A Review of Recent Advancements in Heat Pump Systems and Developments in Microchannel Heat Exchangers
Abstract
1. Introduction
2. Fundamentals of and Advances in Heat Pump Systems
2.1. A Brief Introduction to Characteristics of HP Systems
2.1.1. Exergy Reduction
2.1.2. Refrigerants
2.1.3. Energy Consumption
2.1.4. Novel Heat Pump Systems
2.2. Applications of Heat Pump Systems
2.2.1. Residential Heat Pumps
2.2.2. Thermal Management System for an Electric Vehicle
- (a)
- Cabin cooling and component heating: In this mode, the cabin cycle is in the cooling mode, where heat from the cabin is conducted to the external crossflow MCHE, and the component cycle is in the heating mode, where the heat from the external crossflow MCHE is carried to the components. When a component reaches the temperature range where the maximum working efficiency can be achieved, the corresponding component can be bypassed through the bypass valve present so that the components do not exceed the temperature range and overheat. When all the components reach their respective temperature ranges, the component cycle stops working [48].
- (b)
- Cabin heating and component heating: In this mode, the cabin cycle is in the heating mode, where heat from the external crossflow MCHE is carried to the cabin. Here, the component cycle is in the heating mode, where the heat from the external crossflow MCHE is carried to the components [49].
- (c)
- Cabin cooling and component cooling: In this mode, the cabin cycle is in the cooling mode. Therein, heat from the cabin is conducted to the external crossflow MCHE, and the component cycle is in the cooling mode, where heat from the components is conducted to the external crossflow MCHE. Similarly for heating, if the temperature of any component is about to fall below the required range, that component is bypassed through the bypass valve. Particularly, the external fan is compulsory when operating in this mode, as both the cycles reject heat. In other modes, the working of the external fan depends on the amount of heat being rejected by the system and if heat is required by any part of the system [50].
- (d)
- Cabin heating and component cooling: In this mode, the cabin cycle is in the heating mode, where heat from the external crossflow MCHE is carried into the cabin. The component cycle is in the cooling mode, where heat from the components is conducted to the external crossflow MCHE.
2.2.3. Defrosting and Dehumidification
2.2.4. Battery Thermal Management System
2.2.5. Electric Motor Temperature Control
2.2.6. Hybrid Vehicles
2.2.7. Nuclear Reactors
2.3. Heat Exchangers
2.4. Types of Heat Exchangers
2.4.1. Shell and Tube Heat Exchanger
2.4.2. Plate Heat Exchanger
2.4.3. Plate–Fin Heat Exchanger
2.4.4. Double-Pipe Heat Exchanger
2.4.5. Microchannel Heat Exchanger
3. Thermal Performance and Evaluation of Heat Pump Systems
3.1. Materials and Methods
3.2. Evaluation of Heat Pump Systems
3.3. Microchannel Heat Exchanger Analysis
3.3.1. Microchannel Heat Exchanger Performance Parameters
Shape of Microchannel | Working Fluid | ∆Tmax (K) | Heat Transfer Rate (W) | Pressure Drop (Pa) | Effectiveness | Reynold’s Number |
---|---|---|---|---|---|---|
Rectangular [131] | R134a | 50 | 13.25 | 800 | 0.5494 | 1943 |
Circular [131] | R134a | 50 | 9.5 | 900 | 0.6284 | 2185 |
Drop-shaped [132] | Water | 65 | 70 | 1200 | 0.82 | 700 |
Fan-shaped [129] | Water | 60 | 70 | 800 | 0.85 | - |
N- structure [130,133] | Water | 50 | 80 | 300 | - | - |
Parallel-flow double layer [134] | Water | 65 | - | 3000 | 0.24 | 600 |
ITRC [135] | Water | 60 | - | 150 | - | 600 |
Trapezoidal [136] | Water | 60 | - | 250 | - | 300 |
3.3.2. Novel Designs for Microchannel Heat Exchangers
3.3.3. Nanofluids
3.3.4. Additive Manufacturing
3.3.5. Limitations of Microchannel Heat Exchangers
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
CFD | Computational Fluid Dynamics |
COP | Coefficient of Performance |
DCMHE | Desiccant-Coated MCHE |
DFHE | Desiccant-Coated Fin and Tube HX |
EV | Electric Vehicle |
FSC | Fan-Shaped Cavities |
GSHP | Ground-Source Heat Pump |
GWP | Global Warming Potential |
HP | Heat Pump |
HVAC | Heating, Ventilation and Air Conditioning |
HX | Heat Exchanger |
ITRC | Isosceles Trapezoid-shaped Re-entrant Cavities |
LCP | Liquid Cold Plate |
MCHE | Microchannel Heat Exchanger |
MHE-STW | MCHE with Symmetrical Triangular Wave Structure |
MN-MCHE | Multi-Nozzle MCHE |
PCM | Phase-Change Material |
POE | Polyester |
TFHE | Tube and Fin Heat Exchanger |
TMS | Thermal Management System |
WLTP | Worldwide Harmonised Light-Duty Vehicle Test Procedure |
References
- Chua, K.J.; Chou, S.K.; Yang, W.M. Advances in heat pump systems: A review. Appl. Energy 2010, 87, 3611–3624. [Google Scholar] [CrossRef]
- Famiglietti, J.; Acconito, L.; Arpagaus, C.; Toppi, T. Environmental Life Cycle Assessment of Industrial High-Temperature to Residential Small-Size Heat Pumps: A Critical Review. Energy Convers. Manag. X 2025, 26, 100947. [Google Scholar] [CrossRef]
- Adamo, A.; Martín, H.; de la Hoz, J.; Rubio, J. A Review of Worldwide Strategies for Promoting High-Temperature Heat Pumps. Appl. Sci. 2025, 15, 839. [Google Scholar] [CrossRef]
- Lee, M.-Y.; Garud, K.S.; Jeon, H.-B.; Lee, H.-S. A Study on Performance Characteristics of a Heat Pump System with High-Pressure Side Chiller for Light-Duty Commercial Electric Vehicles. Symmetry 2020, 12, 1237. [Google Scholar] [CrossRef]
- Yulianto, M.; Suzuki, T.; Ge, Z.; Tsuchino, T.; Urakawa, M.; Taira, S.; Miyaoka, Y.; Giannetti, N.; Li, L.; Saito, K. Performance assessment of an R32 commercial heat pump water heater in different climates. Sustain. Energy Technol. Assess. 2022, 49, 101679. [Google Scholar] [CrossRef]
- Şahi, E.; Adigüzel, N. Experimental Analysis of the Effects of Climate Conditions on Heat Pump System Performance. SSRN Electron. J. 2021, 27. [Google Scholar] [CrossRef]
- Tang, X.; Guo, Q.; Li, M.; Jiang, M. Heating Performance Characteristics of an Electric Vehicle Heat Pump Air Conditioning System Based on Exergy Analysis. Energies 2020, 13, 2868. [Google Scholar] [CrossRef]
- Bayram, H.; Sevilgen, G.; Kılıç, M. Advances on heat pump applications for electric vehicles. Adv. Automot. Eng. 2018, 1, 79–104. [Google Scholar] [CrossRef]
- Yıldırım, R.; Güngör, A.; Kumaş, K.; Akyüz, A. Evaluation of Low GWP Refrigerants R452B and R454B as Alternative to R410a in the Heat Hump Systems. 2021. Available online: https://dergipark.org.tr/en/pub/jieas/issue/63603/947783 (accessed on 17 August 2021).
- Junqi, D.; Yibiao, W.; Shiwei, J.; Xianhui, Z.; Linjie, H. Experimental study of R744 heat pump system for electric vehicle application. Appl. Therm. Eng. 2021, 183, 116191. [Google Scholar] [CrossRef]
- Yu, B.; Ouyang, H.; Shi, J.; Guo, Z.; Chen, J. Experimental evaluation of cycle performance for new-developed refrigerants in the electric vehicle heat pump systems. Int. J. Refrig. 2021, 129, 118–127. [Google Scholar] [CrossRef]
- Li, W.; Liu, R.; Liu, Y.; Wang, D.; Shi, J.; Chen, J. Performance evaluation of R1234yf heat pump system for an electric vehicle in cold climate. Int. J. Refrig. 2020, 115, 117–125. [Google Scholar] [CrossRef]
- Afshari, F.; Comakli, O.; Karagoz, S.; Zavaragh, H.G. A thermodynamic comparison between heat pump and refrigeration device using several refrigerants. Energy Build. 2018, 168, 272–283. [Google Scholar] [CrossRef]
- Cvok, I.; Ratković, I.; Deur, J. Optimisation of Control Input Allocation Maps for Electric Vehicle Heat Pump-based Cabin Heating Systems. Energies 2020, 13, 5131. [Google Scholar] [CrossRef]
- Na, S.-I.; Chung, Y.; Kim, M.S. Performance analysis of an electric vehicle heat pump system with a desiccant dehumidifier. Energy Convers. Manag. 2021, 236, 114083. [Google Scholar] [CrossRef]
- Bellocchi, S.; Guizzi, G.L.; Manno, M.; Salvatori, M.; Zaccagnini, A. Reversible heat pump HVAC system with regenerative heat exchanger for electric vehicles: Analysis of its impact on driving range. Appl. Therm. Eng. 2018, 129, 290–305. [Google Scholar] [CrossRef]
- Peng, X.; Wang, D.; Wang, G.; Yang, Y.; Xiang, S. Numerical investigation on the heating performance of a transcritical CO2 vapor-injection heat pump syste. Appl. Therm. Eng. 2020, 166, 114656. [Google Scholar] [CrossRef]
- Mao, Z.; Hu, S.; Guan, Y.; Ji, Y.; Liu, G.; Tong, Z.; Wang, Y.; Tong, L. Performance analysis of a hybrid subway source heat pump system using capillary heat exchanger. Appl. Therm. Eng. 2021, 197, 117367. [Google Scholar] [CrossRef]
- Yu, B.; Yang, J.; Wang, D.; Shi, J.; Chen, J. Modeling and theoretical analysis of a CO2-propane autocascade heat pump for electrical vehicle heating. Int. J. Refrig. 2018, 95, 146–155. [Google Scholar] [CrossRef]
- Choi, Y.U.; Kim, M.S.; Kim, G.T.; Kim, M.; Kim, M.S. Performance analysis of vapor injection heat pump system for electric vehicle in cold startup condition. Int. J. Refrig. 2017, 80, 24–36. [Google Scholar] [CrossRef]
- Kwon, C.; Kim, M.S.; Choi, Y.; Kim, M.S. Performance evaluation of a vapor injection heat pump system for electric vehicles. Int. J. Refrig. 2017, 74, 138–150. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Gao, T.; Shi, J.; Chen, J.; Wang, T.; Pan, L. Performance evaluation of propane heat pump system for electric vehicle in cold climate. Int. J. Refrig. 2018, 95, 51–60. [Google Scholar] [CrossRef]
- Li, K.; Yu, J.; Yu, R.; Su, L.; Fang, Y.; Yang, Z. Experimental Investigation on Heating Performance of Newly Designed Air Source Heat Pump System for Electric Vehicles. J. Therm. Sci. Eng. Appl. 2021, 13, 021020. [Google Scholar] [CrossRef]
- Wang, J.; Belusko, M.; Liu, M.; Evans, M.; Alemu; Bruno, F. Preliminary Study on a Novel Transcritical CO2 High-Temperature Heat Pump. In Proceedings of the 6th International Seminar on ORC Power Systems, Munich, Germany, 11–13 October 2021; p. 134. Available online: https://mediatum.ub.tum.de/doc/1633140/1633140.pdf (accessed on 20 February 2022).
- Li, S.; Wang, S.; Ma, Z.; Jiang, S.; Zhang, T. Using an air cycle heat pump system with a turbocharger to supply heating for full electric vehicles. Int. J. Refrig. 2017, 77, 11–19. [Google Scholar] [CrossRef]
- Li, X.; Su, W.; Xu, W.; Dai, B.; Li, J.; Li, L. Editorial: CO2-based energy systems for cooling, heating, and power. Front. Energy Res. 2022, 10, 993093. [Google Scholar] [CrossRef]
- Namdar, H.; Rossi di Schio, E.; Semprini, G.; Valdiserri, P. Photovoltaic-Thermal Solar-Assisted Heat Pump Systems for Building Applications: A Technical Review on Direct Expansion Systems. Energy Build. 2025, 334, 115516. [Google Scholar] [CrossRef]
- Tung, S.C.; Woydt, M.; Shah, R. Global Insights on Future Trends of Hybrid/EV Driveline Lubrication and Thermal Management. Front. Mech. Eng. 2020, 6, 571786. [Google Scholar] [CrossRef]
- Biglarian, H.; Abdollahi, S. Utilization of on-grid photovoltaic panels to offset electricity consumption of a residential ground source heat pump. Energy 2021, 243, 122770. [Google Scholar] [CrossRef]
- Krane, P.; Ziviani, D.; Braun, J.E.; Jain, N.; Marconnet, A. Techno-Economic Analysis of Metal-Hydride Energy Storage to Enable Year-Round Load-Shifting for Residential Heat Pumps. Energy Build. 2021, 256, 111700. [Google Scholar] [CrossRef]
- Siecker, J.; Kusakana, K.; Numbi, B.P. Optimal switching control of an air to air heat pump operating under variable time-based electricity pricing. Energy Rep. 2022, 8, 995–1002. [Google Scholar] [CrossRef]
- Heidari, A.; Marechal, F.; Khovalyg, D. An adaptive control framework based on Reinforcement learning to balance energy, comfort and hygiene in heat pump water heating systems. J. Phys. Conf. Ser. 2021, 2042, 012006. [Google Scholar] [CrossRef]
- Bordignon, S.; Carnieletto, L.; Zarrella, A. An all-in-one machine coupled with a horizontal ground heat exchanger for the air-conditioning of a residential building. Build. Environ. 2021, 207, 108558. [Google Scholar] [CrossRef]
- Vering, C.; Wüllhorst, F.; Mehrfeld, P.; Müller, D. Towards an integrated design of heat pump systems: Application of process intensification using two-stage optimization. Energy Convers. Manag. 2021, 250, 114888. [Google Scholar] [CrossRef]
- Jia, X.; Ma, G.; Zhou, F.; Liu, S.; Wu, G.; Sui, Q. Experimental study and operation optimization of a parallel-loop heat pump for exhaust air recovery in residential buildings. J. Build. Eng. 2022, 45, 103468. [Google Scholar] [CrossRef]
- Shirani, A.; Merzkirch, A.; Roesler, J.; Leyer, S.; Scholzen, F.; Maas, S. Field monitoring data on a residential exhaust air heat pump system (air-to-air heat pump). Data Brief. 2021, 38, 107386. [Google Scholar] [CrossRef]
- Göbel, S.; Schmitt, E.; Mehrfeld, P.; Müller, D. Underfloor heating system model for building performance simulations. In Proceedings of the Modelica Conferences, Lucerne, Switzerland, 8–10 September 2025; pp. 343–349. [Google Scholar] [CrossRef]
- Roccatello, E.; Prada, A.; Baratieri, M. Hybrid Heat Pump Systems as a Possible Solution for the Energy Transition Towards Sustainable Heating Systems for Buildings. In Proceedings of the Creative Solutions for a Sustainable Development: 21st International TRIZ Future Conference, TFC 2021, Bolzano, Italy, 22–24 September 2021; pp. 100–111. [Google Scholar] [CrossRef]
- Thakur, A.K.; Prabakaran, R.; Elkadeem, M.R.; Sharshir, S.W.; Arıcı, M.; Wang, C.; Zhao, W.; Hwang, J.-Y.; Saidur, R. A state of art review and future viewpoint on advance cooling techniques for Lithium–ion battery system of electric vehicles. J. Energy Storage 2020, 32, 101771. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Q.; Zhang, T.; Wang, G.; Jiang, Z.; Li, Y. Advances in Integrated Vehicle Thermal Management and Numerical Simulation. Energies 2017, 10, 1636. [Google Scholar] [CrossRef]
- Yu, B.; Yang, J.; Wang, D.; Shi, J.; Chen, J. Energy consumption and increased EV range evaluation through heat pump scenarios and low GWP refrigerants in the new test procedure WLTP. Int. J. Refrig. 2019, 100, 284–294. [Google Scholar] [CrossRef]
- Zou, H.; Wang, W.; Zhang, G.; Qin, F.; Tian, C.; Yan, Y. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle. Energy Convers. Manag. 2016, 118, 88–95. [Google Scholar] [CrossRef]
- Yokoyama, A.; Osaka, T.; Imanishi, Y.; Sekiya, S. Thermal Management System for Electric Vehicles. SAE Int. J. Mater. Manuf. 2011, 4, 1277–1285. [Google Scholar] [CrossRef]
- Lajunen, A.; Yang, Y.; Emadi, A. Review of Cabin Thermal Management for Electrified Passenger Vehicles. IEEE Trans. Veh. Technol. 2020, 69, 6025–6040. [Google Scholar] [CrossRef]
- Jeffs, J.; McGordon, A.; Picarelli, A.; Robinson, S.; Widanage, W.D. System level heat pump model for investigations into thermal management of electric vehicles at low temperatures. In Proceedings of the 13th International Modelica Conference, Regensburg, Germany, 4–6 March 2019; pp. 107–116. [Google Scholar] [CrossRef]
- Peng, Q.; Du, Q. Progress in Heat Pump Air Conditioning Systems for Electric Vehicles—A Review. Energies 2016, 9, 240. [Google Scholar] [CrossRef]
- Zhang, T.; Gao, C.; Gao, Q.; Wang, G.; Liu, M.; Guo, Y.; Xiao, C.; Yan, Y.Y. Status and development of electric vehicle integrated thermal management from BTM to HVAC. Appl. Therm. Eng. 2015, 88, 398–409. [Google Scholar] [CrossRef]
- Jeffs, J.; McGordon, A.; Widanage, W.D.; Robinson, S.; Picarelli, A. Use of a Thermal Battery with a Heat Pump for Low Temperature Electric Vehicle Operation. In Proceedings of the 2017 IEEE Vehicle Power and Propulsion Conference (VPPC), Belfort, France, 11–14 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Hu, Y.; Yuill, D.P.; Ebrahimifakhar, A. The effects of outdoor air-side fouling on frost growth and heat transfer characteristics of a microchannel heat exchanger: An experimental study. Int. J. Heat Mass Transf. 2020, 151, 119423. [Google Scholar] [CrossRef]
- Torregrosa-Jaime, B.; Corberán, J.M.; Payá, J.; Delamarche, J.L. Thermal characterisation of compact heat exchangers for air heating and cooling in electric vehicles. Appl. Therm. Eng. 2017, 115, 774–781. [Google Scholar] [CrossRef]
- De Nunzio, G.; Sciarretta, A.; Steiner, A.; Mladek, A. Thermal management optimization of a heat-pump-based HVAC system for cabin conditioning in electric vehicles. In Proceedings of the 2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 10–12 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Zhou, G.; Li, H.; Liu, E.; Li, B.; Yan, Y.; Chen, T.; Chen, X. Experimental study on combined defrosting performance of heat pump air conditioning system for pure electric vehicle in low temperature. Appl. Therm. Eng. 2017, 116, 677–684. [Google Scholar] [CrossRef]
- Li, H.-J.; Zhou, G.-H.; Li, A.-G.; Li, X.-G.; Li, Y.-N.; Chen, J. Heat pump air conditioning system for pure electric vehicle at ultra-low temperature. Therm. Sci. 2014, 18, 1667–1672. [Google Scholar] [CrossRef]
- Wang, D.; Yu, B.; Hu, J.; Chen, L.; Shi, J.; Chen, J. Heating performance characteristics of CO2 heat pump system for electrical vehicle in a cold climate. Int. J. Refrig. 2018, 85, 27–41. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Liu, R.; Wang, D.; Shi, J.; Yu, Z.; Cheng, L.; Chen, J. Performance evaluation of secondary loop low-temperature heat pump system for frost prevention in electric vehicles. Appl. Therm. Eng. 2021, 182, 115615. [Google Scholar] [CrossRef]
- Ilis, G.G.; Demir, H.; Akbas, M.Y.; Mobedi, M. Recent Developments on Heat Pump Systems in Electric Vehicle and a suggestion. In Proceedings of the International Heat Transfer Symposium and Heat Powered Cycles Conference 2016, Nottingham, UK, 26–29 June 2016; Available online: https://www.researchgate.net/publication/321937922 (accessed on 18 August 2021).
- Akinlabi, A.A.H.; Solyali, D. Configuration, design, and optimization of air-cooled battery thermal management system for electric vehicles: A review. Renew. Sustain. Energy Rev. 2020, 125, 109815. [Google Scholar] [CrossRef]
- Mondal, B.; Lopez, C.F.; Mukherjee, P.P. Exploring the efficacy of nanofluids for lithium-ion battery thermal management. Int. J. Heat Mass Transf. 2017, 112, 779–794. [Google Scholar] [CrossRef]
- Wiriyasart, S.; Hommalee, C.; Sirikasemsuk, S.; Prurapark, R.; Naphon, P. Thermal management system with nanofluids for electric vehicle battery cooling modules. Case Stud. Therm. Eng. 2020, 18, 100583. [Google Scholar] [CrossRef]
- Lan, C.; Xu, J.; Qiao, Y.; Ma, Y. Thermal management for high power lithium-ion battery by minichannel aluminum tubes. Appl. Therm. Eng. 2016, 101, 284–292. [Google Scholar] [CrossRef]
- Jin, L.W.; Lee, P.S.; Kong, X.X.; Fan, Y.; Chou, S.K. Ultra-thin minichannel LCP for EV battery thermal management. Appl. Energy 2014, 113, 1786–1794. [Google Scholar] [CrossRef]
- Arora, S. Selection of thermal management system for modular battery packs of electric vehicles: A review of existing and emerging technologies. J. Power Sources 2018, 400, 621–640. [Google Scholar] [CrossRef]
- Putra, N.; Ariantara, B. Electric motor thermal management system using L-shaped flat heat pipes. Appl. Therm. Eng. 2017, 126, 1156–1163. [Google Scholar] [CrossRef]
- Fang, G.; Yuan, W.; Yan, Z.; Sun, Y.; Tang, Y. Thermal management integrated with three-dimensional heat pipes for air-cooled permanent magnet synchronous motor. Appl. Therm. Eng. 2019, 152, 594–604. [Google Scholar] [CrossRef]
- Kulikov, I.; Karpukhin, K.; Kurmaev, R. X-in-the-Loop Testing of a Thermal Management System Intended for an Electric Vehicle with In-Wheel Motors. Energies 2020, 13, 6452. [Google Scholar] [CrossRef]
- Liu, M.; Li, Y.; Ding, H.; Sarlioglu, B. Thermal management and cooling of windings in electrical machines for electric vehicle and traction application. In Proceedings of the 2017 IEEE Transportation Electrification Conference and Expo (ITEC), Chicago, IL, USA, 22–24 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 668–673. [Google Scholar] [CrossRef]
- Cavazzuti, M.; Gaspari, G.; Pasquale, S.; Stalio, E. Thermal management of a Formula E electric motor: Analysis and optimization. Appl. Therm. Eng. 2019, 157, 113733. [Google Scholar] [CrossRef]
- Li, B.; Kuo, H.; Wang, X.; Chen, Y.; Wang, Y.; Gerada, D.; Worall, S.; Stone, I.; Yan, Y. Thermal Management of Electrified Propulsion System for Low-Carbon Vehicles. Automot. Innov. 2020, 3, 299–316. [Google Scholar] [CrossRef]
- Deisenroth, D.C.; Ohadi, M. Thermal Management of High-Power Density Electric Motors for Electrification of Aviation and Beyond. Energies 2019, 12, 3594. [Google Scholar] [CrossRef]
- Yang, Y.; Bilgin, B.; Kasprzak, M.; Nalakath, S.; Sadek, H.; Preindl, M.; Cotton, J.; Schofield, N.; Emadi, A. Thermal management of electric machines. IET Electr. Syst. Transp. 2017, 7, 104–116. [Google Scholar] [CrossRef]
- Michalak, A.J.; Mills, J.K. Genetic Optimization of Thermal Management Systems for EV Power Electronics via ANSYS Multiphysics. In Proceedings of the 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, 4–7 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 2401–2406. [Google Scholar] [CrossRef]
- Tao, X.W. Design, Modeling and Control of a Thermal Management System for Hybrid Electric Vehicles. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2016. Available online: https://tigerprints.clemson.edu/all_dissertations/1631 (accessed on 17 August 2021).
- Hamut, H.S.; Dincer, I.; Naterer, G.F. Exergy analysis of a TMS (thermal management system) for range-extended EVs (electric vehicles). Energy 2017, 46, 117–125. [Google Scholar] [CrossRef]
- Yunus, M.; Budiman, A.A.; Zhe, S.; Kiswanta; Chunlin, W.; Subekti, M.; Bakhri, S.; Jun, S. Simulation System for PeLUIt 150 MW Nuclear Reactor by using vPower. J. Phys. Conf. Ser. 2021, 2048, 012034. [Google Scholar] [CrossRef]
- Kromer, D.A.; Huning, A.J.; Garimella, S. I2S-LWR microchannel heat exchanger design and experimental validation. Ann. Nucl. Energy 2020, 145, 105710. [Google Scholar] [CrossRef]
- Ali, M.; Alkaabi, A.K.; Addad, Y. Numerical investigation of a vertical triplex-tube latent heat storage/exchanger to achieve flexible operation of nuclear power plants. Int. J. Energy Res. 2021, 46, 2970–2987. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, D.; Zhao, M.; Wang, L.; Xu, J. The Safety Analysis of the Design of the Reactor Coolant Pump Heat Shield in Qinshan Nuclear Power Plant. In Volume 3: Computational Fluid Dynamics (CFD); Verification and Validation; Advanced Methods of Manufacturing (AMM) for Nuclear Reactors and Components; Decontamination, Decommissioning, and Radioactive Waste Management; Beyond Design Basis and Nuclear Saf; American Society of Mechanical Engineers: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Lim, J.; Shin, D.; Kim, T.; Park, J.H.; Lee, J.; Cho, Y.S.; Kim, Y.; Kim, S.; Kim, S.J. Preliminary Analysis of the Effect of the Gas Injection on Natural circulation for Molten Salt Reactor Type Small Modular Reactor System Operated without a Pump, in: Transactions of the Korean Nuclear Society Virtual Autumn Meeting. 2021. Available online: https://www.kns.org/files/pre_paper/46/21A-399-임지훈.pdf (accessed on 17 August 2021).
- Ye, Q.; Li, S. Investigation on the performance and optimization of heat pump water heater with wrap-around condenser coil. Int. J. Heat Mass Transf. 2019, 143, 118556. [Google Scholar] [CrossRef]
- Yu, J.; Su, L.; Li, K.; Liu, M.; Zhang, H. Investigation on heat transfer characteristics of outside heat exchanger in an air conditioning heat pump system for electric vehicles. Int. J. Heat Mass Transf. 2021, 170, 121040. [Google Scholar] [CrossRef]
- Santosa, I.D.M.C.; Waisnawa, I.G.N.S.; Sunu, P.W.; Temaja, I.W.; Li, L. CFD Air Flow Evaluation of Finned Tube Evaporator for Refrigerated Display Cabinet Application. CFD Lett. 2024, 16, 52–63. [Google Scholar] [CrossRef]
- Ishaque, S.; Siddiqui, M.I.H.; Kim, M.-H. Effect of heat exchanger design on seasonal performance of heat pump systems. Int. J. Heat Mass Transf. 2020, 151, 119404. [Google Scholar] [CrossRef]
- Li, Y.; Lei, Y.; Li, J.; Du, B.; Song, C.; Wang, Y. Experimental Investigation on the Thermo-Hydraulic Performance and Entransy Analysis of a Shell-and-Tube Heat Exchanger with Louver Baffles. Appl. Therm. Eng. 2025, 269, 125928. [Google Scholar] [CrossRef]
- Shen, B.; Li, Z.; Gluesenkamp, K.R. Experimental study of R452B and R454B as drop-in replacement for R410A in split heat pumps having tube-fin and microchannel heat exchangers. Appl. Therm. Eng. 2022, 204, 117930. [Google Scholar] [CrossRef]
- Gherasim, I.; Taws, M.; Galanis, N.; Nguyen, C.T. Heat transfer and fluid flow in a plate heat exchanger part I. Experimental investigation. Int. J. Therm. Sci. 2011, 50, 1492–1498. [Google Scholar] [CrossRef]
- Borjigin, S.; Zhao, W.; Fu, W.; Liang, W.; Bai, S.; Ma, J.; Meng, K.; Baoyin, H. Review of Plate Heat Exchanger Utilized for Gases Heat Exchange. Renew. Sustain. Energy Rev. 2025, 210, 115224. [Google Scholar] [CrossRef]
- Bisengimana, E.; Zhou, J.; Binama, M.; Yuan, Y. Numerical investigation on the factors influencing the temperature distribution of photovoltaic/thermal (PVT) evaporator/condenser for heat pump systems. Renew. Energy 2022, 194, 885–901. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Yu, B.; Shi, J.; Chen, J. Numerical study on heat transfer performance of micro-channel gas coolers for automobile CO2 heat pump systems. Int. J. Refrig. 2019, 106, 639–649. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Dong, Q.W.; Liu, M.S.; Wang, D. Numerical study on plate-fin heat exchangers with plain fins and serrated fins at low Reynolds number. Chem. Eng. Technol. 2009, 32, 1219–1226. [Google Scholar] [CrossRef]
- Cremaschi, L.; Yatim, A.S.; Mulugurthi, S.K. Experimental study of oil retention in microchannel type evaporators of air-source heat pump systems. Int. J. Refrig. 2018, 91, 158–166. [Google Scholar] [CrossRef]
- Bell, K.J.; Exchangers, H. Encyclopedia of Physical Science and Technology; Elsevier: Amsterdam, The Netherlands, 2003; pp. 251–264. [Google Scholar] [CrossRef]
- Kong, X.; Yang, Y.; Zhang, M.; Li, Y.; Li, J. Experimental investigation on a direct-expansion solar-assisted heat pump water heater using R290 with micro-channel heat transfer technology during the winter period. Int. J. Refrig. 2020, 113, 38–48. [Google Scholar] [CrossRef]
- Glazar, V.; Trp, A.; Lenic, K. Optimization of air-water microchannel heat exchanger using response surface methodology. Int. J. Heat Mass Transf. 2020, 157, 119887. [Google Scholar] [CrossRef]
- Lavaa, A. Types of Heat Exchangers: An Introduction to All Essential About Specification. Linquip 2020. Available online: https://www.linquip.com/blog/types-of-heat-exchangers/ (accessed on 20 July 2021).
- Mazaheri, N.; Bahiraei, M.; Razi, S. Two-phase analysis of nanofluid flow within an innovative four-layer microchannel heat exchanger: Focusing on energy efficiency principle. Powder Technol. 2021, 383, 484–497. [Google Scholar] [CrossRef]
- Zohuri, B. Heat Exchanger Types and Classifications, in: Compact Heat Exchangers; Springer International Publishing: Cham, Switzerland, 2017; pp. 19–56. [Google Scholar] [CrossRef]
- Mishra, M.; Das, P.K.; Sarangi, S. Second law based optimisation of crossflow plate-fin heat exchanger design using genetic algorithm. Appl. Therm. Eng. 2009, 29, 2983–2989. [Google Scholar] [CrossRef]
- Omidi, M.; Farhadi, M.; Jafari, M. A comprehensive review on double pipe heat exchangers. Appl. Therm. Eng. 2017, 110, 1075–1090. [Google Scholar] [CrossRef]
- Chen, C.; Yang, S.; Pan, M. Microchannel structure optimization and experimental verification of a plate heat exchanger. Int. J. Heat Mass Transf. 2021, 175, 121385. [Google Scholar] [CrossRef]
- Andhare, R.S.; Shooshtari, A.; Dessiatoun, S.V.; Ohadi, M.M. Heat transfer and pressure drop characteristics of a flat plate manifold microchannel heat exchanger in counter flow configuration. Appl. Therm. Eng. 2016, 96, 178–189. [Google Scholar] [CrossRef]
- Gu, X.; Chen, W.; Chen, C.; Li, N.; Gao, W.; Wang, Y. Detailed characteristics of fluid flow and its effect on heat transfer in shell sides of typical shell-and-tube heat exchangers. Int. J. Therm. Sci. 2021, 173, 107381. [Google Scholar] [CrossRef]
- Najim, S.M.; Hussein, A.M.; Danook, S.H. Performance Evaluation of Shell and Tube Heat Exchanger by Using Fe3O4/water Nanofluid. NTU J. Eng. Technol. 2021, 9, 54–62. Available online: https://journals.ntu.edu.iq/index.php/NTU-JET/article/view/56/27 (accessed on 17 August 2021). [CrossRef]
- Gupta, S.K.; Verma, H.; Yadav, N. A review on recent development of nanofluid utilization in shell & tube heat exchanger for saving of energy. Mater. Today Proc. 2021, 54, 579–589. [Google Scholar] [CrossRef]
- Hasan, S.S.; Baqir, A.S.; Mahood, H.B. The Effect of Injected Air Bubble Size on the Thermal Performance of a Vertical Shell and Helical Coiled Tube Heat Exchanger. Energy Eng. 2021, 118, 1595–1609. [Google Scholar] [CrossRef]
- Karnam, M. Hemanth, Internal Heat Exchanger Application in Heat Pumps: Evaluation and Testing of Different Internal Heat Exchangers for Efficiency Improvement. Master’s Thesis, Chalmers University of Technology, Chalmersgatan, Göteborg, 2021. Available online: https://hdl.handle.net/20.500.12380/304387 (accessed on 15 August 2021).
- Singh, S.; Ghosh, S.K. Pressure drop and heat transfer characteristics in 60° Chevron plate heat exchanger using Al2O3, GNP and MWCNT nanofluids. Int. J. Numer. Methods Heat Fluid Flow 2021, 32, 2750–2777. [Google Scholar] [CrossRef]
- Yao, Y.; Ding, J.; Zhang, Y.; Wang, W.; Lu, J. Heat transfer performance of pillow plate heat exchanger with molten salt and supercritical carbon dioxide. Int. J. Heat Mass Transf. 2021, 183, 122211. [Google Scholar] [CrossRef]
- Gürel, B.; Keçebaş, A.; Akkaya, V.R.; Algan, R.; Göltaş, M.; Güler, O.V. Investigation of the Effects of Plate Patterns on Effectiveness and Entropy Generation in Plate Heat Exchangers. In Proceedings of the 6th International Seminar on ORC Power Systems, Munich, Germany, 11–13 October 2021; p. 34. Available online: https://mediatum.ub.tum.de/doc/1633018/1633018.pdf (accessed on 20 February 2022).
- Pai, Y.-W.; Yeh, R.-H. Experimental investigation of heat transfer and pressure drop characteristics of internal finned tubes. Int. J. Heat Mass Transf. 2021, 183, 122183. [Google Scholar] [CrossRef]
- Revan, A.; Reddy, D.; Reddy, A.N.R. Performance of Double Pipe Heat Exchanger with Different Nano Fluids. Int. Res. J. Eng. Technol. 2021, 8, 1619–1628. [Google Scholar]
- Kavitha, R.; Algani, Y.M.A.; Kulkarni, K.; Gupta, M.K. Heat transfer enhancement in a double pipe heat exchanger with copper oxide nanofluid: An experimental study. Mater. Today Proc. 2022, 56, 3446–3449. [Google Scholar] [CrossRef]
- Cabello, R.; Popescu, A.E.P.; Bonet-Ruiz, J.; Cantarell, L.J.; Curco, D. Validation of CFD Models for Double-Pipe Heat Exchangers with Empirical Correlations. Chem. Eng. Trans. 2021, 88, 1243–1248. [Google Scholar] [CrossRef]
- Ali, B.G.R.; Kadhim, Z.K. Heat transfer improvement of counter-flow heat exchanger by using longitudinal fins with various heights and cross-section. Des. Eng. 2024, 3105, 9273–9285. [Google Scholar] [CrossRef]
- Park, N.-H.; Ha, M.Y. An experimental study on the effect of vertical header geometry on the two-phase refrigerant distribution and performance of a microchannel heat exchanger. Appl. Therm. Eng. 2022, 209, 118287. [Google Scholar] [CrossRef]
- Rendall, J.; Turnaoglu, T.; Patel, V.K. Experimental results of a magnetically coupled piezoelectric actuator to relieve microchannel heat exchanger maldistribution. Int. Commun. Heat Mass Transf. 2022, 133, 105944. [Google Scholar] [CrossRef]
- Omri, M.; Smaoui, H.; Frechette, L.; Kolsi, L. A new microchannel heat exchanger configuration using CNT-nanofluid and allowing uniform temperature on the active wall. Case Stud. Therm. Eng. 2022, 32, 101866. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y.; Li, M.; Huang, J. A review of development of micro-channel heat exchanger applied in air-conditioning system. Energy Procedia 2012, 14, 148–153. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, Z.; Zhang, Z.; Shi, J.; Chen, J.; Zhang, M. Impact of airside fouling on microchannel heat exchangers. Appl. Therm. Eng. 2018, 128, 42–50. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, J.; Yan, Z.; Gao, Q. Development and Application of a Microchannel Heat Exchanger for the Heat Pump. Int. J. Energy A Clean. Environ. 2018, 19, 137–141. [Google Scholar] [CrossRef]
- Hong, S.H.; Jang, D.S.; Yun, S.; Baek, J.H.; Kim, Y. Performance improvement of heat pumps using novel microchannel heat exchangers with plain-louver fins during periodic frosting and defrosting cycles in electric vehicles. Energy Convers. Manag. 2020, 223, 113306. [Google Scholar] [CrossRef]
- Saleem, A.; Kim, M.-H. Air-side thermal hydraulic performance of microchannel heat exchangers with different fin configurations. Appl. Therm. Eng. 2017, 125, 780–789. [Google Scholar] [CrossRef]
- Deng, Y.; Menon, S.; Lavrich, Z.; Wang, H.; Hagen, C.L. Design, simulation, and testing of a novel micro-channel heat exchanger for natural gas cooling in automotive applications. Appl. Therm. Eng. 2017, 110, 327–334. [Google Scholar] [CrossRef]
- Panda, K.; Hirokawa, T.; Huang, L. Design study of microchannel heat exchanger headers using experimentally validated multiphase flow CFD simulation. Appl. Therm. Eng. 2020, 178, 115585. [Google Scholar] [CrossRef]
- Redo, M.A.; Jeong, J.; Giannetti, N.; Enoki, K.; Yamaguchi, S.; Saito, K.; Kim, H. Characterization of two-phase flow distribution in microchannel heat exchanger header for air-conditioning system. Exp. Therm. Fluid Sci. 2019, 106, 183–193. [Google Scholar] [CrossRef]
- Siddiqui, O.K.; Zubair, S.M. Efficient energy utilization through proper design of microchannel heat exchanger manifolds: A comprehensive review. Renew. Sustain. Energy Rev. 2017, 74, 969–1002. [Google Scholar] [CrossRef]
- Mahvi, A.J.; Garimella, S. Two-phase flow distribution of saturated refrigerants in microchannel heat exchanger headers. Int. J. Refrig. 2019, 104, 84–94. [Google Scholar] [CrossRef]
- Giannetti, N.; Redo, M.A.; Sholahudin; Jeong, J.; Yamaguchi, S.; Saito, K.; Kim, H. Prediction of two-phase flow distribution in microchannel heat exchangers using artificial neural network. Int. J. Refrig. 2020, 111, 53–62. [Google Scholar] [CrossRef]
- Shi, H.; Ma, T.; Chu, W.; Wang, Q. Optimization of inlet part of a microchannel ceramic heat exchanger using surrogate model coupled with genetic algorithm. Energy Convers. Manag. 2017, 149, 988–996. [Google Scholar] [CrossRef]
- Pan, M.; Wang, H.; Zhong, Y.; Hu, M.; Zhou, X.; Dong, G.; Huang, P. Experimental investigation of the heat transfer performance of microchannel heat exchangers with fan-shaped cavities. Int. J. Heat Mass Transf. 2019, 134, 1199–1208. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, M. Impact of N-Structure Geometry on Heat Transfer in a Microchannel Heat Exchanger. Chem. Eng. Technol. 2021, 44, 690–697. [Google Scholar] [CrossRef]
- Fung, C.K.; Majnis, M.F. Computational fluid dynamic simulation analysis of effect of microchannel geometry on thermal and hydraulic performances of micro channel heat exchanger. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 62, 198–208. [Google Scholar]
- Zhou, F.; Zhou, W.; Zhang, C.; Qiu, Q.; Yuan, D.; Chu, X. Experimental and numerical studies on heat transfer enhancement of microchannel heat exchanger embedded with different shape micropillars. Appl. Therm. Eng. 2020, 175, 115296. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, M. Simulation Analysis of the Heat Transfer Performance of an N-type Microchannel Heat Exchanger. Chem. Eng. Technol. 2020, 43, 1930–1938. [Google Scholar] [CrossRef]
- Zhou, F.; Zhou, W.; Qiu, Q.; Yu, W.; Chu, X. Investigation of fluid flow and heat transfer characteristics of parallel flow double-layer microchannel heat exchanger. Appl. Therm. Eng. 2018, 137, 616–631. [Google Scholar] [CrossRef]
- Pan, M.; Zhong, Y.; Xu, Y. Numerical investigation of fluid flow and heat transfer in a plate microchannel heat exchanger with isosceles trapezoid-shaped reentrant cavities in the sidewall. Chem. Eng. Process.-Process Intensif. 2018, 131, 178–189. [Google Scholar] [CrossRef]
- Hou, T.; Chen, Y. Pressure drop and heat transfer performance of microchannel heat exchanger with different reentrant cavities. Chem. Eng. Process.-Process Intensif. 2020, 153, 107931. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Zou, Z. Experimental study and performance analysis of high-performance micro-channel heat exchanger for hypersonic precooled aero-engine. Appl. Therm. Eng. 2021, 182, 116108. [Google Scholar] [CrossRef]
- Engelbrecht, N.; Everson, R.C.; Bessarabov, D. Thermal management and methanation performance of a microchannel-based Sabatier reactor/heat exchanger utilising renewable hydrogen. Fuel Process. Technol. 2020, 208, 106508. [Google Scholar] [CrossRef]
- Tran, N.; Chang, Y.-J.; Teng, J.-T.; Greif, R. Enhancement heat transfer rate per unit volume of microchannel heat exchanger by using a novel multi-nozzle structure on cool side. Int. J. Heat Mass Transf. 2017, 109, 1031–1043. [Google Scholar] [CrossRef]
- Liang, C.P.; Ture, F.; Dai, Y.J.; Wang, R.Z.; Ge, T.S. Experimental investigation on performance of desiccant coated microchannel heat exchangers under condensation conditions. Energy Build. 2021, 231, 110622. [Google Scholar] [CrossRef]
- Wang, C.; Ji, X.; Yang, B.; Zhang, R.; Yang, D. Study on heat transfer and dehumidification performance of desiccant coated microchannel heat exchanger. Appl. Therm. Eng. 2021, 192, 116913. [Google Scholar] [CrossRef]
- Sun, X.Y.; Dai, Y.J.; Ge, T.S.; Zhao, Y.; Wang, R.Z. Heat and mass transfer comparisons of desiccant coated microchannel and fin-and-tube heat exchangers. Appl. Therm. Eng. 2019, 150, 1159–1167. [Google Scholar] [CrossRef]
- Kwon, B.; Maniscalco, N.I.; Jacobi, A.M.; King, W.P. High power density air-cooled microchannel heat exchanger. Int. J. Heat Mass Transf. 2018, 118, 1276–1283. [Google Scholar] [CrossRef]
- Roberts, N.S.; Al-Shannaq, R.; Kurdi, J.; Al-Muhtaseb, S.A.; Farid, M.M. Efficacy of using slurry of metal-coated microencapsulated PCM for cooling in a micro-channel heat exchanger. Appl. Therm. Eng. 2017, 122, 11–18. [Google Scholar] [CrossRef]
- Kwon, B.; Maniscalco, N.I.; Jacobi, A.M.; King, W.P. High power density two-phase cooling in microchannel heat exchangers. Appl. Therm. Eng. 2019, 148, 1271–1277. [Google Scholar] [CrossRef]
- Shamirzaev, A.S.; Kuznetsov, V.V. Experimental study of condensation of dielectric liquid in microchannel heat exchanger. J. Phys. Conf. Ser. 2019, 1382, 012118. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Hart, J.; Shrestha, E.; Arya, H.; Arjomandi, M. Experimental thermal energy assessment of a liquid metal eutectic in a microchannel heat exchanger equipped with a (10 Hz/50 Hz) resonator. Appl. Therm. Eng. 2019, 148, 578–590. [Google Scholar] [CrossRef]
- Appadurai, M.; Raj, E.F.I.; Jenish, I. Application of Aluminium Oxide–Water Nanofluids to Augment the Performance of Shallow Pond: A Numerical Study. Process Integr. Optim. Sustain. 2021, 6, 211–222. [Google Scholar] [CrossRef]
- Zeng, X.; Yu, H.; He, T.; Mao, N. A Numerical Study on Heat Transfer Characteristics of a Novel Rectangular Grooved Microchannel with Al2O3/Water Nanofluids. Energies 2022, 15, 7187. [Google Scholar] [CrossRef]
- Wang, H.; Pang, M.; Diao, Y.; Zhao, Y. Heat transfer characteristics and flow features of nanofluids in parallel flat minichannels. Powder Technol. 2022, 402, 117321. [Google Scholar] [CrossRef]
- Vinoth, R.; Sachuthananthan, B.; Vadivel, A.; Balakrishnan, S.; Raj, A.G.S. Heat transfer enhancement in oblique finned curved microchannel using hybrid nanofluid. Int. J. Therm. Sci. 2023, 183, 107848. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Bhaskaran, G.; Shuaib, N.H.; Saidur, R. Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: A review. Renew. Sustain. Energy Rev. 2011, 15, 1502–1512. [Google Scholar] [CrossRef]
- Li, Z.X.; Khaled, U.; Al-Rashed, A.A.A.A.; Goodarzi, M.; Sarafraz, M.M.; Meer, R. Heat transfer evaluation of a micro heat exchanger cooling with spherical carbon-acetone nanofluid. Int. J. Heat Mass Transf. 2020, 149, 119124. [Google Scholar] [CrossRef]
- Huang, Y.; Zou, C.; Chen, M.; Sun, H. Thermophysical property evaluation of β-cyclodextrin modified ZrO2 nanofluids for microchannel heat exchange. Ceram. Int. 2022, 48, 31728–31737. [Google Scholar] [CrossRef]
- Khan, Y.; Sarowar, M.T.; Mobarrat, M.; Rahman, M.H. Performance Comparison of a Microchannel Heat Sink Using Different Nano-Liquid Metal Fluid Coolant: A Numerical Study. J. Therm. Sci. Eng. Appl. 2022, 14, 091014. [Google Scholar] [CrossRef]
- Ahmed, E.A.; Adham, A.M. Numerical Study of a Double Layered Microchannel Heat Sink Cooled by Hybrid Nanofluids. Erbil Polytechnic University. 2022. Available online: https://epu.edu.iq/wp-content/uploads/2022/12/Esra-Ahmed-Khudadad-7e762696.pdf (accessed on 23 April 2023).
- Hayat, M.A.; Chen, Y.; Bevilacqua, M.; Li, L.; Yang, Y. Characteristics and potential applications of nano-enhanced phase change materials: A critical review on recent developments. Sustain. Energy Technol. Assess. 2022, 50, 101799. [Google Scholar] [CrossRef]
- Hayat, M.A.; Chen, Y.; Yang, Y.; Li, L.; Bevilacqua, M. Enhancing thermal energy storage in buildings with novel functionalised MWCNTs-enhanced phase change materials: Towards efficient and stable solutions. Therm. Sci. Eng. Prog. 2024, 47, 102313. [Google Scholar] [CrossRef]
- Fattahi, M.; Vaferi, K.; Vajdi, M.; Moghanlou, F.S.; Namini, A.S.; Asl, M.S. Aluminum nitride as an alternative ceramic for fabrication of microchannel heat exchangers: A numerical study. Ceram. Int. 2020, 46, 11647–11657. [Google Scholar] [CrossRef]
- Zhang, X.; Tiwari, R.; Shooshtari, A.H.; Ohadi, M.M. An additively manufactured metallic manifold-microchannel heat exchanger for high temperature applications. Appl. Therm. Eng. 2018, 143, 899–908. [Google Scholar] [CrossRef]
- Jamshidmofid, M.; Abbassi, A.; Bahiraei, M. Efficacy of a novel graphene quantum dots nanofluid in a microchannel heat exchanger. Appl. Therm. Eng. 2021, 189, 116673. [Google Scholar] [CrossRef]
- Kempers, R.; Colenbrander, J.; Tan, W.; Chen, R.; Robinson, A.J. Experimental characterization of a hybrid impinging microjet-microchannel heat sink fabricated using high-volume metal additive manufacturing. Int. J. Thermofluids 2020, 5–6, 100029. [Google Scholar] [CrossRef]
- Arie, M.A.; Shooshtari, A.H.; Ohadi, M.M. Experimental characterization of an additively manufactured heat exchanger for dry cooling of power plants. Appl. Therm. Eng. 2018, 129, 187–198. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Safaei, M.R.; Goodarzi, M.; Yang, B.; Arjomandi, M. Heat transfer analysis of Ga-In-Sn in a compact heat exchanger equipped with straight micro-passages. Int. J. Heat Mass Transf. 2019, 139, 675–684. [Google Scholar] [CrossRef]
- Yameen, W.C.; Piascik, N.A.; Miller, A.K.; Clemente, R.C.; Benner, J.Z.; Santamaria, A.D.; Niknam, S.A.; Mortazavi, M. Modified Manifold-Microchannel Heat Exchangers Fabricated Based on Additive Manufacturing: Experimental Characterization. In Proceedings of the ASME 2019 Heat Transfer Summer Conference, Washington, DC, USA, 14–17 July 2019; American Society of Mechanical Engineers: New York, NY, USA, 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Pal, D.; Hasan, N.; Rao, P.V. Nagarajan, Temperature distribution analysis of Cu, Al and steel material heat exchangers by ANSYS. Mater. Today Proc. 2021, 56, 3176–3185. [Google Scholar] [CrossRef]
- Mortazavi, M.; Niknam, S.A.; Heidari, M.; Clemente, R.C. Experimental characterization of additively manufactured metallic heat exchangers. IEEE Trans. Compon. Packag. Manuf. Technol. 2021, 11, 2089–2101. [Google Scholar] [CrossRef]
- Xiong, T.; Liu, G.; Huang, S.; Yan, G.; Yu, J. Two-phase flow distribution in parallel flow mini/micro-channel heat exchangers for refrigeration and heat pump systems: A comprehensive review. Appl. Therm. Eng. 2022, 201, 117820. [Google Scholar] [CrossRef]
- Czarnecki, J.; Mosdorf, R.; Grzybowski, H.; Dzienis, P. Modeling dynamics of pressure fluctuations in a microchannel heat exchanger covered with a wire mesh membrane. E3S Web Conf. 2021, 321, 02006. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Ding, P. Effects of channel shape on the cooling performance of hybrid micro-channel and slot-jet module. Int. J. Heat Mass Transf. 2017, 113, 295–309. [Google Scholar] [CrossRef]
- Jia, Y.; Huang, J.; Wang, J.; Li, H. Heat Transfer and Fluid Flow Characteristics of Microchannel with Oval-Shaped Micro Pin Fins. Entropy 2021, 23, 1482. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Yuill, D.P. Impacts of common faults on an air conditioner with a microtube condenser and analysis of fault characteristic features. Energy Build. 2022, 254, 111630. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.; He, J.; Guo, Z. A Novel Defrosting Initiating Strategy for Automotive Air Conditioner Heat Pumps Based on frost thickness growth prediction. Int. J. Refrig. 2021, 134, 242–252. [Google Scholar] [CrossRef]
- Kumar, R.; Vijayaraghavan, S.; Govindaraj, D. Numerical and analytical approach to study condensation for automotive heat exchangers. Mater. Today Proc. 2021, 52, 556–564. [Google Scholar] [CrossRef]
- Li, K.; Xia, D.; Luo, S.; Zhao, Y.; Tu, R.; Zhou, X.; Zhang, H.; Su, L. An experimental investigation on the frosting and defrosting process of an outdoor heat exchanger in an air conditioning heat pump system for electric vehicles. Appl. Therm. Eng. 2022, 201, 117766. [Google Scholar] [CrossRef]
Refrigerant | Liquid Density at 20 °C (kg/m3) | Liquid Volume at 20 °C (m3/kg) | Critical Pressure (kPa) | Critical Temperature (°C) | Normal Boiling Point (°C) |
---|---|---|---|---|---|
R22 | 1210.0 | 0.000826 | 4999 | 96.15 | −40.8 |
R134a | 1224.5 | 0.000816 | 4060.3 | 101.08 | −26.6 |
R404a | 1071.7 | 0.000938 | 3732 | 72.07 | −46.6 |
R407c | 1154.7 | 0.00090 | 4619 | 86.74 | −43.6 |
Heat Pump Application | Heat Exchanger Type | Working Fluid | Heat Transfer Rate (kW) | Pressure Drop (Pa) | COP |
---|---|---|---|---|---|
Water Heating [96] | Coil–Tube | Water | - | - | 3.8 |
Electric Vehicles [85] | Fin–Tube | R290 | 5.2 | - | - |
Water Heating [89] | Fin–Tube | R410a | - | 60 | 4.8 |
Air Conditioning [97] | Fin–Tube | R454b | 8.3 | - | 3.26 |
Water Heating [91] | PVT | R134a | - | 220 | 2.9 |
Automobile [98] | Microchannel | CO2 | 4.5 | - | - |
Refrigeration [99] | Microchannel | R134a | 5.8 | 450 | - |
Refrigeration [99] | Microchannel | POE Oil | 5.2 | 650 | - |
Electric Vehicle [12] | Microchannel | R1234yf | 1.4 | - | 2 |
Water Heating [95] | PVT Microchannel | R290 | 1.4 | - | 3.95 |
Refrigeration [100] | Microchannel | Propylene Glycol/Water solution | 1.3 | 155 | - |
Air Conditioning [97] | Microchannel | R454b | 8.6 | - | 3.35 |
Air Conditioning [97] | Microchannel | R410a | 11 | - | 3.27 |
Type of HX | Fluid | Heat Transfer (W) | Pressure Drop (Pa) | Pressure Gradient (Pa/m) | Heat Transfer Coefficient (W/(m2 K)) | Effectiveness |
---|---|---|---|---|---|---|
Shell and Tube HX (counter flow) [101] | Water | - | - | 1500 | 4300 | - |
Shell and Tube HX (parallel flow) [101] | Water | - | - | 1000 | 3000 | - |
Shell and Tube [102] | Fe3O4–Water | 1300 | - | - | 420 | 0.6 |
Shell and Tube [103] | SiO2–Water | - | 240 | - | 430 | 0.6 |
Spiral Tube HX [104] | Water | - | - | - | 1300 | 0.7 |
Plate HX [105] | Water | 127 | 214 | - | 526 | 0.05 |
Plate [106] | Al2O3 | 2850 | 140 | - | 1750 | 0.75 |
Plate [106] | GnP | 2900 | 130 | - | 1750 | 0.79 |
Plate [106] | MWCNT | 3100 | 130 | - | 1750 | 0.8 |
Plate [107] | SCO2 | - | 300 | - | 2400 | - |
Plate [108] | Water | 3000 | 650 | - | 5000 | 0.38 |
Fin–Tube HX [109] | Water | 916 | 500 | - | - | 0.4 |
Double-Pipe HX [105] | Water | 97 | 602, 160 | - | 495 | 0.04 |
Double Pipe [110] | Water | 5 | - | - | 60 | 0.04 |
Double Pipe [110] | Al2O3 | 11 | - | - | 152 | 0.07 |
Double Pipe [111] | CuO | 164 | - | - | 658 | - |
Double Pipe [112] | Water | - | 440, 117 | - | 1490 | - |
Double Pipe [113] | Water | 600 | - | - | 380 | - |
Microchannel HX [114] | R410a | 4452 | 60,900 | - | - | - |
Microchannel [115] | R134a | 380 | - | - | - | 0.904 |
Microchannel [116] | CNT–water nanofluid | 325 | - | - | 3550 | 0.752 |
Fabrication Material | Working Fluid | Tmax (K) | Heat Transfer Rate (W) | Mass Flow Rate | Effectiveness |
---|---|---|---|---|---|
Aluminium Nitride [161] | Water | 363 | 800 | 60 (kg/h) | 13% |
Inconel 718 [162] | N2 gas | 873 | 2000 | 5.5 (kg/h) | - |
Copper [163] | Nanofluid– graphene quantum dots | 313 | 65 | - | 65% |
Copper with hybrid impinging [164] | Water | 323 | 2.5 | 0.7 (L/min) | - |
Stainless Steel (SS17-4) [165] | Water | 306 | 290 | - | - |
Aluminium Alloy (AlSi10Mg) [165] | Water | 306 | 410 | - | - |
Titanium Alloy (Ti64) [165] | Water | 306 | 200 | - | - |
Stainless Steel [166] | Ga-In-Sn | 600 | 180 | 0.4 (kg/h) | 32% |
Stainless Steel [167] | Water | 333 | 298 | 0.047 (L/s) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sureddi, R.C.; Li, L.; Wu, H.; Giannetti, N.; Saito, K.; Rees, D. A Review of Recent Advancements in Heat Pump Systems and Developments in Microchannel Heat Exchangers. Machines 2025, 13, 333. https://doi.org/10.3390/machines13040333
Sureddi RC, Li L, Wu H, Giannetti N, Saito K, Rees D. A Review of Recent Advancements in Heat Pump Systems and Developments in Microchannel Heat Exchangers. Machines. 2025; 13(4):333. https://doi.org/10.3390/machines13040333
Chicago/Turabian StyleSureddi, Roopesh Chowdary, Liang Li, Hongwei Wu, Niccolo Giannetti, Kiyoshi Saito, and David Rees. 2025. "A Review of Recent Advancements in Heat Pump Systems and Developments in Microchannel Heat Exchangers" Machines 13, no. 4: 333. https://doi.org/10.3390/machines13040333
APA StyleSureddi, R. C., Li, L., Wu, H., Giannetti, N., Saito, K., & Rees, D. (2025). A Review of Recent Advancements in Heat Pump Systems and Developments in Microchannel Heat Exchangers. Machines, 13(4), 333. https://doi.org/10.3390/machines13040333