2025
Viewed by 779
Abstract
Precision Livestock Farming (PLF) applies a complex of sensor technology, algorithms, and multiple tools for individual, real-time livestock monitoring. In intensive livestock systems, PLF is now quite widespread, allowing for the optimisation of management, thanks to the early recognition of diseases and the [...] Read more.
Precision Livestock Farming (PLF) applies a complex of sensor technology, algorithms, and multiple tools for individual, real-time livestock monitoring. In intensive livestock systems, PLF is now quite widespread, allowing for the optimisation of management, thanks to the early recognition of diseases and the possibility of monitoring animals’ feeding and reproductive behaviour, with an overall improvement of their welfare. Similarly, PLF systems represent an opportunity to improve the profitability and sustainability of extensive farming systems, including those of small ruminants, rationalising the use of pastures by avoiding overgrazing and controlling animals. Despite the livestock distribution in several parts of the world, the low profit and the relatively high cost of the devices cause delays in implementing PLF systems in small ruminants compared to those in dairy cows. Applying these tools to animals in extensive systems requires customisation compared to their use in intensive systems. In many cases, the unit prices of sensors for small ruminants are higher than those developed for large animals due to miniaturisation and higher production costs associated with lower production numbers. Sheep and goat farms are often in mountainous and remote areas with poor technological infrastructure and ineffective electricity, telephone, and internet services. Moreover, small ruminant farming is usually associated with advanced age in farmers, contributing to poor local initiatives and delays in PLF implementation. A targeted literature analysis was carried out to identify technologies already applied or at an advanced stage of development for the management of grazing animals, particularly sheep and goats, and their effects on nutrition, production, and animal welfare. The current technological developments include wearable, non-wearable, and network technologies. The review of the technologies involved and the main fields of application can help identify the most suitable systems for managing grazing sheep and goats and contribute to selecting more sustainable and efficient solutions in line with current environmental and welfare concerns. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

29 pages, 4987 KiB  
Review
A Review of Recent Advancements in Heat Pump Systems and Developments in Microchannel Heat Exchangers
by Roopesh Chowdary Sureddi, Liang Li, Hongwei Wu, Niccolo Giannetti, Kiyoshi Saito and David Rees
Machines 2025, 13(4), 333; https://doi.org/10.3390/machines13040333 - 18 Apr 2025
Viewed by 1005
Abstract
Heating and cooling are the main concerns across a wide range of sectors, including residential buildings, industrial facilities, transportation and commercial enterprises. This being the case, a continuous rise in the cost of energy demands more effective ways to conserve energy. Heat pump [...] Read more.
Heating and cooling are the main concerns across a wide range of sectors, including residential buildings, industrial facilities, transportation and commercial enterprises. This being the case, a continuous rise in the cost of energy demands more effective ways to conserve energy. Heat pump (HP) systems provide the one of the best possible solutions to this problem as they offer an economical and energy-efficient system. In this review, HP systems are overviewed as energy-efficient and cost-effective solutions, focusing on their characteristic properties but also on enhancements, novel techniques and the use of heat exchangers (HXs), and microchannel heat exchangers (MCHEs) in these systems, as well as their development in recent years and their limitations. The main factors contributing to variations in the performance of HP systems are temperature and humidity in the ambient atmosphere. The present study is expected to support numerical and experimental performance analysis, and design miniaturisation via MCHEs. Unique designs or manufacturing techniques in MCHEs; various configurations in HP systems, depending on their load and environmental conditions; various nanofluids; and a comparison of nanofluids with different base metals are presented and discussed. Comparisons between various MCHEs and their respective limitations provide evidence-based guidelines for technology selection and designs for optimised operation at given environmental and load conditions. Full article
Show Figures

Figure 1

16 pages, 1695 KiB  
Article
Mouse Exploratory Behaviour in the Open Field with and without NAT-1 EEG Device: Effects of MK801 and Scopolamine
by Charmaine J. M. Lim, Jack Bray, Sanna K. Janhunen, Bettina Platt and Gernot Riedel
Biomolecules 2024, 14(8), 1008; https://doi.org/10.3390/biom14081008 - 15 Aug 2024
Viewed by 2043
Abstract
One aspect of reproducibility in preclinical research that is frequently overlooked is the physical condition in which physiological, pharmacological, or behavioural recordings are conducted. In this study, the physical conditions of mice were altered through the attachments of wireless electrophysiological recording devices (Neural [...] Read more.
One aspect of reproducibility in preclinical research that is frequently overlooked is the physical condition in which physiological, pharmacological, or behavioural recordings are conducted. In this study, the physical conditions of mice were altered through the attachments of wireless electrophysiological recording devices (Neural Activity Tracker-1, NAT-1). NAT-1 devices are miniaturised multichannel devices with onboard memory for direct high-resolution recording of brain activity for >48 h. Such devices may limit the mobility of animals and affect their behavioural performance due to the added weight (total weight of approximately 3.4 g). The mice were additionally treated with saline (control), N-methyl-D-aspartate (NMDA) receptor antagonist MK801 (0.85 mg/kg), or the muscarinic acetylcholine receptor blocker scopolamine (0.65 mg/kg) to allow exploration of the effect of NAT-1 attachments in pharmacologically treated mice. We found only minimal differences in behavioural outcomes with NAT-1 attachments in standard parameters of locomotor activity widely reported for the open field test between the drug treatments. Hypoactivity was globally observed as a consistent outcome in the MK801-treated mice and hyperactivity in scopolamine groups regardless of NAT-1 attachments. These data collectively confirm the reproducibility for combined behavioural, pharmacological, and physiological endpoints even in the presence of lightweight wireless data loggers. The NAT-1 therefore constitutes a pertinent tool for investigating brain activity in, e.g., drug discovery and models of neuropsychiatric and/or neurodegenerative diseases with minimal effects on pharmacological and behavioural outcomes. Full article
(This article belongs to the Collection Feature Papers in Biological Factors)
Show Figures

Figure 1

17 pages, 5059 KiB  
Article
Development of a New Prototype Paediatric Central Sleep Apnoea Monitor
by Reza Saatchi, Heather Elphick, Jennifer Rowson, Mark Wesseler, Jacob Marris, Sarah Shortland and Lowri Thomas
Technologies 2024, 12(7), 116; https://doi.org/10.3390/technologies12070116 - 17 Jul 2024
Cited by 1 | Viewed by 2984
Abstract
A new prototype device to monitor breathing in children diagnosed with central sleep apnoea (CSA) was developed. CSA is caused by the failure of central nervous system signals to the respiratory muscles and results in intermittent breathing pauses during sleep. Children diagnosed with [...] Read more.
A new prototype device to monitor breathing in children diagnosed with central sleep apnoea (CSA) was developed. CSA is caused by the failure of central nervous system signals to the respiratory muscles and results in intermittent breathing pauses during sleep. Children diagnosed with CSA require home respiration monitoring during sleep. Apnoea monitors initiate an audio alarm when the breath-to-breath respiration interval exceeds a preset time. This allows the child’s parents to attend to the child to ensure safety. The article describes the development of the monitor’s hardware, software, and evaluation. Features of the device include the detection of abnormal respiratory pauses and the generation of an associated alarm, the ability to record the respiratory signal and its storage using an on-board disk, miniaturised hardware, child-friendliness, cost-effectiveness, and ease of use. The device was evaluated on 10 healthy adult volunteers with a mean age of 46.6 years (and a standard deviation of 14.4 years). The participants randomly intentionally paused their breathing during the recording. The device detected and provided an alarm when the respiratory pauses exceeded the preset time. The respiration rates determined from the device closely matched the values from a commercial respiration monitor. The study indicated the peak-detection method of the respiration rate measurement is more robust than the zero-crossing method. Full article
Show Figures

Figure 1

29 pages, 12504 KiB  
Article
Ground-Based Characterisation of a Compact Instrument for Gamma-ray Burst Detection on a CubeSat Platform
by Rachel Dunwoody, David Murphy, Alexey Uliyanov, Joseph Mangan, Maeve Doyle, Joseph Thompson, Cuan de Barra, Lorraine Hanlon, David McKeown, Brian Shortt and Sheila McBreen
Aerospace 2024, 11(7), 578; https://doi.org/10.3390/aerospace11070578 - 15 Jul 2024
Viewed by 1614
Abstract
Gamma-ray bursts (GRBs) are intense and short-lived cosmic explosions. Miniaturised CubeSat-compatible instruments for the study of GRBs are being developed to help bridge the gap in large missions and assist in achieving full sky coverage. CubeSats are small, compact satellites conforming to a [...] Read more.
Gamma-ray bursts (GRBs) are intense and short-lived cosmic explosions. Miniaturised CubeSat-compatible instruments for the study of GRBs are being developed to help bridge the gap in large missions and assist in achieving full sky coverage. CubeSats are small, compact satellites conforming to a design standard and have transformed the space industry. They are relatively low-cost and are developed on fast timescales, which has provided unparalleled access to space. This paper focuses on GMOD, the gamma-ray module, onboard the 2U CubeSat EIRSAT-1, launched on December 1st 2023. GMOD is a scintillation-based instrument with a cerium bromide crystal coupled to an array of sixteen silicon photomultipliers, designed for the detection of GRBs. The characterisation of GMOD in the spacecraft, along with the validation of an updated spacecraft MEGAlib model is presented and this approach can be followed by other CubeSats with similar science goals. The energy resolution of the flight model is 7.07% at 662 keV and the effective area peaks in the tens to hundreds of keV, making it a suitable instrument for the detection of GRBs. An investigation into the instrument’s angular response is also detailed. The results from this characterisation campaign are a benchmark for the instrument’s performance pre-launch and will be used to compare with the detector’s performance in orbit. Full article
(This article belongs to the Special Issue Space Telescopes & Payloads)
Show Figures

Figure 1

18 pages, 11563 KiB  
Article
Drone-Based Measurement of the Size Distribution and Concentration of Marine Aerosols above the Great Barrier Reef
by Christian Eckert, Diana C. Hernandez-Jaramillo, Chris Medcraft, Daniel P. Harrison and Brendan P. Kelaher
Drones 2024, 8(7), 292; https://doi.org/10.3390/drones8070292 - 27 Jun 2024
Cited by 3 | Viewed by 2192
Abstract
Marine aerosol particles can act as cloud condensation nuclei and influence the atmospheric boundary layer by scattering solar radiation. The interaction of ocean waves and coral reefs may affect the distribution and size of marine aerosol particles. Measuring this effect has proven challenging. [...] Read more.
Marine aerosol particles can act as cloud condensation nuclei and influence the atmospheric boundary layer by scattering solar radiation. The interaction of ocean waves and coral reefs may affect the distribution and size of marine aerosol particles. Measuring this effect has proven challenging. Here, we tested the hypothesis that the distribution and size of marine aerosol particles would vary over three distinct zones (i.e., coral lagoon, surf break, and open water) near One Tree Island in the Great Barrier Reef, which is approximately 85 km off the east coast of Australia. We used a modified DJI Agras T30 drone fitted with a miniaturised scanning electrical mobility sizer and advanced mixing condensation particle counter to collect data on aerosol size distribution between 30 and 300 nm at 20 m above the water surface. We conducted 30 flights over ten days during the Austral summer/autumn of 2023. The fitted bimodal lognormal curves indicate that the number concentrations for aerosols below 85 nm diameter are more than 16% higher over the lagoon than over open water. The average mean mode diameters remained constant across the different zones, indicating no significant influence of breaking waves on the detected aerosol size modes. The most influential explanatory variable for aerosol size distribution was the difference between air temperature and the underlying sea surface, explaining around 40% of the variability. Salinity also exhibited a significant influence, explaining around 12% of the measured variability in the number concentration of aerosols throughout the campaign. A calculated wind stress magnitude did not reveal significant variation in the measured marine aerosol concentrations. Overall, our drone-based aerosol measurements near the water surface effectively characterise the dynamics of background marine aerosols around One Tree Island Reef, illustrating the value of drone-based systems for providing size-dependent aerosol information in difficult-to-access and environmentally sensitive areas. Full article
Show Figures

Figure 1

19 pages, 7028 KiB  
Article
The Effect of Arm Movements on the Dynamics of the Wheelchair Frame during Manual Wheelchair Actuation and Propulsion
by Franz Konstantin Fuss, Adin Ming Tan and Yehuda Weizman
Actuators 2024, 13(5), 183; https://doi.org/10.3390/act13050183 - 11 May 2024
Cited by 1 | Viewed by 1631
Abstract
Wheelchair propulsion and actuation are influenced by the moving masses of the wheelchair user; however, the extent of this effect is still unclear. The main evidence of this effect is that the speed of the wheelchair frame continues to increase after the end [...] Read more.
Wheelchair propulsion and actuation are influenced by the moving masses of the wheelchair user; however, the extent of this effect is still unclear. The main evidence of this effect is that the speed of the wheelchair frame continues to increase after the end of the push phase. The wheelchair’s speed was measured using IMUs and the duration of the push period was recorded using miniaturised pressure sensors attached to the driver’s middle fingers. The velocity and acceleration were determined for various average stroke cycle speeds to determine the speed dependency of the acceleration. The wheelchair was then mounted on a force plate to measure the inertial forces of the hands moving back and forth. The aerodynamic drag and rolling resistance forces were determined from coast-down experiments. Based on the measured forces, the behaviour of the force and velocity profiles was finally modelled by gradually reducing the mass of the arms and thus their inertial force. The results showed that the wheelchair is accelerated throughout the push phase (except for a temporary deceleration in the middle of the push phase at higher velocities), and that this acceleration continues well after the push phase. In the second half of the recovery phase, the wheelchair decelerates. The horizontal inertial forces measured on the force plate are predominantly negative in the push phase and in the second half of the recovery phase, and positive in the first half of the push phase, and their impulse is zero due to the conservation of momentum. Modelling the wheelchair with moving masses showed that reducing the horizontal inertial forces has no effect on the driver’s propulsive force but reduces the velocity fluctuations. The main conclusion of this research is that the wheelchair user’s power should be calculated only from the pure propulsive force that is required in the push phase to overcome the dissipative forces and that enables the gain or loss in speed per stroke cycle, but not directly from the measured velocity. Full article
Show Figures

Figure 1

13 pages, 6002 KiB  
Article
Shape Sensing for Continuum Robotics Using Optoelectronic Sensors with Convex Reflectors
by Dalia Osman, Xinli Du, Timothy Minton and Yohan Noh
Electronics 2024, 13(7), 1253; https://doi.org/10.3390/electronics13071253 - 28 Mar 2024
Cited by 3 | Viewed by 1653
Abstract
Three-dimensional shape sensing in soft and continuum robotics is a crucial aspect for stable actuation and control in fields such as minimally invasive surgery, engine repairs and search and rescue operations, as the estimation of complex curvatures while using continuum robotic tools is [...] Read more.
Three-dimensional shape sensing in soft and continuum robotics is a crucial aspect for stable actuation and control in fields such as minimally invasive surgery, engine repairs and search and rescue operations, as the estimation of complex curvatures while using continuum robotic tools is required to manipulate through fragile paths. This challenge has been addressed using a range of different sensing techniques, for example, Fibre Bragg grating (FBG) technology, inertial measurement unit (IMU) sensor networks, or stretch sensors. Previously, an optics-based method using optoelectronic sensors was explored, offering a simple and cost-effective solution for shape sensing in a flexible tendon-actuated manipulator in two orientations. This was based on proximity-modulated angle estimation and has been the basis for the shape sensing method addressed in this paper. The improved and miniaturised technique demonstrated in this paper is based on the use of a convex shaped reflector with optoelectronic sensors integrated into a tendon-actuated robotic manipulator. Upgraded sensing capability is achieved using optimisation of the convex reflector shape in terms of sensor range and resolution, and improved calibration is achieved through the integration of spherical bearings for friction-free motion. Shape estimation is achieved in two orientations upon calibration of sensors, with a maximum Root-Mean-Square Error (RMS) of 3.37°. Full article
(This article belongs to the Special Issue Robots in Medical and Industrial Applications)
Show Figures

Figure 1

16 pages, 2498 KiB  
Article
Dilution Reduces Sample Matrix Effects for Rapid, Direct, and Miniaturised Phenotypic Antibiotic Susceptibility Tests for Bovine Mastitis
by Matthew Michael Long, Sarah Helen Needs and Alexander Daniel Edwards
Antibiotics 2023, 12(9), 1363; https://doi.org/10.3390/antibiotics12091363 - 24 Aug 2023
Cited by 2 | Viewed by 2303
Abstract
The time-consuming nature of current methods for detecting antimicrobial resistance (AMR) to guide mastitis treatment and for surveillance, drives innovation towards faster, easier, and more portable technology. Rapid on-farm testing could guide antibiotic selection, reducing misuse that contributes to resistance. We identify challenges [...] Read more.
The time-consuming nature of current methods for detecting antimicrobial resistance (AMR) to guide mastitis treatment and for surveillance, drives innovation towards faster, easier, and more portable technology. Rapid on-farm testing could guide antibiotic selection, reducing misuse that contributes to resistance. We identify challenges that arise when developing miniaturized antibiotic susceptibility tests (AST) for rapid on-farm use directly in milk. We experimentally studied three factors: sample matrix (specifically milk or spoiled milk); the commensal bacteria found in fresh bovine milk; and result time on the performance of miniaturised AST. Microfluidic “dip-and-test” devices made from microcapillary film (MCF) were able to monitor Gram-negative bacterial growth colourimetrically even in the presence of milk and yoghurt (used to simulate spoiled milk samples), as long as this sample matrix was diluted 1:5 or more in growth medium. Growth detection kinetics using resazurin was not changed by milk at final concentrations of 20% or lower, but a significant delay was seen with yoghurt above 10%. The minimum inhibitory concentration (MIC) for ciprofloxacin and gentamicin was increased in the presence of higher concentrations of milk and yoghurt. When diluted to 1% all observed MIC were within range, indicating dilution may be sufficient to avoid milk matrix interfering with microfluidic AST. We found a median commensal cell count of 6 × 105 CFU/mL across 40 healthy milk samples and tested if these bacteria could alter microfluidic AST. We found that false susceptibility may be observed at early endpoint times if testing some pathogen and commensal mixtures. However, such errors are only expected to occur when a susceptible commensal organism is present at higher cell density relative to the resistant pathogen, and this can be avoided by reading at later endpoints, leading to a trade-off between accuracy and time-to-result. We conclude that with further optimisation, and additional studies of Gram-positive organisms, it should be possible to obtain rapid results for microfluidic AST, but a trade-off is needed between time-to-result, sample dilution, and accuracy. Full article
(This article belongs to the Special Issue Mastitis: Causative Agents, Drug Resistance, and Treatment Approaches)
Show Figures

Figure 1

23 pages, 7793 KiB  
Article
Application of the NSGA-II Algorithm and Kriging Model to Optimise the Process Parameters for the Improvement of the Quality of Fresnel Lenses
by Hanjui Chang, Yue Sun, Rui Wang and Shuzhou Lu
Polymers 2023, 15(16), 3403; https://doi.org/10.3390/polym15163403 - 14 Aug 2023
Cited by 4 | Viewed by 1790
Abstract
The Fresnel lens is an optical system consisting of a series of concentric diamond grooves. One surface of the lens is smooth, while the other is engraved with concentric circles of increasing size. Optical interference, diffraction, and sensitivity to the angle of incidence [...] Read more.
The Fresnel lens is an optical system consisting of a series of concentric diamond grooves. One surface of the lens is smooth, while the other is engraved with concentric circles of increasing size. Optical interference, diffraction, and sensitivity to the angle of incidence are used to design the microstructure on the lens surface. The imaging of the optical surface depends on its curvature. By reducing the thickness of the lens, light can still be focused at the same focal point as with a thicker lens. Previously, lenses, including Fresnel lenses, were made of glass due to material limitations. However, the traditional grinding and polishing methods for making Fresnel lenses were not only time-consuming, but also labour-intensive. As a result, costs were high. Later, a thermal pressing process using metal moulds was invented. However, the high surface tension of glass caused some detailed parts to be deformed during the pressing process, resulting in unsatisfactory Fresnel lens performance. In addition, the complex manufacturing process and unstable processing accuracy hindered mass production. This resulted in high prices and limited applications for Fresnel lenses. These factors prevented the widespread use of early Fresnel lenses. In contrast, polymer materials offer advantages, such as low density, light weight, high strength-to-weight ratios, and corrosion resistance. They are also cost effective and available in a wide range of grades. Polymer materials have gradually replaced optical glass and other materials in the manufacture of micro-optical lenses and other miniaturised devices. Therefore, this study focuses on investigating the manufacturing parameters of Fresnel lenses in the injection moulding process. We compare the quality of products obtained by two-stage injection moulding, injection compression moulding, and IMD (in-mould decoration) techniques. The results show that the optimal method is IMD, which reduces the nodal displacement on the Fresnel lens surface and improves the transmission performance. To achieve this, we first establish a Kriging model to correlate the process parameters with optimisation objectives, mapping the design parameters and optimisation objectives. Based on the Kriging model, we integrate the NSGA-II algorithm with the predictive model to obtain the Pareto optimal solutions. By analysing the Pareto frontier, we identify the best process parameters. Finally, it is determined that the average nodal displacement on the Fresnel surface is 0.393 mm, at a holding pressure of 320.35 MPa and a melt temperature of 251.40 °C. Combined with IMD technology, product testing shows a transmittance of 95.43% and an optimisation rate of 59.64%. Full article
(This article belongs to the Special Issue Advances in Polymers Processing and Injection Molding)
Show Figures

Figure 1

15 pages, 8372 KiB  
Article
Compact Multi-Layered Symmetric Metamaterial Design Structure for Microwave Frequency Applications
by Tayaallen Ramachandran, Mohammad Rashed Iqbal Faruque, Mandeep Singh Jit Singh and K. S. Al-Mugren
Materials 2023, 16(13), 4566; https://doi.org/10.3390/ma16134566 - 24 Jun 2023
Cited by 2 | Viewed by 1882
Abstract
Metamaterial analysis for microwave frequencies is a common practice. However, adopting a multi-layered design is unique in the concept of miniaturisation, thus requiring extensive research for optimal performance. This study focuses on a multi-layered symmetric metamaterial design for C- and X-band applications. All [...] Read more.
Metamaterial analysis for microwave frequencies is a common practice. However, adopting a multi-layered design is unique in the concept of miniaturisation, thus requiring extensive research for optimal performance. This study focuses on a multi-layered symmetric metamaterial design for C- and X-band applications. All simulation analyses were performed analytically using Computer Simulation Technology Studio Suite 2019. The performances of the proposed metamaterial design were analysed through several parametric studies. Based on the observation, the proposed metamaterial unit cell design manifested resonant frequencies at 7.63 GHz (C-band) and 9.56 GHz (X-band). Moreover, the analysis of effective medium parameters was also included in this study. High-Frequency Simulation 15.0 and Advanced Design System 2020 software validated the transmission coefficient results. Simultaneously, the proposed multi-layered metamaterial design with Rogers RO3006 substrate material exhibited a unique transmission coefficient using double, triple, and quadruple layers. The two resonant frequencies in the unit cell design were successfully increased to three in the double-layer structure at 6.34 GHz (C-band), 8.46 and 11.13 GHz (X-band). The proposed unit cell design was arranged in an array structure to analyse the performance changes in the transmission coefficient. Overall, the proposed metamaterial design accomplished the miniaturisation concept by arranging unit cells in a multi-layer structure and possesses unique properties such as a highly effective medium ratio and left-handed characteristics. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

18 pages, 20506 KiB  
Article
Microcamera Visualisation System to Overcome Specular Reflections for Tissue Imaging
by Lorenzo Niemitz, Stefan D. van der Stel, Simon Sorensen, Walter Messina, Sanathana Konugolu Venkata Sekar, Henricus J. C. M. Sterenborg, Stefan Andersson-Engels, Theo J. M. Ruers and Ray Burke
Micromachines 2023, 14(5), 1062; https://doi.org/10.3390/mi14051062 - 17 May 2023
Cited by 8 | Viewed by 2442
Abstract
In vivo tissue imaging is an essential tool for medical diagnosis, surgical guidance, and treatment. However, specular reflections caused by glossy tissue surfaces can significantly degrade image quality and hinder the accuracy of imaging systems. In this work, we further the miniaturisation of [...] Read more.
In vivo tissue imaging is an essential tool for medical diagnosis, surgical guidance, and treatment. However, specular reflections caused by glossy tissue surfaces can significantly degrade image quality and hinder the accuracy of imaging systems. In this work, we further the miniaturisation of specular reflection reduction techniques using micro cameras, which have the potential to act as intra-operative supportive tools for clinicians. In order to remove these specular reflections, two small form factor camera probes, handheld at 10 mm footprint and miniaturisable to 2.3 mm, are developed using different modalities, with line-of-sight to further miniaturisation. (1) The sample is illuminated via multi-flash technique from four different positions, causing a shift in reflections which are then filtered out in a post-processing image reconstruction step. (2) The cross-polarisation technique integrates orthogonal polarisers onto the tip of the illumination fibres and camera, respectively, to filter out the polarisation maintaining reflections. These form part of a portable imaging system that is capable of rapid image acquisition using different illumination wavelengths, and employs techniques that lend themselves well to further footprint reduction. We demonstrate the efficacy of the proposed system with validating experiments on tissue-mimicking phantoms with high surface reflection, as well as on excised human breast tissue. We show that both methods can provide clear and detailed images of tissue structures along with the effective removal of distortion or artefacts caused by specular reflections. Our results suggest that the proposed system can improve the image quality of miniature in vivo tissue imaging systems and reveal underlying feature information at depth, for both human and machine observers, leading to better diagnosis and treatment outcomes. Full article
(This article belongs to the Special Issue Biosensors for Biomedical and Environmental Applications)
Show Figures

Figure 1

21 pages, 5257 KiB  
Article
Extracellular Vesicles and Their Mimetics: A Comparative Study of Their Pharmacological Activities and Immunogenicity Profiles
by Wei Heng Chng, Ram Pravin Kumar Muthuramalingam, Charles Kang Liang Lou, Silas New, Yub Raj Neupane, Choon Keong Lee, Ayca Altay Benetti, Chenyuan Huang, Praveen Thoniyot, Wei Seong Toh, Jiong-Wei Wang and Giorgia Pastorin
Pharmaceutics 2023, 15(4), 1290; https://doi.org/10.3390/pharmaceutics15041290 - 20 Apr 2023
Cited by 9 | Viewed by 2736
Abstract
Extracellular vesicles (EVs), which are miniaturised carriers loaded with functional proteins, lipids, and nucleic acid material, are naturally secreted by cells and show intrinsic pharmacological effects in several conditions. As such, they have the potential to be used for the treatment of various [...] Read more.
Extracellular vesicles (EVs), which are miniaturised carriers loaded with functional proteins, lipids, and nucleic acid material, are naturally secreted by cells and show intrinsic pharmacological effects in several conditions. As such, they have the potential to be used for the treatment of various human diseases. However, the low isolation yield and laborious purification process are obstacles to their translation for clinical use. To overcome this problem, our lab developed cell-derived nanovesicles (CDNs), which are EV mimetics produced by shearing cells through membrane-fitted spin cups. To evaluate the similarities between EVs and CDNs, we compare the physical properties and biochemical composition of monocytic U937 EVs and U937 CDNs. Besides having similar hydrodynamic diameters, the produced CDNs had proteomic, lipidomic, and miRNA profiles with key communalities compared to those of natural EVs. Further characterisation was conducted to examine if CDNs could exhibit similar pharmacological activities and immunogenicity when administered in vivo. Consistently, CDNs and EVs modulated inflammation and displayed antioxidant activities. EVs and CDNs both did not exert immunogenicity when administered in vivo. Overall, CDNs could serve as a scalable and efficient alternative to EVs for further translation into clinical use. Full article
(This article belongs to the Special Issue Exosome-Based Drug Delivery: Translation from Bench to Clinic)
Show Figures

Graphical abstract

14 pages, 9485 KiB  
Article
Flow Boiling Heat Transfer Performance and Boiling Phenomena on Various Straight Fin Configurations
by Indro Pranoto, Muhammad Aulia Rahman, Cahya Dhika Wicaksana, Alan Eksi Wibisono, Fauzun and Arif Widyatama
Fluids 2023, 8(3), 102; https://doi.org/10.3390/fluids8030102 - 20 Mar 2023
Cited by 4 | Viewed by 2974
Abstract
The trend of miniaturisation in recent decades has led to the development of compact electronic devices. The reduction in the required dimension leads to the exponential rise in the heat flux dissipated from such a system. A proper thermal management system is necessary [...] Read more.
The trend of miniaturisation in recent decades has led to the development of compact electronic devices. The reduction in the required dimension leads to the exponential rise in the heat flux dissipated from such a system. A proper thermal management system is necessary to keep the temperature of a computer chip’s junction within acceptable limits and maintain its performance. Flow boiling modification using straight fins in microchannels has proven to be an effective passive enhancement of the cooling system. The core interest of this research is figuring out the optimal configuration of the fin shapes and configurations. Hence, it is crucial to gain a comprehensive understanding of the flow boiling phenomenon to establish a more general approach. In this study, the boiling heat transfer performance of fin microchannels with various shapes and dimensions is investigated experimentally. The study has shown that the choice of fin geometry has a significant impact on the thermal performance of a heat transfer system. Specifically, the results indicate that a rectangular cross-section fin performs better than a trapezoidal one with the same fin gap. The rectangular cross-section fin exhibits the highest heat transfer coefficient of 5066.84 W/m2∙K, outperforming the trapezoidal fin in terms of heat transfer capability. As the hydraulic diameter reduces, the thermal boundary layer becomes denser, providing a more distributed saturated region. This leads to the increase in the heat transfer coefficient up to 22.5% and 17.1% for rectangular and trapezoidal fins, respectively. Additionally, the efficiency analysis shows that, albeit increasing the mass flux and reducing the gap increase the average cooling performance, but the pressure drop jumps up to 48%, reducing the efficiency of the heat removal system. Full article
(This article belongs to the Topic Applied Heat Transfer)
Show Figures

Figure 1

13 pages, 2816 KiB  
Article
Amperometric Miniaturised Portable Enzymatic Nanobiosensor for the Ultrasensitive Analysis of a Prostate Cancer Biomarker
by Stefania Hroncekova, Lenka Lorencova, Tomas Bertok, Michal Hires, Eduard Jane, Marek Bučko, Peter Kasak and Jan Tkac
J. Funct. Biomater. 2023, 14(3), 161; https://doi.org/10.3390/jfb14030161 - 17 Mar 2023
Cited by 12 | Viewed by 2695
Abstract
Screen-printing technology is a game changer in many fields including electrochemical biosensing. Two-dimensional nanomaterial MXene Ti3C2Tx was integrated as a nanoplatform to immobilise enzyme sarcosine oxidase (SOx) onto the interface of screen-printed carbon electrodes (SPCEs). A miniaturised, portable, [...] Read more.
Screen-printing technology is a game changer in many fields including electrochemical biosensing. Two-dimensional nanomaterial MXene Ti3C2Tx was integrated as a nanoplatform to immobilise enzyme sarcosine oxidase (SOx) onto the interface of screen-printed carbon electrodes (SPCEs). A miniaturised, portable, and cost-effective nanobiosensor was constructed using chitosan as a biocompatible glue for the ultrasensitive detection of prostate cancer biomarker sarcosine. The fabricated device was characterised with energy-dispersive X-ray spectroscopy (EDX), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Sarcosine was detected indirectly via the amperometric detection of H2O2 formed during enzymatic reaction. The nanobiosensor could detect sarcosine down to 7.0 nM with a maximal peak current output at 4.10 ± 0.35 × 10−5 A using only 100 µL of a sample per measurement. The assay run in 100 μL of an electrolyte showed the first linear calibration curve in a concentration window of up to 5 μM with a slope of 2.86 μA·μM−1, and the second linear calibration curve in the range of 5–50 μM with a slope of 0.32 ± 0.01 μA·μM−1 (R2 = 0.992). The device provided a high recovery index of 92.5% when measuring an analyte spiked into artificial urine, and could be used for detection of sarcosine in urine for at least a period of 5 weeks after the preparation. Full article
Show Figures

Figure 1

Back to TopTop