Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = microporous block copolymers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3852 KB  
Article
Al(SO4)(OH)·5H2O Stemming from Complexation of Aluminum Sulfate with Water-Soluble Ternary Copolymer and further Stabilized by Silica Gel as Effective Admixtures for Enhanced Mortar Cementing
by Zhiyuan Song, Zainab Bibi, Sidra Chaudhary, Qinxiang Jia, Xiaoyong Li and Yang Sun
Materials 2024, 17(19), 4762; https://doi.org/10.3390/ma17194762 - 27 Sep 2024
Viewed by 1056
Abstract
A water-soluble ternary copolymer bearing carboxyl, sulfonic, and amide functional groups was synthesized using ammonium persulfate-catalyzed free radical polymerization in water, resulting in high monomer conversion. This copolymer was then complexed with aluminum sulfate, forming an admixture containing Al(SO4)(OH)·5H2O, [...] Read more.
A water-soluble ternary copolymer bearing carboxyl, sulfonic, and amide functional groups was synthesized using ammonium persulfate-catalyzed free radical polymerization in water, resulting in high monomer conversion. This copolymer was then complexed with aluminum sulfate, forming an admixture containing Al(SO4)(OH)·5H2O, which was subsequently combined with silica gel. Characterization revealed that the synthesized copolymer formed a large, thin membrane that covered both the aluminum compounds and the silica gel blocks. The introduction of this complex admixture, combining the copolymer and aluminum sulfate, not only reduced the setting times of the cement paste but also enhanced the mechanical strengths of the mortar compared to using aluminum sulfate alone. The complex admixture led to the formation of katoite, metajennite, and C3A (tricalcium aluminate) in the mortar, demonstrating significant linking effects, whereas pure aluminum sulfate could not completely transform C3S within 24 h. Further addition of silica gel to the complex admixture further shortened the setting times of the paste, slightly reduced compressive strength, but improved flexural strength compared to the initial complex admixture. The silicon components appeared to fill the micropores and mesopores of the mortar, accelerating cement setting and enhancing flexural strength, while slightly decreasing compressive strength. This study contributed to the development of new cementing accelerators with improved hardening properties. Full article
Show Figures

Figure 1

32 pages, 11676 KB  
Review
Hydrogels and Aerogels for Versatile Photo-/Electro-Chemical and Energy-Related Applications
by Jiana Sun, Taigang Luo, Mengmeng Zhao, Lin Zhang, Zhengping Zhao, Tao Yu and Yibo Yan
Molecules 2024, 29(16), 3883; https://doi.org/10.3390/molecules29163883 - 16 Aug 2024
Cited by 4 | Viewed by 2645
Abstract
The development of photo-/electro-chemical and flexible electronics has stimulated research in catalysis, informatics, biomedicine, energy conversion, and storage applications. Gels (e.g., aerogel, hydrogel) comprise a range of polymers with three-dimensional (3D) network structures, where hydrophilic polyacrylamide, polyvinyl alcohol, copolymers, and hydroxides are the [...] Read more.
The development of photo-/electro-chemical and flexible electronics has stimulated research in catalysis, informatics, biomedicine, energy conversion, and storage applications. Gels (e.g., aerogel, hydrogel) comprise a range of polymers with three-dimensional (3D) network structures, where hydrophilic polyacrylamide, polyvinyl alcohol, copolymers, and hydroxides are the most widely studied for hydrogels, whereas 3D graphene, carbon, organic, and inorganic networks are widely studied for aerogels. Encapsulation of functional species with hydrogel building blocks can modify the optoelectronic, physicochemical, and mechanical properties. In addition, aerogels are a set of nanoporous or microporous 3D networks that bridge the macro- and nano-world. Different architectures modulate properties and have been adopted as a backbone substrate, enriching active sites and surface areas for photo-/electro-chemical energy conversion and storage applications. Fabrication via sol–gel processes, module assembly, and template routes have responded to professionalized features and enhanced performance. This review presents the most studied hydrogel materials, the classification of aerogel materials, and their applications in flexible sensors, batteries, supercapacitors, catalysis, biomedical, thermal insulation, etc. Full article
(This article belongs to the Special Issue New Sights in Nanomaterials for Photoelectrochemistry)
Show Figures

Figure 1

21 pages, 3982 KB  
Article
S/N/O-Enriched Carbons from Polyacrylonitrile-Based Block Copolymers for Selective Separation of Gas Streams
by Diego Gómez-Díaz, Lidia Domínguez-Ramos, Giulio Malucelli, María Sonia Freire, Julia González-Álvarez and Massimo Lazzari
Polymers 2024, 16(2), 269; https://doi.org/10.3390/polym16020269 - 18 Jan 2024
Cited by 2 | Viewed by 2428
Abstract
A series of polyacrylonitrile (PAN)-based block copolymers with poly(methyl methacrylate) (PMMA) as sacrificial bock were synthesized by atom transfer radical polymerization and used as precursors for the synthesis of porous carbons. The carbons enriched with O- and S-containing groups, introduced by controlled oxidation [...] Read more.
A series of polyacrylonitrile (PAN)-based block copolymers with poly(methyl methacrylate) (PMMA) as sacrificial bock were synthesized by atom transfer radical polymerization and used as precursors for the synthesis of porous carbons. The carbons enriched with O- and S-containing groups, introduced by controlled oxidation and sulfuration, respectively, were characterized by Raman spectroscopy, scanning electron microscopy, and X-ray photoelectron spectrometry, and their surface textural properties were measured by a volumetric analyzer. We observed that the presence of sulfur tends to modify the structure of the carbons, from microporous to mesoporous, while the use of copolymers with a range of molar composition PAN/PMMA between 10/90 and 47/53 allows the obtainment of carbons with different degrees of porosity. The amount of sacrificial block only affects the morphology of carbons stabilized in oxygen, inducing their nanostructuration, but has no effect on their chemical composition. We also demonstrated their suitability for separating a typical N2/CO2 post-combustion stream. Full article
Show Figures

Figure 1

13 pages, 2093 KB  
Article
Microporous Block Copolymers Modified with Cu(II)-Coordinated Polyethylene Oxide-Substituted Silicas for Analytical Sensors
by Ilsiya M. Davletbaeva, Ekaterina D. Li, Zulfiya Z. Faizulina, Oleg O. Sazonov, Oleg V. Mikhailov, Karim R. Safiullin and Ruslan S. Davletbaev
Materials 2023, 16(20), 6810; https://doi.org/10.3390/ma16206810 - 22 Oct 2023
Cited by 1 | Viewed by 1638
Abstract
The influence of stable-to-self-condensation Cu(II)-coordinated polyoxyethylene-substituted silicas (ASiP-Cu-0.5) on the synthesis of microporous block copolymers (OBCs) whose structural feature is the existence of coplanar polyisocyanate blocks of acetal nature (O-polyisocyanates) and a flexible-chain component of amphiphilic nature was studied. The use of ASiP-Cu-0.5 [...] Read more.
The influence of stable-to-self-condensation Cu(II)-coordinated polyoxyethylene-substituted silicas (ASiP-Cu-0.5) on the synthesis of microporous block copolymers (OBCs) whose structural feature is the existence of coplanar polyisocyanate blocks of acetal nature (O-polyisocyanates) and a flexible-chain component of amphiphilic nature was studied. The use of ASiP-Cu-0.5 increased the yield of O-polyisocyanate blocks and the microphase separation of OBC. The resulting OBCs turned out to be effective sorbents for the analytical reagents PAN and PHENAZO, which, being in the micropore cavity, interacted with copper(II) and magnesium ions. To reduce the thickness of the selective OBC layer ten-fold and simplify the technology for obtaining analytical test systems, polyethylene terephthalate was used as a substrate for applying OBC. It was found that the increased sensitivity of the resulting test systems was due to the fact that in thin reaction layers, the efficiency of the formation of O-polyisocyanate blocks noticeably increased. Full article
Show Figures

Figure 1

19 pages, 8079 KB  
Article
Silicas with Polyoxyethylene Branches for Modification of Membranes Based on Microporous Block Copolymers
by Ilsiya M. Davletbaeva, Zulfiya Z. Faizulina, Ekaterina D. Li, Oleg O. Sazonov, Sergey V. Efimov, Vladimir V. Klochkov, Alexander V. Arkhipov and Ruslan S. Davletbaev
Membranes 2023, 13(7), 642; https://doi.org/10.3390/membranes13070642 - 2 Jul 2023
Cited by 3 | Viewed by 5264
Abstract
We have synthesized cubic and linear polysiloxanes containing polyoxyethylene branches (ASiP-Cu) using tetraethoxysilane, polyoxyethylene glycol, and copper chloride as precursors; the products are stable to self-condensation. The effect of copper chloride content on the chemical structure of ASiP-Cu has been established. A special [...] Read more.
We have synthesized cubic and linear polysiloxanes containing polyoxyethylene branches (ASiP-Cu) using tetraethoxysilane, polyoxyethylene glycol, and copper chloride as precursors; the products are stable to self-condensation. The effect of copper chloride content on the chemical structure of ASiP-Cu has been established. A special study was aimed at defining the modifying effect of ASiP-Cu on the sorption characteristics of membranes based on microporous, optically transparent block copolymers (OBCs). These OBCs were produced using 2,4-toluene diisocyanate and block copolymers of ethylene and propylene oxides. The study demonstrated significantly increased sorption capacity of the modified polymers. On the basis of the modified microporous block copolymers and 1-(2-pyridylazo)-2-naphthol (PAN) analytical reagent, an analytical test system has been developed. Additionally, the modified OBCs have the benefit of high diffusion permeability for molecules of organic dyes and metal ions. It has been shown that the volume of voids and structural features of their internal cavities contribute to the complex formation reaction involving PAN and copper chloride. Full article
(This article belongs to the Special Issue Progresses and Challenges of Block Copolymer Membranes)
Show Figures

Graphical abstract

26 pages, 5177 KB  
Article
Enhancing the Spectroelectrochemical Performance of WO3 Films by Use of Structure-Directing Agents during Film Growth
by Thi Hai Quyen Nguyen, Florian Eberheim, Sophie Göbel, Pascal Cop, Marius Eckert, Tim P. Schneider, Lukas Gümbel, Bernd M. Smarsly and Derck Schlettwein
Appl. Sci. 2022, 12(5), 2327; https://doi.org/10.3390/app12052327 - 23 Feb 2022
Cited by 13 | Viewed by 3401
Abstract
Thin, porous films of WO3 were fabricated by solution-based synthesis via spin-coating using polyethylene glycol (PEG), a block copolymer (PIB50-b-PEO45), or a combination of PEG and PIB50-b-PEO45 as structure-directing agents. The [...] Read more.
Thin, porous films of WO3 were fabricated by solution-based synthesis via spin-coating using polyethylene glycol (PEG), a block copolymer (PIB50-b-PEO45), or a combination of PEG and PIB50-b-PEO45 as structure-directing agents. The influence of the polymers on the composition and porosity of WO3 was investigated by microwave plasma atomic emission spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, X-ray diffraction, and gas sorption analysis. The electrochromic performance of the WO3 thin films was characterized with LiClO4 in propylene carbonate as electrolyte. To analyze the intercalation of the Li+ ions, time-of-flight secondary ion mass spectrometry, and X-ray photoelectron spectroscopy were performed on films in a pristine or reduced state. The use of PEG led to networks of micropores allowing fast reversible electrochromic switching with a high modulation of the optical transmittance and a high coloration efficiency. The use of PIB50-b-PEO45 provided isolated spherical mesopores leading to an electrochromic performance similar to compact WO3, only. Optimum characteristics were obtained in films which had been prepared in the presence of both, PEG and PIB50-b-PEO45, since WO3 films with mesopores were obtained that were interconnected by a microporous network and showed a clear progress in electrochromic switching beyond compact or microporous WO3. Full article
(This article belongs to the Special Issue Metal Oxides in Energy Technologies)
Show Figures

Graphical abstract

15 pages, 2698 KB  
Article
Synthesis and Study of Gas Transport Properties of Polymers Based on Macroinitiators and 2,4-Toluene Diisocyanate
by Ilsiya M. Davletbaeva, Ilnaz I. Zaripov, Alexander I. Mazilnikov, Ruslan S. Davletbaev, Raphael R. Sharifullin, Artem A. Atlaskin, Tatyana S. Sazanova and Ilya V. Vorotyntsev
Membranes 2019, 9(3), 42; https://doi.org/10.3390/membranes9030042 - 20 Mar 2019
Cited by 12 | Viewed by 3635
Abstract
Nowadays, block copolymers hold great promise for the design of novel membranes to be applied for the membrane gas separation. In this regard, microporous block copolymers based on a macroinitiator with an anionic nature, such as potassium-substituted block copolymers of propylene oxide and [...] Read more.
Nowadays, block copolymers hold great promise for the design of novel membranes to be applied for the membrane gas separation. In this regard, microporous block copolymers based on a macroinitiator with an anionic nature, such as potassium-substituted block copolymers of propylene oxide and ethylene oxide (PPEG) and 2,4-toluene diisocyanate (TDI), were obtained and investigated as effective gas separation membranes. The key element of the macromolecular structure that determines the supramolecular organization of the studied polymers is the coplanar blocks of polyisocyanates with an acetal nature (O-polyisocyanate). In the present research, the influence of the content of peripheral polyoxyethylene (POE) blocks in PPEG on the supramolecular structure processes and gas transport characteristics of the obtained polymers based on PPEG and TDI was investigated. According to the study of polymers if the POE block content is 15 wt %, the polyoxypropylene segments are located in the internal cavity of voids formed by O-polyisocyanate blocks. When the POE block content is 30 wt %, the flexible chain component forms its own microphase outside the segregation zone of the rigid O-polyisocyanate blocks. The permeability for polar molecules, such as ammonia or hydrogen sulfide, significantly exceeds the permeability values obtained for non-polar molecules He, N2 and CH4. A relatively high permeability is also observed for carbon dioxide. At the same time, the content of POE blocks has a small effect on the permeability for all studied gases. The diffusion coefficient increases with an increase in the POE block content in PPEG for all studied gases. Full article
(This article belongs to the Section Polymeric Membranes)
Show Figures

Figure 1

12 pages, 2988 KB  
Article
A Novel Glucose Biosensor Based on Hierarchically Porous Block Copolymer Film
by Teng Guo, Jiefeng Gao, Xiang Qin, Xu Zhang and Huaiguo Xue
Polymers 2018, 10(7), 723; https://doi.org/10.3390/polym10070723 - 2 Jul 2018
Cited by 18 | Viewed by 3880
Abstract
Enzymatic biosensors are widely used in clinical diagnostics, and electrode materials are essential for both the efficient immobilization of enzyme and the fast electron transfer between the active sites of enzyme and electrode surface. Electrode materials with a hierarchically porous structure can not [...] Read more.
Enzymatic biosensors are widely used in clinical diagnostics, and electrode materials are essential for both the efficient immobilization of enzyme and the fast electron transfer between the active sites of enzyme and electrode surface. Electrode materials with a hierarchically porous structure can not only increase the specific surface area but also promote the electron transfer, facilitating the catalysis reaction. Block copolymer is a good candidate for preparation of film with a hierarchically porous structure due to its unique characteristics of self-assembly and phase separation. In the current work, hierarchically porous block copolymer film containing both micropores and nanopores was prepared by spinodal decomposition induced phase separation. The resultant copolymer film was adopted as the electrode material to immobilize glucose oxidase (GOx) for construction of an enzyme biosensor. Scanning electron microscopy (SEM), contact angle (CA) measurements, and Fourier-transform infrared (FTIR) and electrochemical impendence spectroscopy (EIS) were adopted to investigate the microstructure of the as-developed biosensor. Results demonstrated that the hierarchically porous block copolymer film offered a favorable and biocompatible microenvironment for proteins. These as-prepared glucose biosensors possessed a wide linear range (10–4500 μM), a low detection limit (0.05 μM), quick response (2 s), excellent stability, and selectivity. This work demonstrates that hierarchically porous block copolymer film is a good matrix candidate for the immobilization of the enzyme and provides a potential electrode material to construct novel biosensors with excellent performance. Full article
Show Figures

Figure 1

34 pages, 3063 KB  
Review
Photoresponsive Block Copolymers Containing Azobenzenes and Other Chromophores
by Haifeng Yu and Takaomi Kobayashi
Molecules 2010, 15(1), 570-603; https://doi.org/10.3390/molecules15010570 - 26 Jan 2010
Cited by 76 | Viewed by 15587
Abstract
Photoresponsive block copolymers (PRBCs) containing azobenzenes and other chromophores can be easily prepared by controlled polymerization. Their photoresponsive behaviors are generally based on photoisomerization, photocrosslinking, photoalignment and photoinduced cooperative motions. When the photoactive block forms mesogenic phases upon microphase separation of PRBCs, supramolecular [...] Read more.
Photoresponsive block copolymers (PRBCs) containing azobenzenes and other chromophores can be easily prepared by controlled polymerization. Their photoresponsive behaviors are generally based on photoisomerization, photocrosslinking, photoalignment and photoinduced cooperative motions. When the photoactive block forms mesogenic phases upon microphase separation of PRBCs, supramolecular cooperative motion in liquid-crystalline PRBCs enables them to self-organize into hierarchical structures with photoresponsive features. This offers novel opportunities to photocontrol microphase-separated nanostructures of well-defined PRBCs and extends their diverse applications in holograms, nanotemplates, photodeformed devices and microporous films. Full article
(This article belongs to the Special Issue Photochemistry in Organic Synthesis)
Show Figures

Graphical abstract

Back to TopTop