Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = mineral and organo-mineral fertilizer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1443 KiB  
Article
Organomineral Fertilizer in Planting of Potato Cultivars Ágata and Atlantic
by Mara Lúcia Martins Magela, José Magno Queiroz Luz, Regina Maria Quintão Lana, Rayssa Camargo de Oliveira, Luciana Nunes Gontijo, Rafael Resende Finzi, Gabriel Mascarenhas Maciel and Ana Carolina Silva Siquieroli
Agronomy 2025, 15(8), 1833; https://doi.org/10.3390/agronomy15081833 - 29 Jul 2025
Viewed by 334
Abstract
Given the importance of potatoes in Brazilian agribusiness and the need to establish sustainable production systems, interest has increased in the implementation of more efficient fertilization methods for the cultivation. Thus, the objective of this study was to evaluate the response of the [...] Read more.
Given the importance of potatoes in Brazilian agribusiness and the need to establish sustainable production systems, interest has increased in the implementation of more efficient fertilization methods for the cultivation. Thus, the objective of this study was to evaluate the response of the cultivars Ágata and Atlantic to fertilization with a pelleted organomineral source in comparison to conventional fertilization performed with a mineral source. A causal block design was used with five treatments [100% of the recommendation for fertilization with mineral sources 03-35-06; and 100%, 80%, 60%, and 40% of the recommended dose with organomineral fertilizer (02-20-05)] in four replications, totaling 20 plots. The application of the organomineral in plant fertilization can be an interesting source of fertilizer for the cultivation of Ágata and Atlantic potatoes and can be applied with dose adjustments. For the cultivar Ágata, the doses of 100% and 80% organomineral fertilizer together with mineral fertilization resulted in the highest total yields. The lower doses (60% and 40%) made it possible to obtain a higher percentage of special potatoes, considered to be of the highest commercial value, than 80% of the organomineral fertilizers and 100% mineral standard. For the Atlantic cultivar, the total yield responses to organomineral were like those obtained with exclusively mineral fertilization. These findings indicate that organomineral fertilizers can be used efficiently with adjusted doses, maintaining productivity and tuber quality while potentially reducing fertilizer input costs and environmental impacts, contributing to more sustainable potato cropping systems. Full article
Show Figures

Figure 1

19 pages, 1575 KiB  
Article
Looking for New P Fertilizers: Comparative Study of Mineral-, Organomineral- and Organic-Based Fertilizers for Lettuce (Lactuca sativa L.)
by Lucía Valverde-Vozmediano, Silvia Sánchez-Méndez, Luciano Orden, Miguel A. Mira-Urios, Francisco Javier Andreu, Jose A. Sáez, Encarnación Martínez-Sabater, María Ángeles Bustamante, Javier Martín-Pozuelo and Raúl Moral
Agronomy 2025, 15(7), 1661; https://doi.org/10.3390/agronomy15071661 - 9 Jul 2025
Viewed by 392
Abstract
In this study several phosphorus fertilizers were evaluated under controlled production conditions using Lactuca sativa var. baby leaf and a clay-loam soil of pH 6.5 as a plant–soil model system. Various inorganic (phosphate rock, monoammonium phosphate, struvite), organic (bone meal and bone meal [...] Read more.
In this study several phosphorus fertilizers were evaluated under controlled production conditions using Lactuca sativa var. baby leaf and a clay-loam soil of pH 6.5 as a plant–soil model system. Various inorganic (phosphate rock, monoammonium phosphate, struvite), organic (bone meal and bone meal pelletized with compost) and organomineral fertilizers (phosphate rock, monoammonium phosphate, struvite pelletized with compost) were compared. The soil properties, crop yield, morphological aspects and metabolomics of the plants were analyzed. After 45 days of the growing cycle, the organomineral fertilizers (OMFs) composed of compost and monoammonium phosphate (OMF2(MAP+C)) or struvite (OMF3(STR+C)) exhibited the best yield results: 101.37 g and 83.21 g, respectively. These treatments also exhibited the best phosphorus use efficiency (PUE) results: 7.40% and 8.33%, respectively. The yield of plants treated with MAP was 56.01 g, and its PUE was 5.33%. The yield of plants treated with STR was 62.10 g and the PUE was 4.67%. Accordingly, the development of OMFs with compost had a positive effect regarding MAP and STR fertilization. Lettuce fertilized with organic bone meal fertilizers had the lowest yield and nutrient use efficiency. The non-targeted metabolic study of green tissue revealed an overactivation of the TriCarboxylic Acids-TCA cycle and amino acid biosynthesis in plants fertilized with bone meal and phosphate rock treatments, likely as a plant stress response. The overall conclusion of this work is that the development of OMFs with compost is a good strategy to increase soil P availability and, accordingly, plant P uptake and %PUE. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

16 pages, 3123 KiB  
Article
Ammonia Losses, Wheat Biomass, and N Dynamics as Influenced by Organo-Mineral Fertilizer
by Helen Carla Santana Amorim, Francielle Roberta Dias de Lima, Mariene Helena Duarte, Rafael Marta Carbone Carneiro, Gustavo Avelar Zorgdrager Van Opbergen, Raphael Felipe Rodrigues Corrêa and Luiz Roberto Guimarães Guilherme
Biosphere 2025, 1(1), 4; https://doi.org/10.3390/biosphere1010004 - 1 Jul 2025
Viewed by 327
Abstract
Organo-mineral fertilizers can slow N release to plants, reducing N losses to the environment and enhancing N use efficiency (NUE). Yet, this greater NUE is not always coupled to greater crop yields, which warrants further investigation. Here, we assessed the relationship between N-NH [...] Read more.
Organo-mineral fertilizers can slow N release to plants, reducing N losses to the environment and enhancing N use efficiency (NUE). Yet, this greater NUE is not always coupled to greater crop yields, which warrants further investigation. Here, we assessed the relationship between N-NH3 losses from volatilization and wheat (Triticum aestivum L.) biomass and N status. The following treatments were tested: conventional urea (U, 45% N), urea treated with NBPT (N-(n-butyl) thiophosphoric triamide) (U + NBPT, 45.6% N), S-coated urea (U + S; 37% N), Se-coated urea (U + Se; 45% N), organo-mineral fertilizer Azoslow 29 (OMF, 29% N + 50% Azogel®). The above treatments and non-fertilized control were tested in two soils (LVd and LVAd, 71 and 25% clay, respectively). Semi-open static collectors were used to determine N-NH3 volatilization 1, 2, 4, 8, 11, 15, 18, 23, 29, and 36 days after application of treatments. Wheat was cultivated for 35 days, and shoot dry mass and total leaf N were determined after harvest. Cumulative N-NH3 losses from OMF (27 and 32% of N applied in the LVd and LVAd soils, respectively) did not differ from U and (26–32%) and U + Se (24–31%), likely due to organic matter inputs enhancing urease activity in soils. Nevertheless, OMF resulted in 2–4 times greater wheat dry matter than U, U + Se, and U + S, with similar dry mass of U + NBPT for LVAd soils. OMF application enhanced total N removal in wheat leaves relative to the unfertilized control and most N sources. N-NH3 losses did not reduce biomass yield, but were negatively linked to N accumulation in wheat. The OMF enhanced wheat biomass and nutrition while sustaining environmental quality and promoting circularity in agroecosystems. Full article
Show Figures

Figure 1

15 pages, 1594 KiB  
Article
Effects of Organic, Organomineral, and Mineral Fertilization on Soil Macronutrients in Chrysanthemum Cultivar Singelo Cultivation
by Luana Aparecida Menegaz Meneghetti, Edna Maria Bonfim-Silva, Tonny José Araújo da Silva, Niclene Ponce Rodrigues de Oliveira, Alisson Silva Costa Custódio, Ivis Andrei Campos e Silva, Tallys Henrique Bonfim-Silva, Rosana Andreia da Silva Rocha, Alessana Franciele Schlichting, Salomão Lima Guimarães, Marcio Koetz, Deborah de Amorim Teixeira Santos, Paulo Otávio Aldaves dos Santos Guedes and Patrícia Ferreira da Silva
Horticulturae 2025, 11(6), 567; https://doi.org/10.3390/horticulturae11060567 - 22 May 2025
Viewed by 450
Abstract
The use of agro-industrial waste, such as wood ash or biomass ash, has been adopted as an alternative to synthetic fertilizers for providing nutrients to plants. This study aimed to evaluate the levels of primary and secondary macronutrients in soil cultivated with chrysanthemum [...] Read more.
The use of agro-industrial waste, such as wood ash or biomass ash, has been adopted as an alternative to synthetic fertilizers for providing nutrients to plants. This study aimed to evaluate the levels of primary and secondary macronutrients in soil cultivated with chrysanthemum under different types of fertilization management: organic, organomineral, and mineral, with and without liming. The experiment was conducted in a greenhouse for 185 days, using a randomized blocks design in a 5 × 2 factorial scheme: five fertilization types (incubated and unincubated wood ash, organomineral fertilizer, mineral fertilizer, and control) and two levels of liming (without liming and 70% base saturation) with five replicates. The soil used was Oxisol. The phosphorus, potassium, calcium, magnesium, and sulfur contents in the soil after cultivation were analyzed. There was a 77% increase in potassium in treatments with ash compared to treatments without ash. The corrected soil presented 173.2 mg dm−3 of potassium, compared to 153.6 mg dm−3 in the uncorrected soil, an increase of 11.6%. The calcium levels increased by 60% with the application of ash (incubated or not) and organomineral fertilizer, compared to soils without ash. Liming increased calcium by 1.12 cmolc dm−3. Fertilizers with ash associated with liming resulted in higher magnesium levels. The sulfur content varied according to the fertilizer, with non-incubated ash showing the highest value (69.11 mg dm−3) compared to the control (11.08 mg dm−3), a difference of 83.96%. Organomineral fertilizer is an alternative for increasing the availability of macronutrients in the soil, allowing a second cropping cycle without the need to manage soil fertility, contributing to sustainable agriculture, encouraging the reuse of waste, and reducing the use of mineral fertilizers. Full article
(This article belongs to the Special Issue Irrigation and Fertilization Management in Horticultural Production)
Show Figures

Graphical abstract

23 pages, 5520 KiB  
Article
Multivariate Insight into Soil Organic Matter Dynamics in Subarctic Abandoned Farmland by the Chronosequence Approach
by Timur Nizamutdinov, Sizhong Yang, Xiaodong Wu, Vladislav Gurzhiy and Evgeny Abakumov
Agronomy 2025, 15(4), 893; https://doi.org/10.3390/agronomy15040893 - 3 Apr 2025
Viewed by 587
Abstract
Agricultural land abandonment is a widespread phenomenon found in many regions of the world. There are many studies on post-agricultural changes in temperate, arid, semi-arid regions, etc., but studies of such soils in boreal or Arctic conditions are rare. Our study aims to [...] Read more.
Agricultural land abandonment is a widespread phenomenon found in many regions of the world. There are many studies on post-agricultural changes in temperate, arid, semi-arid regions, etc., but studies of such soils in boreal or Arctic conditions are rare. Our study aims to fill the gaps in research on the processes of post-agricultural soil transformation, with a focus on the harsh climatic conditions of the Arctic and Subarctic regions. Parameters of soil organic matter (SOM) are largely reflected in the quality of soil, and this study investigates the dynamics of SOM properties in Subarctic agricultural soils in process of post-agrogenic transformation and long-term fertilization. Using a chronosequence approach (0–25 years of abandonment) and a reference site with over 90 years of fertilization, we performed elemental (CHN-O) analysis, solid-state 13C NMR spectroscopy of SOM, PXRD of soil and parent material, and multivariate statistical analysis to identify the connections between SOM composition and other soil properties. The results revealed transient increases in soil organic carbon (SOC) during early abandonment (5–10 years; 3.75–4.03%), followed by significant declines after 25 years (2.15–2.27%), driven by mineralization in quartz-dominated soils lacking reactive minerals for organo-mineral stabilization. The reference site (the Yamal Agricultural Station) maintained stable SOC (3.58–3.83%) through long-term organic inputs, compensating for poor mineralogical protection. 13C NMR spectroscopy highlighted shifts from labile alkyl-C (40.88% in active fields) to oxidized O-alkyl-C (21.6% in late abandonment) and lignin-derived aryl-C (15.88% at middle abandonment), reflecting microbial processing and humification. Freeze–thaw cycles and quartz dominance mineralogy exacerbated SOM vulnerability, while fertilization sustained alkyl-C (39.61%) and balanced C:N (19–20) ratios. Principal Component Analysis linked SOC loss to declining nutrient retention and showed SOM to be reliant on physical occlusion and biochemical recalcitrance, both vulnerable to Subarctic freeze–thaw cycles that disrupt aggregates. These findings underscore the fragility of SOM in Subarctic agroecosystems, emphasizing the necessity of organic amendments to counteract limitations of poor mineralogical composition and climatic stress. Full article
(This article belongs to the Special Issue Soil Organic Matter and Tillage)
Show Figures

Figure 1

8 pages, 475 KiB  
Proceeding Paper
Yield, Morphological Traits, and Physiological Parameters of Organic and Pelleted Avena sativa L. Plants Under Different Fertilization Practices
by Aleksandra Stanojković-Sebić, Dobrivoj Poštić, Marina Jovković and Radmila Pivić
Biol. Life Sci. Forum 2025, 41(1), 4; https://doi.org/10.3390/blsf2025041004 - 27 Mar 2025
Viewed by 335
Abstract
Oat (Avena sativa L.) is one of the most important self-fertilizing field plants belonging to the Poaceae family. It has no significant requirements regarding growing conditions but has a very good reaction to fertilization. The current research evaluated the significance of the [...] Read more.
Oat (Avena sativa L.) is one of the most important self-fertilizing field plants belonging to the Poaceae family. It has no significant requirements regarding growing conditions but has a very good reaction to fertilization. The current research evaluated the significance of the effects of individual applications of mineral (NPK) and organo-mineral (OMF) fertilizers, as well as their individual combination with slaked lime (calcium hydroxide, Ca(OH)2), on the yield, morphological traits [mean number of leaves per plant—MNLP, minimum leaf length (cm) per plant—MinLL, maximum leaf length (cm) per plant—MaxLL, number of ears per plant—NEP], and physiological parameters (nitrogen balance index—NBI, content of chlorophyll—Chl, flavonoids—Flv, anthocyanins—Ant) of organic and pelleted (graded) oat plants, comparing the treatments and in relation to the control. The experiment was performed in semi-controlled glasshouse conditions, in pots, from the fourth week of March to the fourth week of June 2024, using Vertisol soil. This soil is characterized as light clay with an acid reaction. Physiological parameters were measured using a Dualex leaf clip sensor. The results obtained showed that physiological parameters in both oat types significantly differed (p < 0.05) between the treatments applied and in relation to the control, whereas the morphological traits did not significantly differ (p > 0.05) between the treatments. Statistically significant differences (p < 0.05) in the yield of both oat types were most pronounced in the OMF + Slaked Lime treatment (organic: 4.49 g pot−1; pelleted: 4.61 g pot−1) in relation to the control (organic: 2.48 g pot−1; pelleted: 2.63 g pot−1). The pelleted oats showed slightly better results for the effects of different treatments across all tested parameters compared to organic oats. In conclusion, the best results were obtained with the use of OMF + Slaked Lime, which could be proposed as the optimal fertilization treatment for pelleted and organic oat cultivation based on this research. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Agronomy)
Show Figures

Figure 1

17 pages, 284 KiB  
Article
Organo-Mineral Fertilizer Improves Ocimum basilicum Yield and Essential Oil
by Roberta Camargos de Oliveira, Mércia Freitas Alves, José Magno Queiroz Luz, Arie Fitzgerald Blank, Daniela Aparecida de Castro Nizio, Paulo César de Lima Nogueira, Sérgio Macedo Silva and Renata Castoldi
Plants 2025, 14(7), 997; https://doi.org/10.3390/plants14070997 - 22 Mar 2025
Viewed by 653
Abstract
The production of Ocimum basilicum (basil) crop depends upon the availability of all nutrients in the soil solution. There is a lack of information about its performance, at tropical conditions, using new fertilizer formulations, such as organo-mineral fertilizers, mainly under protected cultivation. These [...] Read more.
The production of Ocimum basilicum (basil) crop depends upon the availability of all nutrients in the soil solution. There is a lack of information about its performance, at tropical conditions, using new fertilizer formulations, such as organo-mineral fertilizers, mainly under protected cultivation. These types of fertilizers combine benefits of the main fertilizers used in agriculture (organic and chemical). Therefore, organo-mineral fertilizers enhance soil health, provide a balanced nutrient supply, improve crop yields and quality. and promote environmental sustainability, making them a cost-effective and eco-friendly solution for sustainable crop production. This work aimed to evaluate the biomass and essential oil of basil varieties, with organo-mineral fertilization in different agricultural systems. Each experiment was conducted in a randomized block design, with three replications in a 2 × 4 factorial scheme, being two varieties of basil (“Sweet Dani” and “Cinnamon”) and four fertilizers: organo-mineral source, mineral source, organic source and the natural fertility of the soil. The evaluated characteristics were plant height, fresh biomass of plants, content, yield and the chemical composition of the essential oil. The organo-mineral sources of fertilizer provide better values for fresh biomass (average of 1175.90 and 1032.83 g per plant via greenhouse cultivation and field cultivation, respectively), essential oil yield (14.57 and 11.89 g per plant via greenhouse cultivation and field cultivation, respectively) and the dominant compounds for both cultivars of O. basilicum. Protected cultivation is the better environmental condition for obtaining the highest performance of O. basilicum cultivars about biomass and essential oil. The content of essential oil is not affected by the agricultural systems (greenhouse and field). The major compounds of essential oil under Brazilian crop conditions are Linalol and (E)-mehyl cinnamate in “Cinnamon” and neral and geranial (citral) in “Sweet Dani”. Full article
19 pages, 4354 KiB  
Article
Post-Agricultural Shifts in Soils of Subarctic Environment on the Example of Plaggic Podzols Chronosequence
by Timur Nizamutdinov, Sizhong Yang and Evgeny Abakumov
Agronomy 2025, 15(3), 584; https://doi.org/10.3390/agronomy15030584 - 26 Feb 2025
Cited by 3 | Viewed by 680
Abstract
This study investigates the post-agricultural transformation of Plaggic Podzols in a Subarctic environment, focusing on the Yamal region, Western Siberia. Agricultural practices historically altered the natural Histic Entic Podzols, leading to their conversion into anthropogenic soils with enhanced organic matter and nutrient profiles. [...] Read more.
This study investigates the post-agricultural transformation of Plaggic Podzols in a Subarctic environment, focusing on the Yamal region, Western Siberia. Agricultural practices historically altered the natural Histic Entic Podzols, leading to their conversion into anthropogenic soils with enhanced organic matter and nutrient profiles. Using a chronosequence approach, soil profiles were analyzed across active and abandoned agricultural fields to assess changes in soil properties over 25 years of abandonment. Results revealed a significant decline in SOC (2.73 → 2.21%, r2 = 0.28) and clay (5.26 → 12.45%, r2 = 0.84), which is reflected in the values of SOC/clay and SOC/(silt + clay) ratios. Nevertheless, the values of the ratios are still above the thresholds, indicating that the “health” of the soils is satisfactory. We detected a decrease in Nt (0.17 → 0.12%, r2 = 0.79) and consequently an increase in the C:N ratio (18.6 → 22.1), indirectly indicating a decrease in SOM quality. Nutrient losses (NPK) with increasing abandonment periods were pronounced, with their concentrations indicative of soil quality degradation. Trace metal concentrations remained below pollution thresholds, reflecting minimal ecological risk according to Igeo, RI, and PLI indexes. The results highlight the necessity for further research on organo-mineral interactions and SOM quality assessment. The findings provide insights into the challenges of soil restoration in Polar regions, emphasizing the role of climate, land-use history, and management practices in shaping soil health and fertility. Full article
(This article belongs to the Special Issue The Impact of Land Use Change on Soil Quality Evolution)
Show Figures

Figure 1

15 pages, 4691 KiB  
Article
Nitrogen Availability Level Controlling the Translocation and Stabilization of Maize Residue Nitrogen in Soil Matrix
by Shuzhe Liu, Sicong Ma, Fangbo Deng, Feng Zhou, Xiaona Liang, Lei Yuan, Huijie Lü, Xueli Ding, Hongbo He and Xudong Zhang
Agriculture 2025, 15(4), 403; https://doi.org/10.3390/agriculture15040403 - 14 Feb 2025
Viewed by 650
Abstract
Crop residue returning to field inputs considerable nitrogen (N) into soils, which greatly influences the function and sustainability of the agricultural system. However, little is known about the transformation and physical stabilization of maize residue-derived N in soil matrix in response to changing [...] Read more.
Crop residue returning to field inputs considerable nitrogen (N) into soils, which greatly influences the function and sustainability of the agricultural system. However, little is known about the transformation and physical stabilization of maize residue-derived N in soil matrix in response to changing N availability. To explore the distinct regulation of organo-mineral complexes on maize residue N translocation, a 38-week microcosm incubation was carried out amended with 15N-labeled maize residue in a Mollisols sampled from Gonghzuling, Northeast of China. Unlabeled inorganic N was added at different levels (0, 60.3 mg N kg−1 soil (low level), 167 mg N kg−1 soil (medium level), and 702 mg N kg−1 soil (high level)). 15N enrichment in bulk soil and the separated particle size fractions were determined periodically in the bulk soils and the subsamples were analyzed. At the early stage of the incubation, the maize residue N concentration declined significantly in the sand fraction and increased in the silt and clay fractions. Temporally, the 15N enrichment in the silt fraction changed slightly after 4 weeks but that in the clay fraction increased continuously until the 18th week. These results indicated that the decomposing process controlled maize residue N translocation hierarchically from coarser into finer fractions. From the aspect of functional differentiation, the pass-in of the maize residue N into the silt fraction was apt to be balanced by the pass-out, while the absorption of clay particles was essential for the stabilization of the decomposed maize residue N. The inorganic N level critically controlled both the decomposition and translocation of maize residue in soil. High and medium inorganic N addition facilitated maize residue N decomposition compared to the low-level N addition. Furthermore, medium N availability is more favorable for maize residue N transportation and stabilization in the clay fraction. Comparatively, high-level inorganic N supply could possibly impede the interaction of maize residue N and clay minerals due to the competition of ammonium sorption/fixation on the active site of clay. This research highlighted the functional coupling of organic–inorganic N during soil N accumulation and stabilization, and such findings could present a theoretical perspective on optimal management of crop residue resources and chemical fertilizers in field practices. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

14 pages, 1914 KiB  
Article
Systematic Selection of Waste from Run-of-Mine Coal Processing as Sustainable Raw Materials for Organo-Mineral Fertilizer Production
by Eduarda Fraga Olivo, Juliana Acordi, Morgana Nuernberg Sartor Faraco, Lisandro Simão, Manuel Joaquim Ribeiro, Élia Maria Raposo Fernandes, Jairo José Zocche and Fabiano Raupp-Pereira
Sustainability 2025, 17(4), 1350; https://doi.org/10.3390/su17041350 - 7 Feb 2025
Viewed by 969
Abstract
The main focus of this study, from a sustainable perspective, was to develop mineral circularity actions for the minimization of environmental impacts, generated over decades by the processing of run-of-mine (ROM) coal in the Catarinense coal basin–Brazil (CCB–Br), from the use of potential [...] Read more.
The main focus of this study, from a sustainable perspective, was to develop mineral circularity actions for the minimization of environmental impacts, generated over decades by the processing of run-of-mine (ROM) coal in the Catarinense coal basin–Brazil (CCB–Br), from the use of potential residual fractions (candidate residues) as raw materials for the production of organo-mineral fertilizers, or OMFs (candidate products). Therefore, the objective was to assess the potential of the residual fractions, generated in the distinct phases of ROM coal processing, as candidate waste for valorization, contributing directly to the advancement of the Sustainable Development Goals (SDGs). The samples from ROM processing resulted in 24 waste fractions identified by geological characteristics and a sustainable processing methodology. These fractions were subjected to a systematic analysis using the criteria for waste valorization CPQvA (classification (C) of hazardousness, potentiality (P), quantities/viability (Qv), and applicability (A)). Two samples were identified with significant potential for valorization in the agro-industry as sustainable raw materials for the organo-mineral fertilizers. Both samples exhibited neutral stock pH values (7.0 and 7.1), low percentage Fe2O3 content (4.2% and 3.2%), low SO3 content (0.5% and 1.2%), and low total sulfur content (1.0%). These characteristics qualified the studied ROM samples as raw materials suitable for the production of organo-mineral fertilizers (OMFs), and which comply with Brazilian legislation. Full article
Show Figures

Figure 1

23 pages, 5497 KiB  
Article
Evaluating PlanetScope and UAV Multispectral Data for Monitoring Winter Wheat and Sustainable Fertilization Practices in Mediterranean Agroecosystems
by Italo Moletto-Lobos, Katarzyna Cyran, Luciano Orden, Silvia Sánchez-Méndez, Belen Franch, Natacha Kalecinski, Francisco J. Andreu-Rodríguez, Miguel Á. Mira-Urios, José A. Saéz-Tovar, Pierre C. Guillevic and Raul Moral
Remote Sens. 2024, 16(23), 4474; https://doi.org/10.3390/rs16234474 - 28 Nov 2024
Cited by 1 | Viewed by 2405
Abstract
Cereal crops play a critical role in global food security, but their productivity is increasingly threatened by climate change. This study evaluates the feasibility of using PlanetScope satellite imagery and a UAV equipped with the MicaSense RedEdge multispectral imaging sensor in monitoring winter [...] Read more.
Cereal crops play a critical role in global food security, but their productivity is increasingly threatened by climate change. This study evaluates the feasibility of using PlanetScope satellite imagery and a UAV equipped with the MicaSense RedEdge multispectral imaging sensor in monitoring winter wheat under various fertilizer treatments in a Mediterranean climate. Eleven fertilizer treatments, including organic-mineral fertilizer (OMF) pellets, were tested. The results show that conventional inorganic fertilization provided the highest yield (8618 kg ha⁻1), while yields from OMF showed a comparable performance to traditional fertilizers, indicating their potential for sustainable agriculture. PlanetScope data demonstrated moderate accuracy in predicting canopy cover (R2 = 0.68), crop yield (R2 = 0.54), and grain quality parameters such as protein content (R2 = 0.49), starch (R2 = 0.56), and hectoliter weight (R2 = 0.51). However, its coarser resolution limited its ability to capture finer treatment-induced variability. MicaSense, despite its higher spatial resolution, performed poorly in predicting crop components, with R2 values below 0.35 for yield and protein content. This study highlights the complementary use of remote sensing technologies to optimize wheat management and support climate-resilient agriculture through the integration of sustainable fertilization strategies. Full article
(This article belongs to the Special Issue Advancements in Remote Sensing for Sustainable Agriculture)
Show Figures

Figure 1

17 pages, 1090 KiB  
Article
The Possibility of Environmentally Sustainable Yield and Quality Management of Spring Wheat (Triticum aestivum L.) of the Cornetto Variety When Using Sapropel Extract
by Pavel Dmitriyev, Alexander Bykov, Ivan Zuban, Ivan Fomin, Saltanat Ismagulova, Kirill Ostrovnoy and Inna Jemaledinova
Sustainability 2024, 16(22), 9870; https://doi.org/10.3390/su16229870 - 12 Nov 2024
Cited by 1 | Viewed by 1197
Abstract
Sustainable development is one of the main directions of modern agriculture. First of all, sustainability in the agricultural sector can be achieved through the possible abandonment of traditional mineral fertilizers. Many decades of using these fertilizers have led to the degradation of arable [...] Read more.
Sustainable development is one of the main directions of modern agriculture. First of all, sustainability in the agricultural sector can be achieved through the possible abandonment of traditional mineral fertilizers. Many decades of using these fertilizers have led to the degradation of arable soils and to soil and environmental pollution. As a result, this causes reductions in yields and the environmental quality of agricultural products and affects the health of the population. An alternative to traditional mineral fertilizers may be the use of innovative organomineral fertilizers obtained from local resources. These include manure, humus, compost, sediments, etc. In recent years, fertilizers obtained from the sapropels of the bottom sediments of lakes have become widespread. Their distinctive feature is the environmental friendliness and completeness of the content of chemical elements and substances necessary for the development and growth of plants. In addition, the methods of obtaining and applying these fertilizers allow us to talk about their effectiveness in use. The range of applications of these fertilizers is diverse, from use in the form of a dry extract applied directly to the soil to the use of liquid suspensions used at various stages of processing and from pre-sowing seed treatment to watering and spraying plants at different periods of vegetation. Moreover, an important aspect is the research work on the variational use of sapropel fertilizers on different crops, with different methods of production and concentrations and at different stages of processing. This publication contains the results of a study of the effect of the obtained innovative sapropel fertilizer on productivity, wheat grain quality, and economic efficiency (Triticum aestivum L.). To identify the optimal concentration of sapropel extract, laboratory studies were carried out to determine the germination energy and germination of wheat seeds of different varieties when they were soaked in various concentrations: 0.4, 0.8, 1.2, 1.6, and 2.0 g/L. The best indicators of germination energy and germination of wheat seeds during treatment with the extract were obtained at a concentration of 1.2 g/L. The research was conducted at an accredited variety testing laboratory. A field experiment was conducted in the fields of the agrobiological station of North Kazakhstan University named after Manash Kozybayev. The treatment of the seeds was carried out by soaking them in sapropel extract to evenly distribute the substance. The scheme of the field experiment included the option of using foliar treatment with a solution of sapropel extract at the tillering stage. As a result of the application of the obtained extract in the field, environmental and socio-economic efficiency was noted. The conducted field studies note its positive effect and effectiveness on the morphological, qualitative, and quantitative indicators of the wheat harvest. In the areas where wheat seeds were pretreated, as well as where foliar treatment with the resulting sapropel suspension was carried out, the best yield indicators were revealed. In these variants of the experiment with pre-sowing and pre-sowing and foliar treatment with the sapropel extract solution, the yield was 3.63 and 3.81 tons per hectare, respectively. The introduction of sapropel extract at the stage of seed treatment before sowing, as well as foliar processing of wheat at the tillering stage, will increase the efficiency and profitability of the agricultural industry and obtain a synergistic effect in the form of socio-economic efficiency and environmental safety of production. In our opinion, this will contribute to the development of sustainable agriculture and the production of environmental products. Full article
Show Figures

Figure 1

28 pages, 6312 KiB  
Article
Reclamation and Improvement of Saline Soils Using Organo–Mineral–Natural Resources, Treated Saline Water, and Drip Irrigation Technology
by Nahla A. Hemdan, Soad M. El-Ashry, Sameh Kotb Abd-Elmabod, Zhenhua Zhang, Hani A. Mansour and Magdy Attia
Water 2024, 16(22), 3234; https://doi.org/10.3390/w16223234 - 10 Nov 2024
Cited by 2 | Viewed by 2106
Abstract
Reclamation and management of saline soil in arid regions fundamentally require more consideration to attain sustainable agriculture. Experiments were conducted at Abo-Kalam Farm, South Sinai, Egypt. Split-split-plot design experiments were carried out to study the effect of treatments on saline soil hydrophysical properties, [...] Read more.
Reclamation and management of saline soil in arid regions fundamentally require more consideration to attain sustainable agriculture. Experiments were conducted at Abo-Kalam Farm, South Sinai, Egypt. Split-split-plot design experiments were carried out to study the effect of treatments on saline soil hydrophysical properties, sorghum, and cv. ‘Dorado’ plants during the summer season. Pea cv. ‘Entsar 3’ plants were cultivated during the winter season for the residual effect of treatments. Organo–mineral amendment (rice straw compost + mineral sulfur at different rates) was assigned as the main factor, natural rock or artificial fertilizers were assigned as subfactors, and humic acid at different rates was the sub-subfactor. Results showed that organo–mineral amendments improved the hydrophysical properties of the soil, plant nutrient uptake, crop yield, and crop water productivity; however, it diminished by 10 tons/fed (4200 m2) of compost plus 700 kg/fed of mineral sulfur. Therefore, it is recommended that economically using the combination of applying organic–mineral amendments of 4 tons/fed of compost plus 400 kg/fed of mineral sulfur and 5 kg/fed of humic acid plus natural rock fertilizer is the best safe management for reclamation and improvement of saline soils using partially treated saline irrigation water and natural resources. Full article
Show Figures

Figure 1

10 pages, 1754 KiB  
Communication
Laser-Induced Breakdown Spectroscopy Applied to the Quantification of K, Ca, Mg and Mn Nutrients in Organo-Mineral, Mineral P Fertilizers and Rock Fertilizers
by Cesar Cervantes, Bruno S. Marangoni, Gustavo Nicolodelli, Giorgio S. Senesi, Paulino R. Villas-Boas, Caroline S. Silva, Ana Rita A. Nogueira, Vinicius M. Benites and Débora M. B. P. Milori
Minerals 2024, 14(11), 1109; https://doi.org/10.3390/min14111109 - 30 Oct 2024
Viewed by 1044
Abstract
A low-cost laser-induced breakdown spectroscopy (LIBS) instrument equipped with a charge-coupled device (CCD) was tested in the atmospheric environment for the quantification of K, Ca, Mg, and Mn in some organo–mineral fertilizers, mineral P fertilizers, and rock fertilizers of various compositions and origins, [...] Read more.
A low-cost laser-induced breakdown spectroscopy (LIBS) instrument equipped with a charge-coupled device (CCD) was tested in the atmospheric environment for the quantification of K, Ca, Mg, and Mn in some organo–mineral fertilizers, mineral P fertilizers, and rock fertilizers of various compositions and origins, using flame atomic absorption spectrometry (FAAS) as the reference technique. The correlation analysis performed between each CCD pixel and the corresponding element concentration measured by FAAS allowed to choose the most appropriate K, Ca, Mg and Mn emission lines for LIBS analysis. The normalization process applied to LIBS spectra to correct physical matrix effects and small fluctuations was able to increase the linear correlation of the calibration curves between LIBS data and FAAS data by an average of 0.15 points of the R-value for all elements of interest. The R values of calibration curves were 0.97, 0.96, 0.86 and 0.84, for K, Ca, Mg and Mn, respectively. The limits of detection (LOD) were 66 mg/kg (K), 35 mg/kg (Ca), 5.4 mg/kg (Mg) and 0.8 mg/kg (Mn) when using LIBS in the quantification model. The cross-validation (leave-one-out) analysis yielded an absolute average error of 12% (K), 21% (Ca), 8% (Mg) and 13% (Mn) when LIBS data were correlated to FAAS ones. These results showed that the calibration models used were close to the optimization limit and satisfactory for K, Ca, Mg, and Mn quantification in the fertilizers and rocks examined. Full article
Show Figures

Figure 1

23 pages, 10596 KiB  
Article
Advanced Nuclear Magnetic Resonance, Fourier Transform–Infrared, Visible-NearInfrared and X-ray Diffraction Methods Used for Characterization of Organo-Mineral Fertilizers Based on Biosolids
by Ramona Crainic, Elena Mihaela Nagy, Gabriel Fodorean, Mihai Vasilescu, Petru Pascuta, Florin Popa and Radu Fechete
Agriculture 2024, 14(10), 1826; https://doi.org/10.3390/agriculture14101826 - 16 Oct 2024
Cited by 1 | Viewed by 1682
Abstract
Biosolids from stabilized sludge present a high fertilization potential, due to their rich content of nutrients and organic matter. The intrinsic and subtle properties of such fertilizers may greatly influence the fertilization efficiency. In this sense, the utility, advantages and limitations of advanced [...] Read more.
Biosolids from stabilized sludge present a high fertilization potential, due to their rich content of nutrients and organic matter. The intrinsic and subtle properties of such fertilizers may greatly influence the fertilization efficiency. In this sense, the utility, advantages and limitations of advanced characterization methods, for the investigation of structural and dynamic properties at the microscopic scale of slightly different formulations of fertilizers were assessed. For that, three formulas of organo-mineral fertilizers based on biosolids (V1, V2 and V3), having at least 2% N, 2% P2O5, and 2% K2O, were characterized by advanced methods, such as 1H NMR relaxometry, 1H MAS and 13C CP-MAS NMR spectroscopy, 1H double-quantum NMR and FT-IR spectroscopy. Advanced structural characterization was performed using SEM, EDX and X-ray diffraction. Four dynamical components were identified in the NMR T2 distribution showing that the rigid component has a percentage larger than 90%, which explains the broad band of NMR spectra confirmed by the distributions of many components in residual dipolar coupling as were revealed by 1H DQ-NMR measurements. SEM and EDX measurements helped the identification of components from crystalline-like X-ray diffraction patterns. To evaluate the release properties of organo-mineral fertilizers, dynamic measurements of classical electric conductivity and pH were performed by placing 0.25 g of the formulas (V1, V2 and V3) in 200 mL of distilled water. The content of N and P were quantified using specific reactants, combined with VIS-nearIR spectroscopy. Two release mechanisms were observed and characterized. It was found that V3 presents the smallest release velocity but releases the largest number of fertilizers. Full article
Show Figures

Figure 1

Back to TopTop